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High-density genetic maps are essential for high resolution mapping of quantitative
traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara
recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on
160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs)
covering the whole genome. Based on a 100-kbp window SNP binning method, 1059
bin-markers were identified, physically anchored on the genome. The total length of
the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker
distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution
genotyping revealed new recombination breakpoints in the population. To highlight the
advantages of such high-density map, we compared it to two publicly available genetic
maps for the same population, comprising 69 PCR-based markers and 497 gene
expression markers derived from microarray data, respectively. In this study, we show
that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq
map closes many existing gaps in marker coverage, saturating the previously available
genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the
available genetic maps showed increased QTL mapping resolution and reduced QTL
confidence interval using the RNA-seq map. The new high-density map is a valuable
resource that facilitates the identification of candidate genes and map-based cloning
approaches.

Keywords: Arabidopsis, genetic map, genotyping by sequencing, QTL mapping, RIL population, resolution,
RNA-seq

INTRODUCTION

Quantitative trait locus (QTL) analysis has successfully identified a large number of genetic loci that
contribute to the regulation of quantitative phenotypes. The advent of -omics data has extended
the range of usual mapping traits to molecular phenotypes offering new approaches for bridging
the gap between genes and their function (Keurentjes et al., 2008). The idea that variation in gene
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expression can be treated as a quantitative trait gave rise to
the concept of genetical genomics (Jansen and Nap, 2001). In
combination with a genetic map, quantitative variation in gene
expression measured in a segregating population enables the
identification of expression QTLs (eQTLs). Many eQTL studies
have contributed to our understanding of the genetic architecture
of regulatory variation of intricate traits in Arabidopsis West
(Keurentjes et al., 2007; West et al., 2007; Terpstra et al., 2010;
Snoek et al., 2012; Lowry et al., 2013; Cubillos et al., 2014) (for
review see Joosen et al., 2009), poplar (Drost et al., 2015), tomato
(Ranjan et al., 2016), as well as in other organisms (Li et al., 2006,
2010; Rockman et al., 2010; Vinuela et al., 2010; Aylor et al., 2011;
King et al., 2014; Snoek et al., 2017; Sterken et al., 2017).

In essence, the success of QTL mapping is determined by
the mapping resolution which mainly depends on the size
of the population (and thus the number of recombination
events), the complexity of the phenotype, and the number
of available markers. High-density genetic maps are thus
instrumental for accurate mapping of QTLs. Traditional methods
used to obtain molecular markers were mainly PCR based
(SSR, AFLP, RFLP). New methods to derive molecular markers
have recently emerged, together with the advancement of
high-throughput technologies. Particularly, single-nucleotide
polymorphisms (SNPs) represent a rich source of potential
markers due to their abundance (Alonso-Blanco et al., 2016).
Differences in gene expression measured with microarrays as a
result of probe hybridization sensitivity to underlying sequence
polymorphisms have been used to derive SNP-based markers
(West et al., 2006; Zych et al., 2015, 2017). More recently,
next-generation sequencing technologies for transcriptome
analysis (RNA-seq) have provided unprecedented opportunities
for quantitative genetics in plants (Jimenez-Gomez, 2011).
Becoming a standard for gene expression profiling, RNA-seq
has also proven to be an efficient and cost-effective method to
identify genome-wide SNPs (Piskol et al., 2013; Markelz et al.,
2017). In the context of genetical genomics, RNA-seq on a
segregating population can simultaneously provide the molecular
phenotype and the sequence information for molecular markers
that subsequently provide genotyping information for the
population.

Segregating bi-parental populations such as recombinant
inbred line (RIL) populations are powerful tools for QTL
analysis (Koornneef et al., 2004). These immortal populations
capture frequent recombination events in a relatively small
sized population, thereby conveniently reducing the costs for
genotyping. In this study, we utilized an Arabidopsis thaliana
Bayreuth (Bay 0) × Shahdara (Sha) population that has been
used extensively for genetic (Loudet et al., 2002; Jimenez-Gomez
et al., 2010) and eQTL studies (Keurentjes et al., 2007; West et al.,
2007). The original genetic map for this population consists of 69
markers segregating in 420 F6 RILs (Loudet et al., 2002). Further
genotyping efforts on a subset of these RILs have introduced
markers derived from gene expression data with microarrays,
saturating the original map (West et al., 2006; Salathia et al.,
2007; Zych et al., 2015). Here, we present the construction of
a high-resolution genetic map from RNA-seq data of 160 RILs.
We validate and show the improvements of this new map by

performing a QTL analysis with publicly available phenotypic
data (Joosen et al., 2012).

MATERIALS AND METHODS

Plant Growth and Sample Preparation
Seeds from the A. thaliana accessions Bay-0 and Sha and
a Bay-0 × Sha RIL population consisting of 165 lines were
used. This population was initially developed by Loudet et al.
(2002). As part of a larger experiment aiming to investigate
genotype × environment interactions, the parental lines and
the RILs were grown under standard and controlled mild stress
conditions. In the standard condition, plants were grown under
long day (16 h light/8 h dark) at 70% RH and 22◦C/18◦C
(day/night) under artificial light (150 µmol m−2 s−1). The
plants were watered with a standard nutritive solution (see
Supplementary Table S1 in He et al., 2014) three times a week
by flooding cycles. The same conditions were used for the stress
environments, except for the varying parameter as indicated
hereafter: high temperature (25◦C day/23◦C night), high light
(300 µmol m−2 s−1), and low phosphate (12.5 µM phosphate
instead of 0.5 mM in the standard nutritive solution).

The RILs and the parental lines were first grown with three
to four plants per environment in a single climate cell under the
control conditions mentioned above. When most of the plants
flowered, the main stems of all plants were removed to increase
the numbers of side branches and thereby seed production, and
to ensure that all seeds would complete their development under
the specific conditions. Subsequently the plants were transferred
to different climate cells to continue their growth under the
specific stress conditions. At the time all plants in a given
condition produced a sufficient amount of fully matured seeds;
the seeds were bulk harvested from the three to four plants
per line. After drying, a fraction of the freshly harvested seeds
were stored at −80◦C in sealed 2 ml tubes until RNA-seq library
preparation.

RNA Isolation and Sequencing
RNA was isolated from 4 to 5 mg of fresh harvested dry
seeds that were stored at −80◦C. Each of the parents was
measured in triplicate per condition, i.e., 4 × 3 = 12 replicates
per parent. RNA was extracted from the seeds of 160 RILs
selected in conformity to the generalized genetical genomics
(GGG) strategy (Li et al., 2008; Supplementary Table S1). RNA
was isolated using the NucleoSpin RNA Plant Isolation Kit
(Macherey-Nagel 740949) but adding Plant RNA isolation Aid
(Life Technologies) according to the manufacturer’s protocol and
instructions.

RNA-Seq Reads Processing
Strand-specific RNA-seq libraries were prepared from each RNA
sample using the TruSeq RNA kit from Illumina according
to manufacturer’s instructions. Poly-A-selected mRNA was
sequenced using the Illumina HiSeq2500 sequencer, producing
strand-specific single-end reads of 100 nucleotides. Reads were
trimmed using Trimmomatic (version 0.33, Bolger et al.,
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2014) to remove low quality nucleotides. Trimmed reads were
subsequently mapped to the A. thaliana TAIR10 reference
genome (Lamesch et al., 2012) using the HISAT2 software
(version 2.0.1, Kim et al., 2015) with the “transcriptome mapping
only” option. SNPs were called using the mpileup function of
samtools (version 0.1.19, Li et al., 2009) and bcftools. The raw
sequence data have been uploaded to the NCBI under the project
identifier: PRJNA4180751.

SNP Identification and RIL Genotyping
Variant call format (VCF) files were generated for each of the
samples. Since not all SNPs are found in all genotypes, all vcf
files were merged to generate a list with all variants present
in at least one sample. From this unique list, information
regarding the position in base pairs and the chromosome
location of each SNP was retrieved and filtered for being
consistent across the sequencing data of the parental lines.
In order to get a more reliable genotypic score, canceling
out any SNPs miscalls, and to reduce the overall number
of markers, SNPs were grouped into bins. 1059 equal size
artificial bins of 100 kbp were created along the whole genome.
The scoring of the genotype was obtained based on the SNP
information within each bin. For regions at the transition
between two genotypic blocks, the bin score was rounded up
and assigned to the closest genotypic score. The quality of
the genotype scoring of the bins was assessed by correlation
analysis.

Nomenclature
The bins are ordered based on the genome sequence, thus the
unit distance is not expressed in centimorgans (cM) but in bins of
100 kbp. Each bin is used as a marker and the midpoint position
of the 100 kbp bin is used as the marker position. Markers were
named RSM for RNA-seq markers, followed by the chromosome
number of their location and their physical position in mega
base pairs (Mbp). As an example RSM_1_0.05 corresponds to the
marker at 0.05 Mbp on chromosome 1.

Genetic Map Construction
The genetic distances in centimorgans of the 1059 markers for
160 RILs were estimated in order to describe and compare
the new genetic map to previous maps. The genetic distances
were estimated using the “est.map” function with “kosambi”
distance from the R/qtl package (Broman et al., 2003; Arends
et al., 2010). The correct order of the markers was verified
by pairwise marker linkage analysis using the “est.rf ” function.
The recombination rate was determined based on the linear
relation between the genetic and the physical positions of the
marker. The segregation pattern was tested for all markers
to identify markers that show significant distortion at the
5% level, after a Bonferroni correction for multiple testing.
The statistical programming language R (version 3.3.2) (R
Development Core Team, 2008) was used for all analyses. The
genetic map and genotypic data are available in Supplementary
Table S2.

1http://www.ncbi.nlm.nih.gov/bioproject/418075

QTL Comparison
To test the effect of increased marker coverage on QTL mapping,
we re-mapped 510 published phenotypic traits using the RNA-seq
(1059 markers), the pheno2geno (497 markers) (Zych et al., 2015)
and the original map (69 markers) (Loudet et al., 2002). In
order to compare the mapping resolution, the genetic distances
were re-estimated for each map using 145 RILs common to the
three studies (Supplementary Table S1). The scanone function in
R/qtl was used with the default settings for the QTL mapping.
LOD score peaks were called by chromosome for each trait,
resulting in a total of 2550 (510∗5) peak LOD scores. The
LOD threshold for the genome-wide significance at the level
of 5% was determined after 1000 permutations using each
map. The LOD thresholds obtained were 2.36, 2.64, and 2.76
using the original, pheno2geno, and RNA-seq map, respectively.
The increased LOD thresholds for the Pheno2geno and the
RNA-seq map can be explained by the larger number of markers
which will result in a larger multiple testing correction. We
used a stringent LOD threshold of 3 to identify and compare
significant QTLs for all maps. The LOD score comparison
was performed in a similar way as described in Zych et al.
(2015). To be more confident about the comparison, QTLs were
considered to have a higher or lower LOD score if the difference
between the compared LOD scores was larger or equal to 0.5.
The mapping resolution of the RNA-seq map was investigated
by comparing the confidence intervals (CIs) of QTLs for the
RNA-seq and the original map. LOD-1 CIs were determined for
all significant QTLs (LOD > 3) for both maps. The genomic
positions of the lower and upper limit of each CI were estimated
from the equation of the linear relation between genetic and
physical position of the markers. Subsequently, the CI width
was determined for each QTL in Mbp. The analyses and figures
were generated using Microsoft Excel, R/qtl, and the R ggplot2
package.

The cross object containing all data for the 510 phenotypes in
the 160 RILs for the QTL analysis is available in Supplementary
Table S3. The QTL results for the comparison of the LOD scores
and CIs are provided in Supplementary Tables S4 and S5. QTL
profiles of the re-mapped 510 traits are available for interactive
analysis in AraQTL2 (Nijveen et al., 2017).

RESULTS

Genotyping the RIL Population Using a
SNP Binning Approach
Single-nucleotide polymorphisms calling resulted in 185,354
SNPs distributed over the five chromosomes, ranging from
26,514 SNPs for chromosome 2 to 48,151 SNPs for chromosome
1 (Figure 1). Regions with a few or no SNPs correspond to
centromeric regions, known to have lower transcriptional density
and expression activity (Schmid et al., 2005). Filtering and quality
check of the SNPs (as described in the section “Materials and
Methods”) resulted in a final number of 30,049 SNPs covering the
whole genome.

2http://www.bioinformatics.nl/AraQTL/
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FIGURE 1 | Raw SNP distribution from all genotyped RILs. (A) Total SNP count and (B) coverage counts of each SNP at each physical position on the chromosome
in mega base pairs (Mbp) are displayed for each of the five chromosomes of Arabidopsis thaliana as well as the mitochondrial (Mt) and plastid (Pt) genomes.

FIGURE 2 | Allele distribution for the 1059 markers along the five chromosomes. Blue and red colors indicated the Bay-0 and the Sha allele percentages,
respectively. The black horizontal bar indicates the region on chromosome 4 with 29 markers showing significant segregation distortion (p-value < 0.05 after
Bonferroni correction).

FIGURE 3 | Haplotype representation of the 160 RILs. Each row corresponds to a RIL. Columns represent the 1059 genetic markers physically anchored on the five
chromosomes. Blue boxes indicate Bay-0 genotype and red boxes indicate Sha genotypes.
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TABLE 1 | Characteristics of the 1059 marker genetic map using 160 RILs.

Chr Markers Total length (cM) Average marker distance (cM) Maximum gap (cM) cross-overs Recombination rate (kbp/cM)

chr 1 275 117.87 0.43 2.87 364 258.34

chr 2 171 76.29 0.45 3.23 236 257.58

chr 3 207 82.61 0.40 2.72 255 283.85

chr 4 163 92.12 0.57 4.81 281 201.36

chr 5 243 102.81 0.42 2.34 319 262.13

Total Total 1059 Total 471.70 Average 0.45 Max 4.81 Total 1455 Average 252.65

The 100 kbp binning approach used, collapsed the 30,049
SNPs into 1059 bins distributed over the five chromosomes. Each
bin contained on average ∼24 SNPs, with a minimum of 2 and
a maximum of 130 SNPs per bin (Supplementary Figure S1).
Overall, 96.7% of the bins could unambiguously be assigned to
one of the parental genotypes.

Population-based SNPs segregated at the expected allele
frequencies as global allelic equilibrium was observed with 49.3%
Bay-0 alleles and 50.7% Sha alleles. Bias in the segregation ratio
between the parental alleles was analyzed along the chromosomes
(Figure 2). Statistically significant distortion of segregation
was observed for 29 consecutive markers on chromosome 4,
representing 2.78% of the total number of markers. These
distorted markers correspond to the region comprised between
the markers RSM_4_12.05 and RSM_4_14.85. The highest
distortion was observed at the marker RSM_4_13.05 with
41 (25.6%) lines representing the Bay-0 allele versus 114
(114/160 = 71.25%) lines representing the Sha allele. This
deviation from the allelic equilibrium at the chromosome 4 was
also reported by Loudet et al. (2002).

RNA-Seq Genotyping Identifies New
Introgressions
Visually, the binning method resulted in the identification of clear
genotype blocks (Figure 3). Breakpoints were identified as the
point of transition between two genotype blocks. In total, 1455
crossovers were identified with an average of 291 crossovers per
chromosome (Table 1).

To identify introgressions that were previously not detected,
the 1059 new markers together with the 69 “old” markers
were first ordered based on their physical positions. New
introgressions were then identified in the RILs as double
recombination events occurring within a region spanned by
two “old” flanking markers and of a minimum size of 200 kbp
(two bins) (Supplementary Figure S2). We could identify 80
unambiguous introgressions with sizes ranging between 200 kbp
and 3 Mbp, increasing the number of recombination events
detected within the RIL population.

High-Density Genetic Map
Using each bin as a marker, the linkage map was calculated
in order to validate the order of the markers and evaluate the
accuracy of the new map. The characteristics of the new map
are reported in Table 1. The total length of the genetic map was
471.70 cM. The average genetic distance between two adjacent
markers of 0.45 cM represents a great increase in marker density

FIGURE 4 | Pairwise marker linkage analysis. The estimated recombination
fraction and LOD scores for all pairs of markers are shown in the upper-left
and lower-right triangle, respectively. High correlation between markers
indicates marker linkage (yellow) while the blue color shows low correlation
values indicating unlinked markers. The grid delineates the five chromosomes.
The red dotted frame indicates the region at the top of chromosome 3 with
the probable occurrence of an inversion.

as compared to the 6.1 cM of the 69 markers map for 420 RILs
(Loudet et al., 2002). In the new map, the largest gap between
two markers is 4.81 cM between the markers RSM_4_1.55 and
RSM_4_1.85 on chromosome 4.

Overall, the order of the markers on the genetic map conforms
to the physical position of the marker and is also supported by the
pairwise marker linkage analysis (Figure 4). The recombination
rate was calculated as the relation between the physical and
genetic distances. Low recombination was observed at the
centromeric regions where the physical distance was greater
relative to the genetic distance. On the upper arm of chromosome
3, no recombination events occurred between the markers
RSM_3_2.65 and RSM_3_5.25. This was also observed in the
69-markers map as well as in a Sha × Col-0 RIL population3.
A Sha-specific chromosomal inversion in this region was
suggested (Figures 4, 5). The global recombination rate is

3http://publiclines.versailles.inra.fr/page/13
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FIGURE 5 | Relation between the genetic length in centimorgans (cM) and the physical length in Mbp for the 1059 markers along the five chromosome using 160
RILs of the Bay-0 × Sha RIL population. The red dotted frame indicates the region on the upper arm of chromosome 3 without recombination events.

TABLE 2 | Summary of genetic maps for the Bay-0 × Sha RIL population based
on145 RILs.

Genetic map parameters Original Pheno2Geno RNA-seq

Number of markers 69 497 1059

Total length (cM) 480.1 499.1 464.4

Average marker distance (cM) 7.5 1 0.6

Maximum gap 22.9 11.6 4.9

Number of crossovers 1137 1366 1297

% genotyped 96.2 100 96.6

Global allele equilibrium Bay 50.6% Bay 49.7% Bay 49.8%

Sha 49.4% Sha 50.3% Sha 50.2%

Reference Loudet et al., 2002 Zych et al., 2015 This study

252.65 kbp/cM, i.e., 4.01 cM per 1 Mbp (Figure 5). This rate
is consistent with previously reported recombination rate of
246 kbp/cM (Loudet et al., 2002).

QTL Mapping Comparison
The original genetic map for the analyzed Bay × Sha population
developed by Loudet et al. (2002) comprises 69 PCR-based
markers. Recently, Zych et al. (2015) saturated the original
map with 497 markers derived from microarray expression data
(pheno2geno map). To compare the published maps to the
RNA-seq map, the genetic distances were re-estimated using 145
RILs common to the three studies (Supplementary Table S1).

The RNA-seq map reduces the average distance between
markers from 7.5 cM for the 69 marker map and 1 cM for the
pheno2geno map to 0.6 cM (Table 2), closing many existing gaps
in marker coverage (Figure 6). In addition, the RNA-seq map
captures 1297 crossovers as compared to 1137 in the original
map. The number of crossovers observed with the pheno2geno
map (1366 cross-overs) is likely inflated due to the imputation of
the genotypic data to 100% (% genotyped in Table 2).

Quantitative trait locus mapping was performed to evaluate
the mapping resolution of the RNA-seq map as compared to
the two other maps. Using a genome-scan single QTL model
analysis, 510 published phenotypes were re-mapped using the
three maps. The QTL analysis with the RNA-seq map resulted

FIGURE 6 | Saturation of the original map (69 PCR-based markers) with
RNA-seq-derived markers. The position of the original markers is represented
on the left of each chromosome in gray and linked to their position in the
saturated map (green markers).

in 754 significant QTLs (LOD > 3), while 684 and 568 significant
QTLs were detected using the pheno2geno and the original map,
respectively (Table 3 and Figure 7). QTLs were considered to
have a higher or lower LOD score if the difference between
the compared LOD scores was larger than or equal to 0.5.
Respectively, 223 and 183 of the total number of significant
QTLs in the original map did show an increased LOD score
in the pheno2geno map and RNA-seq map (Figures 7A,B and
Table 3). When compared to the pheno2geno map, the RNA-seq
map resulted in 180 QTLs with a higher LOD score (Figure 7C
and Table 3). The pheno2geno map identified 139 new QTLs
compared to the original map, while the RNA-seq map added
208 new QTLs. One hundred and twenty-five new QTLs were
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TABLE 3 | Comparison of LOD scores using the different maps.

Genetic map1 (/compared to) Significant QTLs (LOD > 3) “New” and “lost” QTLs2 Higher LOD QTLs3 Lower LOD QTLs4

Original 568 – – –

pheno2geno/original 684 139/23 (24%/0.4%) 223 (39%) 54 (9.5%)

RNA-seq/original 754 208/22 (30%/0.4%) 183 (32%) 97 (17%)

RNA-seq/pheno2geno 125/55 (18%/8%) 180 (26%) 185 (27%)

1The “new” maps used for the comparison are indicated in bold. 2New QTLs are the number of QTLs with a LOD score above 3 in the new map and below 3 in the
compared map (bold numbers). These numbers are compared to the number of significant QTLs in the compared map “lost” in the new map. 3Higher LOD QTLs is
the number of significant QTLs with a higher LOD score in the new map with a difference in LOD scores equal or larger than 0.5. 4Lower LOD QTLs is the number of
significant QTLs with a higher LOD score in the new map with a difference in LOD scores equal or larger than 0.5. Percentage of new, lost, higher, and lower LOD QTLs
in relation to the total number of significant QTLs in the compared map are shown in brackets.

FIGURE 7 | LOD score comparison of QTLs for 2550 QTL peaks of 510 published phenotypes using the original, the pheno2geno, and the RNA-seq map. (A) LOD
scores with the RNA-seq map versus the original map, (B) LOD scores with the pheno2geno map versus the original map and (C) LOD scores with the RNA-seq
map versus the pheno2geno map. The significance threshold is indicated by a dashed horizontal and vertical black line. “Stronger” LOD scores are plotted in red.
Red and blue numbers correspond to the number of significant QTLs identified on the x-axis map with increased or decreased LOD scores in the y-axis map,
respectively.

detected in the RNA-seq map as compared to the pheno2geno.
In addition, an increase in the LOD scores was observed using
the RNA-seq map as compared to the original map (average LOD
score differences of 1.74) and the pheno2geno map (1.66) than for
the pheno2geno compared to the original map (1.15) (Table 4).
Together, these results indicate that the higher marker density of
the RNA-seq map provides additional power to detect QTLs.

A main factor for the success of QTL experiments is the
precision in the estimation of the position of the QTL. We
assessed the RNA-seq map resolution by comparing the CI
of QTLs detected in the original map and the RNA-seq map.
The CI of 546 QTLs significant in both maps was calculated
(LOD > 3). Four hundred and fifty-seven (84%) of the QTLs
showed a reduced interval in the RNA-seq map (Figure 8). The

TABLE 4 | Average LOD score differences across the different maps.

A

Genetic maps Original Pheno2geno RNA-seq

B Original – 1.15 (0.04) 1.74 (0.10)

Pheno2geno 1.45 (0.19) – 1.66 (0.12)

RNA-seq 0.98 (0.04) 1.2 (0.04) –

Numbers indicate the average LOD score difference for QTLs with a higher LOD
score using map A as compared to map B. Standard errors are indicated in
brackets. The numbers of QTLs used for the analysis are reported in Table 3 (see
higher and lower LOD QTLs).

difference in interval width ranged from 0.08 to 25.58 Mbp. For
example, the QTL for seed circularity at the top of chromosome
5 was delimited to a genomic region of less than 1.12 Mbp
using the RNA-seq map compared to more than 26 Mbp using
the original map (Figure 9). To verify the consistency of these
results, the analysis was also conducted with a LOD threshold of
2 and for QTLs with higher LOD scores using the original map
(Supplementary Figure S3). Eighty-one percent (770/952) of the
QTLs showed a reduced CI using the RNA-seq map when the
significance threshold was lowered to LOD > 2 (Supplementary
Figure S3A). Analysis of 233 significant QTLs in both maps for
which the LOD score was higher in the original map as compared
to the RNA-seq map resulted in 72% (169/233) of these QTLs
showing a reduced CI using the RNA-seq map (Supplementary
Figure S3B). These results clearly show that the accuracy of
the QTL mapping is improved by using the high-density SNP
bin map.

DISCUSSION

High-Density Genetic Map
In this study we showed that RNA-seq data can effectively be used
for SNP calling, RIL genotyping, and the development of a high-
density genetic linkage map. The used binning approach resulted
in 1059 high-quality multi-SNP-based markers, providing a
dense and equal coverage of markers physically anchored
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FIGURE 8 | Comparison of the QTL mapping resolution using the original and
the RNA-seq map. CIs (in Mbp) of QTLs detected in the original and the
RNA-seq map are shown. Red and blue dots/values indicate the number of
significant QTLs (LOD > 3) with reduced and increased CI in the RNA-seq
map, respectively.

FIGURE 9 | Gain in QTL mapping precision using the RNA-seq map. The
figure illustrates the differences in LOD score and CI of the QTL for the trait
“Size_circ_D_mei.10” located on the top of chromosome 5 using the original
(black line) and the RNA-seq map (blue line). The physical position of the
markers in the original and RNA-seq map is represented on the x-axis with
black (17) and blue (243) tick marks, respectively. The QTL significance
threshold is indicated by a horizontal dashed red line. The gray and blue
vertical bars in the region of the QTL of interest indicate the CI of the QTL in
the original and RNA-seq map, respectively.

to the genome. The high marker density enabled more
precise identification of recombination breakpoints and revealed
unknown recombination breakpoints within the RIL population
(Table 2). As a result, the mapping resolution is no longer limited
by the number of markers but rather depends on the number
of recombination events captured by the mapping population.
This means that the advantages of high-density genetic maps

in respect to mapping resolution will be considerably improved
in combination with larger and/or more advanced designed
populations (Balasubramanian et al., 2009; Kover et al., 2009;
Liu et al., 2016). In comparison to the available genetic maps,
the RNA-seq map could substantially increase QTLs linkage,
eventually resulting in the identification of new QTLs (Table 3).
Although the pheno2geno map showed a larger number of
QTLs with higher LOD scores compared to the original map
(Table 3), the RNA-seq map considerably increased the LOD
scores of significant QTLs compared to both the original and the
pheno2geno map (Table 4). Although we focussed in this study
on the highest QTL per chromosome and per trait, we expect the
RNA-seq map to also increase the overall number of QTLs after a
more comprehensive analysis.

Gain in QTL Mapping Resolution
The detection power and resolution of QTL mapping is
significantly improved by high density genetic maps as compared
to traditional markers (Yu et al., 2011). With the RNA-seq map, a
major improvement was observed in the reduction of the LOD-1
CIs for 74% of the investigated QTLs. As a QTL CI in general
encompasses a large number of genes, reduced CIs is of great
benefit to narrow down the number of candidate genes for further
investigation. In genetical genomics experiments, eQTLs can be
identified as being either cis- or trans-regulated. Commonly, the
distinction of both is made based on the distance, in cM or
Mbp, between the gene and the eQTL peak or from the CI of
the eQTL (Li et al., 2006, 2010; Keurentjes et al., 2007; West
et al., 2007; Rockman et al., 2010; Terpstra et al., 2010; Vinuela
et al., 2010; Aylor et al., 2011; Snoek et al., 2012, 2017; Lowry
et al., 2013; Cubillos et al., 2014; King et al., 2014; Drost et al.,
2015; Ranjan et al., 2016; Sterken et al., 2017). Therefore, gain in
mapping precision is also likely to contribute to a more accurate
identification of cis- versus trans-eQTLs.

Advantages and Limitations of Using
RNA-Seq Data
The use of RNA-seq presents several advantages over other
methods. Our results show that RNA-seq data are a convenient
and cost-effective source of SNP discovery, especially when a
population is anyhow subjected to an eQTL analysis with the
help of RNA-seq. RNA-seq can also overcome shortcomings
identified from expression arrays based studies: while the
effect of a SNP on the probe has enabled the identification
of new sequence polymorphisms, weakened hybridization on
microarrays based on expression studies can also cause the
detection of false cis-eQTLs (Alberts et al., 2007; Chen et al.,
2009). Furthermore, RNA-seq has the potential to study more
complex levels of the genetic control of gene expression, for
instance by quantification of alternative splicing (Filichkin et al.,
2010; Yoo et al., 2016).

Single-nucleotide polymorphisms that are found with
RNA-seq are inherently restricted to expressed exons, thus
dependent on the developmental stage of the sequenced material
and the experimental conditions. This restriction can also cause
regions with low gene density or lowly expressed genes to be
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under represented. However, these disadvantages will often not
affect the mapping due to the high number of intermediate to
highly expressed genes in any tissue and the SNPs present in those
genes. Although our approach finds variants that affect protein-
coding sequences, it is largely blind to SNPs in promoters,
introns, and intergenic regions. However, SNPs that are causal
for phenotypic variation will often be found in or close to genes
and therefore, SNPs in large non-genic regions will hardly result
in improvements of quantitative traits mapping (Li et al., 2012).
In view of the abundance and saturation of SNPs that were
discovered in this study, this does not cause a disadvantage,
but might limit SNP detection for crosses from nearly identical
parents.

CONCLUSION

This study demonstrates that RNA-seq data can effectively
be used for SNP discovery and the development of high-
density genetic linkage maps. Here we provide a new SNP-based
saturated genetic map for a Bay × Sha RIL population. This
saturated genetic map resulted in higher precision QTL mapping
with more QTLs and considerably reducing the QTL CIs. Such
improvements are of great benefit for the accurate mapping of
more complex traits and the identification of causal genes.
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