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Summary

� Unravelling the ecological structure of emerging plant pathogens persisting in multi-host

systems is challenging. In such systems, observations are often heterogeneous with respect to

time, space and host species, and may lead to biases of perception. The biased perception of

pathogen ecology may be exacerbated by hidden fractions of the whole host population,

which may act as infection reservoirs.
� We designed a mechanistic-statistical approach to help understand the ecology of emerging

pathogens by filtering out some biases of perception. This approach, based on SIR (Suscepti-

ble–Infected–Removed) models and a Bayesian framework, disentangles epidemiological and

observational processes underlying temporal counting data.
� We applied our approach to French surveillance data on Xylella fastidiosa, a multi-host

pathogenic bacterium recently discovered in Corsica, France. A model selection led to two

diverging scenarios: one scenario without a hidden compartment and an introduction around

2001, and the other with a hidden compartment and an introduction around 1985.
� Thus, Xylella fastidiosa was probably introduced into Corsica much earlier than its discov-

ery, and its control could be arduous under the hidden compartment scenario. From a

methodological perspective, our approach provides insights into the dynamics of emerging

plant pathogens and, in particular, the potential existence of infection reservoirs.

Introduction

Invasions of new territories by pathogens are facilitated by the
high level of connectivity of most of the world areas (Tatem
et al., 2006; Hulme, 2009; Olsen et al., 2011; Fisher et al.,
2012), despite containment and regulation strategies at the level
of countries and unions of countries. In addition, global climate
change allows pathogens to settle in new environments (Ander-
son et al., 2004; Jeger et al., 2011), which were accessible in the
past only with the combined levers of migration and adaptation.
For some specific threats, that is, when the pathogen effects are
clearly visible or the awareness of the society is high at all levels
(governmental agencies, health systems, stakeholders in forestry
and agriculture, scientific communities, citizens), invasions may
be detected rapidly. However, it is also common that an emerg-
ing pathogen is detected with a potentially long delay after its set-
tlement in a new area (Jones & Baker, 2007; Waage et al., 2008;
Faria et al., 2014) and the first detection may occur too late to be
able to rapidly eradicate the pathogen at a reasonable socioeco-
nomic cost.

Let us consider the case in which an invading pathogen, which
presents a significant threat to protected, patrimonial or cultivated
plants, has been detected. Then, more or less consistent surveillance
strategies can be followed to assess the sanitary situation in space
and its temporal evolution, to inform decision makers, to evaluate
the efficiency of eventual control measures and, more marginally
but importantly, to acquire scientific knowledge. The diversity of
the objectives and their time-varying relative levels of priority lead
to surveillance data that can generate biases of perception. Indeed,
disease prevalence might be over-estimated by focusing on the
surveillance of areas with previously detected infected hosts. Disease
incidence might be under-estimated if a host species or a geographic
region is not sampled. Disease prevalence and incidence may be
under-estimated because of the lack of power of diagnostic tests.
Such biases of perception are quite common in invasion studies.
For example, in a related context, the discovery rate of introduced
species does not systematically reflect the actual introduction rate
(Costello & Solow, 2003). In addition, for multi-host pathogens
settled in complex environments mixing cultivated, urban and wild
areas, unravelling the pathogen dynamics that underlies
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observations may be complicated by the existence of a hidden com-
partment in the host population (i.e. hosts that are not observable;
see Fig. 1), which may play the role of an infection reservoir (Hay-
don et al., 2002; Viana et al., 2014) and have an influence on the
observations limited to the observable compartment.

As an illustration, let us consider the European situation of
Xylella fastidiosa, which has been in situ detected and identified in
2013 in Italy, 2015 in France and 2016 in Spain. Xylella
fastidiosa is a bacterium with a large range of wild and cultivated
host plants, which lies in the xylem of the plant and may cause a
rapid decline of its host (Purcell, 2013). Xylella fastidiosa is spread
by insect vectors that feed on plant xylem (e.g. Philaenus
spumarius; Saponari et al., 2014) and by transport of infected
plants. The capacity for X. fastidiosa to invade new environments
is facilitated by the existence of numerous strains varying in their
host range and environmental preference, its multi-host nature
and the difficulty in observing the infection as a result of either a
lack of symptoms or symptoms similar to those caused by other
disorders (e.g. water stress). Since X. fastidiosa was detected
in situ in South Corsica, France, during summer of 2015, a
surveillance and control protocol focused on X. fastidiosa has been
implemented and applied by local governmental agencies and
other stakeholders. In this protocol, detected positive cases (as
well as surrounding potential host and symptomatic plants) were
destroyed to control the propagation of X. fastidiosa. Fig. 2
(upper panel) displays the observed proportion of positive cases,
for symptomatic and asymptomatic plants, across time since the
first detection. This proportion tends to decrease with time.
Meanwhile, although the surveillance was initially mainly focused
on host species already detected as infected in Corsica and areas
surrounding positive cases, the cumulative numbers of sampled
host genera and sampled municipalities were later significantly
increased (see Fig. 2, lower panel) with the aim to better assess the
presence of X. fastidiosa in terms of host range and geographic
space. Thus, the decrease in the proportion of positive cases might
be the consequence of (1) the destruction of hosts in foci of
X. fastidiosa and (2) a decrease in the preference of sampling at-risk
hosts. Point (2) is a possible source of bias of perception that
should be filtered out to determine which epidemic underlies the

observations shown in Fig. 2. Moreover, because of the multi-host
nature of X. fastidiosa and the highly diverse plant population in
Corsica, including large wild areas, the hidden compartment/infec-
tion reservoir hypothesis is plausible a priori and should be tested.

Understanding the complex ecological structures of pathogens,
such as X. fastidiosa, is a long-term and multidisciplinary task.
Model-based analyses of large-scale data can contribute to such an
understanding. In particular, the mechanistic-statistical approach can
help to elucidate the contributions of diverse epidemiological and
observational components in data. This approach couples a mecha-
nistic model of the temporal dynamics of the disease, a probabilistic
model of the observation process and a statistical inference procedure
(Soubeyrand et al., 2009). It allows the inference of epidemiological
processes by taking into account specificities related to the observa-
tion process, including the sources of biases mentioned above.

In this article, we propose a mechanistic-statistical frame-
work to infer epidemics underlying temporal observations con-
sisting of counting data collected from symptomatic and
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Fig. 1 Schematic representation of the host population with an observable
compartment and, complementarily, a hidden compartment (hosts outside
the square). In addition, hosts are classified with respect to two other
factors: healthy/infected and symptomatic/asymptomatic.
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Fig. 2 Raw data from the surveillance of Xylella fastidiosa in South Corsica,
France, in 2015–2016. The first observation of X. fastidiosa in South Corsica
was made in July 2015. Upper panel: observed proportion of plants positive
for X. fastidiosa among all sampled plants (continuous line), symptomatic
plants (dashed line) and asymptomatic plants (dotted line). Lower panel:
cumulative counts of sampled plant genera (continuous line) and
municipalities (dashed line); there are 124 municipalities in South Corsica.
The list of sampled plant genera is provided in Supporting Information
Notes S1 and includes a large number of wild and ornamental species.
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asymptomatic hosts. This framework is based on a discrete-
time Susceptible–Infected–Removed (SIR) model (Allen, 1994;
Brauer et al., 2008) including a hidden compartment and a
surveillance/control process. It allows the inference of pathogen
dynamics in both the observable and hidden compartments of
the host population, the estimation of the introduction date
when data are collected over a post-introduction observation
window, and the prediction of the pathogen dynamics under
various surveillance scenarios. The mechanistic-statistical frame-
work was applied to X. fastidiosa data collected in South Cor-
sica. Several specifications of the model were tested and a
model selection was carried out to assess whether a hidden
compartment and a time-varying preference in surveillance
have to be accounted for. Results are discussed with respect to
two main perspectives: the control of a multi-host pathogen in
a complex environment after its discovery and the role of
infection reservoirs in sustaining epidemics.

Materials and Methods

Pathosystem

Xylella fastidiosa is a plant pathogenic bacterium dispersed by
xylem-sap-feeding insects (Redak et al., 2004; Purcell, 2013;
Baker et al., 2015), and by humans who may transport and plant
infected hosts (e.g. Nunney et al., 2010; Nunes et al., 2003).
Xylella fastidiosa is divided into several subspecies, including
X. fastidiosa ssp. Xylella fastidiosa especially causing Pierce’s dis-
ease in grapevine; X. fastidiosa ssp. sandyi especially causing olean-
der leaf scorch; X. fastidiosa ssp. pauca especially found on citrus,
coffee and olive trees; and X. fastidiosa ssp. multiplex causing
scorch diseases in a large range of hosts (Denanc�e et al., 2017b).
Together, the different subspecies of X. fastidiosa cause diseases
on more than 350 plant species from more than 200 genera and
70 botanical families (Gardi et al., 2016). The subspecies
multiplex, which has been identified in a large majority of positive
samples collected in Corsica, France (the subspecies not being
identified in the other samples; Denanc�e et al., 2017b), is mostly
found in temperate climates of the Americas and has been
detected in Europe, not only in France but also in Spain in 2016
(European Commission, Ref. Ares(2017)3773669 – 27/07/
2017; https://ec.europa.eu/food/sites/food/files/plant/docs/ph_bi
osec_legis_list-demarcated-union-territory_en.pdf).

Xylella fastidiosa has been studied especially for its pathogenic-
ity on numerous host species, including plants with economic
importance, but the interactions between X. fastidiosa and its host
species are diverse and it does not appear to cause disease in most
host species (Almeida & Nunney, 2015). Hence, asymptomatic
infections not necessarily leading to disease development might
be frequent, in particular in environments with high plant diver-
sity, and might complicate the observation of X. fastidiosa in all
its dimensions. This complication is increased by the capacity of
X. fastidiosa to be transmitted by insect vectors (sharpshooter
leafhoppers and spittlebugs), which are distributed worldwide in
tropical and temperate climates and seem to be nonspecific, that
is able to transmit diverse X. fastidiosa subspecies, but whose

transmission efficiency is the outcome of complex vector–plant–
pathogen–environment interactions (Almeida & Nunney, 2015).
Thus, the presence of X. fastidiosa in an environment can trans-
late into very diverse situations, including situations in which the
bacteria can remain unseen for some (long) time.

The Corsican environment

Corsica is an island in the north-west of the Mediterranean Sea,
characterized by warm summers and mild winters. It is covered
by a large proportion of natural and semi-natural habitats: wild
heathlands and forests cover 44% and 30%, respectively, whereas
agricultural areas and urban areas cover 12% and 2%, respec-
tively (Corine Land Cover Inventory, 2012, http://land.copernic
us.eu/faq/about-data-access).

Despite anthropic stress and an insular nature, Corsica has a
high level of plant biodiversity and is one of the refugial areas in
the Mediterranean region (M�edail & Diadema, 2006; Jeanmonod
et al., 2011). Numerous potential X. fastidiosa host species listed by
Gardi et al. (2016) are present in Corsica, in the wild, urban and
agricultural areas. In addition, at least 12 potential vector species
have been reported in Corsica (Germain, 2016).

Data

The French administration decided that an enhanced surveillance
of X. fastidiosa was necessary after its detection in July 2015 from
a Polygala myrtifolia population growing in Propriano, in the
south-west of the Island (the strategy was described in official
plans DGAL/SDQSPV/2017-653 and DGAL/SDQSPV/2017-
39; see https://info.agriculture.gouv.fr/gedei/site/bo-agri/instruc
tion-2017-653 and https://info.agriculture.gouv.fr/gedei/site/bo-
agri/instruction-2017-39). Samples from both symptomatic and
asymptomatic plants were collected throughout the country and
analysed in the plant health laboratory of the French Agency for
Food, Environmental and Occupational Health and Safety
(ANSES) and, from November 2015, in certified laboratories.
Detection of X. fastidiosa in collected samples was performed
with a real-time PCR (Denanc�e et al., 2017b; technical reference:
ANSES/LSV/MA039 version 1, October 2015; https://www.
anses.fr/fr/system/files/ANSES_MA039_Xylellafastidiosa_final.
pdf). Samples analysed as positives in certified laboratories were
confirmed by the plant health laboratory of ANSES. Data on
samples, their locations and the results of the PCR have been cen-
tralized in a database managed by the ANSES unit for coordina-
tion and support to surveillance, after a verification of data
quality.

We extracted from the database those data which were col-
lected from the French department Corse-du-Sud (i.e. South
Corsica) between July 2015 and December 2016. We restricted
the dataset to Corse-du-Sud because X. fastidiosa has been mostly
found in this part of Corsica (the pathogen having a sparse distri-
bution in Haute-Corse, that is, the other department of Corsica,
see Supporting Information Fig. S1, as well as in the south-east
of mainland France). Table S1 provides the counts, on a monthly
basis, of sampled plants and infected plants by differentiating
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symptomatic and asymptomatic plants. These data were used to
fit the competing models presented below.

Models

We built a mechanistic-statistical model based on an SIR
architecture including a submodel of the controlled epidemic
process and a submodel of the observation process. The con-
trol in the epidemic process results from the observation of
positive cases, which are destroyed and therefore subtracted
from the overall disease incidence. Below, we present the
model outlines. Notes S2 and Table S2 provide details on the
model construction.

In the model, time (denoted by t) is discrete and takes values
in the set of integers (in the application, the time unit is
1 month). By convention, the time of the first observation is
t = 0, and the date of introduction is t = t0. Before t0, the total
number of susceptible hosts is N0 2 N� and the proportion of
the host population that is observable is / 2 ½0; 1� (there is no
hidden compartment if / ¼ 1). At t0, I0 2 N� infected hosts are
introduced in both the observable and hidden compartment in
proportions / and 1� /, respectively.

The submodel of the controlled epidemic process describes
the discrete-time dynamics followed by the counts of suscepti-
ble and infected hosts, and makes the distinction between
these counts in the observable compartment (say SO(t) and
IO(t)) on the one hand, and these counts in the hidden com-
partment (say SH(t) and IH(t)) on the other. This distinction
does not imply independence: we assume that all infected
hosts contribute to new infections in both compartments, irre-
spective of the compartments to which they belong. Thus, the
disease dynamics in the two compartments are dependent, and
the hidden compartment can play the role of infection reser-
voir. In the model, new infections are governed by a sort of
discrete-time renewal equation, parameterized by the infection
strength parameter w > 0. Infected hosts are affected by a mor-
tality rate q 2 ½0; 1� and are replaced by susceptible hosts if
they have not been detected by the surveillance system.
Infected hosts detected by the surveillance system are removed
and replaced by resistant hosts immediately after their
detection.

The assumptions made above are mathematically formalized as
follows:

where b�e is the rounding operator introduced to obtain inte-
ger values for (SO(t), SH(t), IO(t), IH(t)); Iobs(t�1) is the num-
ber of (symptomatic and asymptomatic) infected hosts detected
at time t�1; I �Oðt Þ and I �Hðt Þ are counts of new infected hosts
in the observable and hidden compartments, respectively, and
satisfy:

I �Oðt Þ ¼ min 1;w
I ðt � kÞ
N ðt � kÞ

� �
SOðt � 1Þ

� �

I �Hðt Þ ¼ min 1;w
I ðt � kÞ
N ðt � kÞ

� �
SHðt � 1Þ

� �

In the application, we set k = 12 months such that w mea-
sures the contribution of the overall disease prevalence 1 yr in
the past to new infections at time t. Setting k = 12 allows the
inference of an eventual annual periodicity. More flexible
forms for I �Oðt Þ and I �Hðt Þ are presented in Notes S2, but the
additional model flexibility leads to convergence issues in the
estimation algorithm given the information contained in the
data at our disposal, and we therefore rely on the simple forms
presented above.

By definition, the observation process only applies to the
observable compartment. Thus, the model for the numbers
I yobsðt Þ and I ;obsðt Þ of symptomatic and asymptomatic observed
infected hosts (I yobs þ I ;obs ¼ Iobs) takes as input variables SO(t),
IO(t) and the numbers of sampled symptomatic and asymp-
tomatic hosts, but not SH(t) and IH(t). In our approach, I yobsðt Þ
and I ;obsðt Þ are drawn in hypergeometric distributions taking into
account the rate ε 2 ½0; 1� of false negatives in the diagnostic test,
and a time-varying preference in sampling at-risk hosts intro-
duced in the model with the function t 7!g ðt Þ. The sub-model of
the observation process also includes parameters c1 and c2 lying
in [0, 1], which are the proportions of symptomatic hosts among
infected and susceptible hosts, respectively, belonging to the
observable compartment. Thus, when the counts of symptomatic
and asymptomatic observed hosts at time t, say N y

obsðt Þ and
N ;

obsðt Þ, are positive:

SOðt Þ
SHðt Þ
IOðt Þ
IHðt Þ

0
BB@

1
CCA ¼

b/N0e
bð1� /ÞN0e

0
0

0
BB@

1
CCA if t\t0

/N0b e � /I0b e
ð1� /ÞN0b e � ð1� /ÞI0b e

/I0b e
ð1� /ÞI0b e

0
BB@

1
CCA if t ¼ t0

SOðt � 1Þ
SHðt � 1Þ
IOðt � 1Þ
IHðt � 1Þ

0
BB@

1
CCAþ

bqfIOðt � 1Þ � Iobsðt � 1Þge � I �Oðt Þ
bqIHðt � 1Þe � I �Hðt Þ

�Iobsðt � 1Þ � bqfIOðt � 1Þ � Iobsðt � 1Þge þ I �Oðt Þ
�bqIHðt � 1Þe þ I �Hðt Þ

0
BB@

1
CCA if t [ t0
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I yobsðt Þ�Hypergeometric

bð1� εÞI yOðt Þe; S y
Oðt Þ

�
þ bεI yOðt Þe;N y

obsðt ÞÞ
I ;obsðt Þ�Hypergeometric

bð1� εÞI ;Oðt Þe; S ;
Oðt Þ þ bεI ;Oðt Þe;N ;

obsðt Þ
� �

where the hypergeometric distribution is parameterized by
the numbers of successes and defaults in the population and
the number of draws; I yOðt Þ and S y

Oðt Þ are the numbers of
symptomatic hosts at time t in the observable compartment
that are infected and susceptible, respectively; and I ;Oðt Þ and
S ;
Oðt Þ are the numbers of asymptomatic hosts at time t in
the observable compartment that are infected and susceptible,
respectively, and that are considered as at-risk. These num-
bers satisfy:

I yOðt Þ ¼ c1IOðt Þ
I ;Oðt Þ ¼ IOðt Þ � I yOðt Þ ¼ ð1� c1ÞIOðt Þ
S y
Oðt Þ ¼ gðt Þc2SOðt Þ
S ;
Oðt Þ ¼ gðt Þð1� c2ÞSOðt Þ

where g(t) is the time-varying proportion of susceptible hosts
(both symptomatic and asymptomatic) in the observable com-
partment that are considered as at-risk, that is, that are likely to
be sampled (note that all infected hosts in the observable com-
partment are considered as at-risk and are consequently likely to
be sampled). It should be noted that the fraction ε of infected
hosts is removed from the number of successes in each hypergeo-
metric distribution and added to the number of defaults to take
into account the risk of false negatives.

In the hypergeometric distributions, a given number of hosts
are sampled in a finite population of infected and susceptible
hosts, up to the false-negative rate, and the sampling is assumed
to be uniformly random among the infected and susceptible
hosts. However, the sampling may be orientated towards at-risk
hosts, and this orientation may change with time. In particular,
susceptible hosts might have a reduced propensity to be sampled
because of the current knowledge about the epidemic and notice-
able host factors (e.g. altitude, distance to infected areas and
species). We did not explicitly take into account these factors,
but we handled their effects by introducing into the model the
function g that takes values of [0, 1] and reduces the number of
susceptible hosts appearing in each hypergeometric distribution.
More precisely, the function g gives the time-varying proportion
of the susceptible hosts in the observable compartment which can
be sampled. These hosts, together with infected hosts in the
observable compartment, are called at-risk hosts. The function g
is parameterized by b1 and b2 in [0, 1], which gives, respectively,
the values of g at the first and last times of observation.

In the Results section, we use the preference in sampling at-
risk hosts, which is defined as the ratio Pref(t)=1/(1 + g(t)) and
gives the probability of sampling the infected host within a set of
two hosts, one being infected and the other being healthy.

In the application, we consider eight competing models,
denoted M1; . . .;M8, which are different instances of the mod-
elling framework described above. They correspond to different
specifications concerning the existence of a hidden compartment
and the preference in sampling at-risk hosts. Table 1 provides the
model specificities.

Bayesian estimation and model selection

ModelsM1; . . .;M8 are parameterized by:

h ¼ ðt0;N0; I0; q;w;/; c1; c2; b1; b2; εÞ

In models M1;M2 and M3, the proportion of the host pop-
ulation that is observable is fixed at / ¼ 1. In models M1 and
M4, g � b1 ¼ b2 ¼ 1. In models M2 and M5, g � b1 ¼ b2,
where b1 has to be estimated.

More or less informative priors were chosen depending on the
available knowledge about the parameters. Prior distributions are
specified and motivated in Notes S2 and Table S3, and are briefly
described in what follows. The prior for the introduction date t0
was relatively vague (uniform prior over the 50 yr preceding the
first detection of X. fastidiosa in Corsica). The total number of
susceptible host units N0 at t0 had a prior mean of 5.5 million
and a range between 1.9 and 13.3 million (prior quantiles of
order 0.025 and 0.975). The number I0 of introduced infected
hosts at t0 was set at a fixed value in all models because of some
identifiability issues. This is the only parameter that we did not
infer. We set I0 = 10, which amounts to the assumption that the
epidemic began with the introduction of a small batch of infected
plants and that subsequent introductions did not significantly
impact the overall curse of the epidemic. Notes S3 and Figs S2
and S3 provide an analysis of the impact of the value of I0 on the
inference output. The prior distribution for the mortality rate q
was chosen to encompass significantly different mortality dynam-
ics (roughly, from 50% of death in the first year of infection to
50% of death in the first 7.7 yr of infection). A vague uniform
prior over [0, 10] was used for w. For the proportions
/; c1; c2; b1 and b2, we chose vague uniform priors over [0, 1],
except in the following cases: for modelsM1,M2 andM3 with-
out hidden compartment, / was equal to 1; for modelsM7 (with

Table 1 Specifications of the hidden compartment and the preference in
sampling for modelsM1; . . .M8; it should be noted that models
M6;M7 and M8 have different prior distributions for the parameter /

Preference in sampling

Hidden compartment

None
/ ¼ 1

Fraction of the whole population
/ 2 ½0; 1�

None
g � 1

M1 M4

At-risk, constant
g � cst 2 ½0; 1�

M2 M5

At-risk, linearly varying M3 M6 (uniform prior in [0, 1] for /)
g: linear function M7 (a priori large value for /)
with values in [0, 1] M8 (a priori small value for /)
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an a priori small hidden compartment) and M8 (with an a priori
large hidden compartment), the prior for / was a beta distribu-
tion with parameter vectors equal to (4, 1) and (1, 4), respec-
tively; for models M1 and M4, b1 ¼ b2 ¼ 1; for models M2

and M5, b1 was a priori uniform over [0, 1] and b2 ¼ b1.
Finally, the false-negative rate ε was a priori uniformly distributed
over ½0; 0:2�, that is, ε was a priori rather low, but could take
non-negligible values.

Parameters were estimated with an Markov chain Monte Carlo
(MCMC) algorithm with Metropolis–Hastings updates. Three
chains were run for each model to check the convergence of the
algorithm, and were merged to obtain large posterior samples of
parameters. Parameters were updated by blocks with a Gaussian
proposal distribution centred around the current parameter
values (the variances in the proposal distribution were tuned to
obtain rapid algorithm convergence). For each MCMC run, we
performed 2	 107 iterations, applied a burnin of 4	 106 itera-
tions, and subsampled the rest of the chain every 2000 iterations.
Thus, posterior samples were formed by 24 000 vectors of param-
eter values.

Model selection was performed with respect to several criteria:
the Akaike’s information criterion (AIC), the Bayesian informa-
tion criterion (BIC), the deviance information criterion (DIC)
proposed by Spiegelhalter et al. (2002), the DIC modification
proposed by Gelman et al. (2014, Chapter 7), the DIC modifica-
tion proposed by Ando (2011) and the Bayes factor computed
from the harmonic mean of the likelihood values (Kass &
Raftery, 1995).

Results

Dualism in model selection

Among the competing models M1 �M6, the best models are
those with a preference in sampling at-risk hosts, which varies
across time (Table 2). In addition, the incorporation in the model
of a hidden compartment seems to be useless based on the diverse
selection criteria. It should be note that not selecting a model
with a hidden compartment does not mean that the hidden com-
partment does not exist, but tends to indicate that the hidden

compartment, if any, has a negligible influence on the observa-
tions (see the Discussion section).

A closer look at the hidden compartment hypothesis leads to
an unexpected result: under model M6 (which contains a hidden
compartment, a vague prior for / and a varying preference in
sampling at-risk hosts), the proportion / of the observable com-
partment has a clearly bimodal posterior distribution (Fig. 3,
left), with large probabilities for values close to either zero (i.e.
most of the hosts are hidden) or one (i.e. most of the hosts are
observable); the latter case is well approximated by model M3, in
which / ¼ 1. We investigated this characteristic by generating
two additional competing models differing from model M6 with
respect to the prior distribution of / : we changed the uniform
prior into a beta prior with shape parameters (4, 1) for model
M7 and (1, 4) for model M8. Thus, under M7 (M8), the prior
mean of / is 0.8 (0.2) and the hidden compartment is a priori a
small (large) fraction of the whole host population. Based on the
Bayes factor, model M8 with a large hidden compartment is the
best model and, a posteriori, the hidden compartment represents
c. 99% of the whole host population (Fig. 3, right; 95%-posterior
interval: [95%; 100%]).

This dualism in the model selection led us to present in what
follows the inferences obtained under both models M3 (without
a hidden compartment) and M8 (with a hidden compartment),
which similarly fit the raw data obtained from the surveillance of
X. fastidiosa in South Corsica (see Fig. 4).

Two scenarios in the past

The inferences obtained under models M3 and M8 corre-
spond to two different scenarios mostly diverging in terms of
the introduction date (t0) and total number of infected hosts.
In scenario 1 (model M3), the introduction occurred around
2001, and the infected host units ranged from 400 to 1700
at the end of 2016. In scenario 2 (model M8), the introduc-
tion occurred around 1985, and the infected host units ranges
from 30 000 to 660 000 at the end of 2016 (see Fig. 5;
Tables S4, S5).

Interestingly, the posterior of the number N0 of susceptible
host units at the introduction date is approximately the same

Table 2 Selection criteria computed for models with different specifications for the hidden compartment and the preference in sampling

Hidden compartment Preference in sampling Model LogL AIC BIC DIC-S DIC-G DIC-A Bayes factor

None None M1 �224 463 512 436 477 411 <10�4

At-risk, constant M2 �229 476 539 417 475 368 <10�4

At-risk, varying M3 �197 412 475 356 412 308 1.00
Fraction of the whole population None M4 �224 465 520 461 481 460 <10�4

At-risk, constant M5 �229 478 547 388 477 309 <10�4

At-risk, varying M6 �197 415 484 NA 416 NA 0.80
A priori small fraction At-risk, varying M7 �197 414 484 363 414 321 0.08
A priori large fraction At-risk, varying M8 �199 418 488 399 415 392 1.41

LogL is the log-likelihood, AIC is the Akaike’s information, BIC is the Bayesian information criterion, DIC-S, DIC-G and DIC-A are the deviance information
criteria of Spiegelhalter et al. (2002), Gelman et al. (2014) and Ando (2011). DIC-S and DIC-A cannot be calculated for modelM6, for which the posterior
mean of the parameter vector is unlikely because of the multimodality of the posterior (this is indicated in the table by NA, which stands for not available).
M8 is selected as the best model by the Bayes factor, whereasM3 is selected by the other criteria (figures in bold).
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under modelsM3 andM8. Thus, the two scenarios are based on
a similar description of the host population except for the fact
that a large fraction of the population is hidden in scenario 2.
Consequently, the difference in the number of infected hosts pro-
vided above translates into a difference in proportions: a very
small proportion (
 3R) of the host population is infected in
scenario 1, much smaller than the corresponding proportion
(
5%) in scenario 2 (Table S5; Fig. S4).

The size N0 is not the only parameter similarly estimated with
models M3 and M8. Indeed, we obtained consistent estimations

of the mortality rate (q), the infection strength (w), the propor-
tions of symptomatic hosts in the observable compartment (c1
and c2) and the false-negative rate (ε) (see Figs S5, S6). Hence,
the two scenarios share several epidemiological and observational
features. There is however an observational feature that varies:
the preference in sampling at-risk hosts. This preference decreases
in both scenarios, but the magnitude of decrease is different. In
scenario 1, where the observable compartment is huge as it coin-
cides with the whole population, Pref(t) remains very high (it
decreases from nearly 0.999 to 0.995). In scenario 2, Pref(t),
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Fig. 3 Posterior distribution of the proportion / of the observable compartment under modelsM6 (left) andM8 (right). The dotted and dashed lines
indicate the posterior mean and median of /, respectively.
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Fig. 4 Proportion of infected hosts across time under modelsM3 (upper) andM8 (lower). The proportion is computed for all hosts (left), symptomatic
hosts (centre) and asymptomatic hosts (right). Red curve, observed proportion; black continuous curve, posterior median; black dashed curves, pointwise
posterior quantiles of order 0.025 and 0.975.
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which applies only to the observable compartment, decreases
from nearly 0.9 to 0.6 (see Fig. 6). We will see below that this
preference in sampling at-risk hosts may be a crucial lever for
controlling the disease dynamics.

Implications for the future

We have previously highlighted differences and similarities in the
two past scenarios for the X. fastidiosa dynamics in South Corsica.
When one looks at the future, the models M3 and M8 provide
significantly different outputs. As demonstrated below, the

hidden compartment in model M8 plays the role of infection
reservoir, which would make the control of the disease difficult.

Fig. 7 shows, for the next 10 yr, the predictions of the propor-
tion of infected hosts in the whole population, the observable
compartment and the hidden compartment under models M3

(top panels) and M8 (bottom panels). These predictions were
made with a constant (but reinforced) surveillance effort and a
constant preference in sampling at-risk hosts: 800 symptomatic
plants and 200 asymptomatic plants were sampled per month
(these values are among the highest values encountered in the
past surveillance; see Table S1), and Pref(t) = 0.995 with model
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Fig. 6 Posterior medians (continuous curve), 0.025 quantiles and 0.975 quantiles (dotted curves) of the preference in sampling at-risk hosts across time
under modelM3 (left) andM8 (right).
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M3 and Pref(t) = 0.6 with model M8 (these values were those
estimated at the end of the sampling period; see Fig. 6).

With such a characterization of the surveillance, X. fastidiosa
could be brought to low levels under model M3 (the oscillating
curse of the epidemic during the actual surveillance period, from
month 0 to 17, vanishes thanks to the reinforced surveillance),
but should continue to increase under model M8, even in the
observable compartment. This noticeable difference occurs
although we estimated approximately the same number of
infected hosts in the observable compartment with both models
(Fig. 5). Thus, under model M8, we can see the positive effect
of the hidden compartment on the development of X. fastidiosa
and, consequently, its role as infection reservoir. The effect of
the hidden compartment is initially weak (we observe in the bot-
tom centre panel of Fig. 7 a nearly constant prevalence in the
observable compartment from month 0 to month 40, the hidden
compartment and the reinforced surveillance generating opposite
but comparable forces). After month 40, the continuous growth
of the prevalence in the hidden compartment, which is not con-
trolled, has a larger impact on the infection dynamics than does
the reinforced surveillance and, consequently, the prevalence in
the observable compartment significantly increases. Figs S7 and
S8 provide 10-yr predictions for diverse characterizations of the
surveillance. They especially show that increasing the preference
in sampling at-risk hosts (as defined in our work) is a lever to be

considered for reducing disease prevalence (and not only a
source of bias of perception). Indeed, a large preference in sam-
pling at-risk hosts, Pref(t) = 1/(1 + g(t)), amounts focusing the
surveillance on actually infected hosts, which are destroyed after
their detection, and therefore to more efficiently reducing the
disease prevalence. However, the correct way to increase Pref(t)
is not obvious in practice: it can be increased by preferentially
sampling species and areas that are known to be infected, but
one must avoid simultaneously enlarging the hidden compart-
ment. For instance, if one samples only the most infected
species, then all the other infected species enter into the hidden
compartment.

Discussion

Based on temporal observations and an adapted original model,
our analyses tend to show that the emergence of X. fastidiosa in
Corsica, France, is probably not a recent story. The model selec-
tion led to two scenarios: the first with an introduction around
2001 (1998–2005) and without a hidden compartment, and the
second with an introduction around 1985 (1978–1993) and a
hidden compartment. The two scenarios also diverge in terms of
prediction, the scenario with a hidden compartment leading to
significantly more severe future epidemics irrespective of the
applied control measures.
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Fig. 7 Posterior medians, 0.025 quantiles and 0.975 quantiles of the past and future proportions of infected hosts in the whole host population (left), the
observable compartment (center) and the hidden compartment (right) under modelsM3 (upper) andM8 (lower). In the prediction part of the curves, 800
symptomatic plants and 200 asymptomatic plants were sampled per month and Pref(t) = 0.995 with modelM3 and Pref(t) = 0.6 with modelM8 (see Fig. 5
for additional details on plot construction).
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To determine which scenario is more realistic requires further
data collection and analyses. In particular, evaluation of what
could be the hidden compartment (e.g. wild and semi-natural
landscape components, or host species for which diagnostic tests
are not done or not efficient) and sampling in this compartment
are crucial to test the veracity of our second scenario. Although
new data should be produced to investigate specific epidemiologi-
cal questions and to better unravel the ecological structure of
X. fastidiosa in Corsica, existing data still contain unexploited
information. Indeed, our approach is only based on time series
providing the symptomatic nature of sampled plants and their
observed health status with respect to X. fastidiosa. Further analy-
ses should be carried out to more finely exploit the spatiotempo-
ral surveillance dataset available (e.g. spatial coordinates and
species information of sampled hosts, and genetic information on
bacterial strains). Such analyses should lead to more accurate
results on the date of introduction and other epidemiological
parameters, such as the mortality rate and the infection strength
of infectious hosts. They should also provide information on pro-
cesses not accounted for in our work, for instance, the dynamics
of vectors (as in Bosso et al., 2016; White et al., 2017), the evolu-
tion of bacterial strains and the spatial spread of the disease. In
particular, including in the analyses genetic and demographic
data from North Corsica and south-east of mainland France,
where X. fastidiosa has been more sporadically detected, could
provide crucial information on eventual multiple introductions
and human-mediated long-distance dispersal (as in Mollentze
et al., 2014, in the case of rabies).

Inferences made about X. fastidiosa are obviously constrained
by the features of our model. In particular, this model explicitly
incorporates a hidden compartment, but ignores spatial and
species information. The explicit incorporation of the counts of
susceptible and infected hosts in the hidden compartment is a
way to objectively account for the time-varying risk of infection
caused by infected hidden hosts. This approach is adopted in
many temporal SIR-like models that make the distinction
between different types of hosts, for example target hosts and
alternate hosts, including vectors (Dobson, 2004; Allen et al.,
2012). Such multi-host epidemic models are often based on a sys-
tem of ordinary differential equations, but can also be based on
Markov processes (McCormack & Allen, 2006; Allen, 2017), as
in our case.

A classical alternative modelling approach is to decompose the
risk of infection into two components, the first that is dependent
on the number of infected hosts in the compartment of interest
(often modelled as an auto-regressive term) and the second that is
independent from this number (Held et al., 2006; Unkel et al.,
2012). The second component is a way to implicitly handle
alternate/hidden hosts but also environmental to factors, it is gen-
erally time-varying, can incorporate explanatory variables and can
be estimated for example, in the framework of hidden Markov
models (HMMs).

Although our model takes into account various epidemiologi-
cal components (observable/hidden host compartments, symp-
tomatic/asymptomatic status of hosts, delay of infection,
preference in sampling), it nevertheless ignores spatial and species

information, as mentioned above. Indeed, our model is built on a
mean-field assumption (or homogeneous mixing assumption)
concerning the interaction between hosts, as are many determin-
istic or stochastic epidemiological models (Kleczkowski & Gren-
fell, 1999; Keeling & Grenfell, 2000; Aparicio & Pascual, 2007;
Britton et al., 2015): the effect of the other hosts on any host is
approximated by a single average effect, irrespective of their loca-
tions and species. Obviously, this assumption is not perfectly
realistic for a pathogen that can be spread by insects (mostly at
short distances and certainly with heterogeneous cross-species
transmissions) and by humans (both at short and long distances
and with between-host-species heterogeneities). Hence, it would
be worthwhile assessing the inference accuracy achieved with
our model for data simulated under a spatially and species-
explicit model, as predictions under mean-field models are
compared with predictions obtained by their individual-based
counterparts.

Dating pathogen emergences is a complex issue, but the inte-
gration of different sources of information can help to reduce the
uncertainty. Dates of introduction of pathogens have been
inferred from various types of data – for example demographic
data (this article; Heiler et al., 2013; Soubeyrand & Roques,
2014), genomic data (Dudas & Rambaut, 2014; Nunes et al.,
2014), archaeological data, archives and historical records (Le
Floc’h, 1991; Preston et al., 2004; Potter et al., 2011) – and vari-
ous analyses techniques – for example epidemiological investiga-
tions, forward simulations of population dynamic models,
statistical estimation techniques, phylogenetic and phylogeo-
graphic analyses. Despite these data and techniques, origins of
outbreaks generally remain uncertain (Woolhouse & Gaunt,
2007; with the exception of situations in which epidemiological
investigations allowed the identification of the primary case(s)).
This statement typically holds for plant pathogens arriving in
regions in which the awareness is not focused on these pathogens
at their introduction times. The combination of different analyses
performed with different data should help to reduce the uncer-
tainty about the origin. Concerning our case study, namely the
emergence of X. fastidiosa in Corsica, a complementary approach
based on molecular dating of a phylogenetic tree exploiting
genome data provided the following mean dates of divergence
between couples of French isolates and their American relatives:
c. 1980 for strain ST6 and 1965 for strain ST7 (Denanc�e et al.,
2017a). These dates can be considered as proxies or lower bounds
of the introduction dates. They are relatively consistent with our
second scenario (1985 (1978–1993)), and a joint analysis of
demographic and genomic data could help in to refine our con-
clusions.

Identifying and characterizing reservoirs of infection, if any, is
crucial for understanding of infectious disease dynamics, design
of surveillance and control strategies, and the anticipation and
prevention of future emergences (Haydon et al., 2002; Karesh
et al., 2012; Bartoli et al., 2015). For humans, numerous
pathogens have long been recognized to have environmental or
animal reservoirs (the corresponding diseases being called
sapronoses and zoonoses, respectively; Woolhouse & Gaunt,
2007). For agricultural plants, early examples of identification
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and control of infection reservoirs do exist (see, for example, the
eradication of barberry, an alternate host of the wheat stem rust;
Stakman, 1919), but Morris et al. (2007) pointed out a decade
ago that pathogenic bacteria had been almost exclusively studied
in agricultural contexts, neglecting environmental niches, and
Burdon & Thrall (2008) designated the study of the agro-
ecological interface and its evolutionary implications as a major
issue for future research. With time, plant pathogen reservoirs of
various kinds have been studied (e.g. wild or weedy host plants,
volunteer plants, alternate hosts, leaf litter, freshwater and snow-
pack; Holt et al., 2003; Li et al., 2014; G�erard et al., 2006; Beck-
stead et al., 2010; Fabre et al., 2012; Monteil et al., 2013;
Soubeyrand et al., 2017), and reservoirs are today considered as
important drivers in plant epidemiology. The approach devel-
oped in this article can be viewed as a data-driven way of testing
the existence (or the influence) of a reservoir during an outbreak,
when data are collected only from the target population. Obvi-
ously, the influence of the reservoir has to be non-negligible to be
detected with our method, which simply exploits demographic
counting data. For X. fastidiosa in South Corsica, we were not
able to firmly determine whether or not there is a hidden com-
partment (viewed as an infection reservoir in our study), but our
results show that this hypothesis is plausible and should be inves-
tigated in further studies. Since July 2015, more than 20 new
host species have been found in Corsica (Gardi et al., 2016; see
also https://ec.europa.eu/food/plant/plant_health_biosecurity/leg
islation/emergency_measures/xylella-fastidiosa/susceptible_en for
updated information). This progressive discovery of host species
supports the hidden compartment hypothesis. Moreover, an
analysis of the demography and disease prevalence for a host such
as Cistus monspeliensis suggests that it could be, among others, an
important component of the hidden compartment. Indeed,
C. monspeliensis is very abundant in Corsica (http://www.tela-
botanica.org), in particular in wild areas; its observed infection
rate is quite high (c. 11%), and insect vectors tend to be frequent
around this host (recent molecular analyses have shown that
X. fastidiosa is present in c. 20% of insect vectors Philaenus
spumarius collected from several C. monspeliensis populations
across Corsica; Cruaud et al., 2018). However, this host species
has been weakly surveyed (3% of samples) in comparison with
much less abundant host species, such as Polygala myrtifolia (12%
of samples), which is an ornamental plant with an observed infec-
tion rate of 26%. Thus, the C. monspeliensis population is under-
represented in surveillance data and a fraction of this population,
in particular in wild areas, could contribute to the hidden com-
partment. The evaluation of the spatial distribution of this host
and its comparison with it to the spatial pattern of sampled
C. monspeliensis in the surveillance of X. fastidiosa would be a first
step towards the identification of a potential reservoir.

Acknowledgements

We thank Marie-Agn�es Jacques, Astrid Cruaud and Jean-Yves
Rasplus (INRA, French National Institute for Agricultural
Research) for discussions about the results, the DGAL (French
General Directorate for Food), SRAL (French Regional

Directorate for Food), FREDON (French Regional Federation
for Pest Control), LNR-LSV (French National Reference
Laboratory for Plant Health) and certified laboratories for data
collection and molecular analyses, the Editor Ian A. Dickie and
three anonymous reviewers for constructive comments on the
manuscript. This research was funded by the INRA-DGAL Pro-
ject 21000679 and the HORIZON 2020 XF-ACTORS Project
SFS-09-2016.

Author contributions

S.S. conceived the ideas and designed the methodology; S.S.,
P.d.J., O.M. and M.S. prepared and analysed data; S.S., P.d.J.,
O.M., M.S., C.M., P.H. and C.L. discussed the objectives of the
study at an early stage and commented on the results; S.S. led the
writing of the manuscript. All authors contributed critically to
the drafts and gave final approval for publication.

ORCID

Samuel Soubeyrand X http://orcid.org/0000-0003-2447-3067

References

Allen L, Brown V, Jonsson C, Klein S, Laverty S, Magwedere K, Owen J, Van

Den Driessche P. 2012.Mathematical modeling of viral zoonoses in wildlife.

Natural Resource Modeling 25: 5–51.
Allen LJ. 1994. Some discrete-time SI, SIR, and SIS epidemic models.

Mathematical Biosciences 124: 83–105.
Allen LJ. 2017. A primer on stochastic epidemic models: formulation, numerical

simulation, and analysis. Infectious Disease Modelling 2: 128–142.
Almeida RPP, Nunney L. 2015.How do plant diseases caused by Xylella
fastidiosa emerge? Plant Disease 99: 1457–1467.

Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P.

2004. Emerging infectious diseases of plants: pathogen pollution, climate change

and agrotechnology drivers. Trends in Ecology & Evolution 19: 535–544.
Ando T. 2011. Predictive Bayesian model selection. American Journal of
Mathematical and Management Sciences 31: 13–38.

Aparicio JP, Pascual M. 2007. Building epidemiological models from R0: an

implicittreatment of transmission in networks. Proceedings of the Royal Society of
London B: Biological Sciences 274: 505–512.

Baker R, Bragard C, Caffier D, Candresse T, Gilioli G, Gr�egoire J-C, Holb I,

Jeger MJ, Karadjova OE, Magnusson C et al. 2015. Scientific opinion on the

risks to plant health posed by Xylella fastidiosa in the EU territory, with the

identification and evaluation of risk reduction options. EFSA Journal 13: 3989.
Bartoli C, Lamichhane JR, Berge O, Guilbaud C, Varvaro L, Balestra GM,

Vinatzer BA, Morris CE. 2015. A framework to gauge the epidemic potential

of plant pathogens in environmental reservoirs: the example of kiwifruit canker.

Molecular Plant Pathology 16: 137–149.
Beckstead J, Meyer SE, Connolly BM, Huck MB, Street LE. 2010. Cheatgrass

facilitates spillover of a seed bank pathogen onto native grass species. Journal of
Ecology 98: 168–177.

Bosso L, Russo D, Di Febbraro M, Cristinzio G, Zoina A. 2016. Potential

distribution of Xylella fastidiosa in Italy: a maximum entropy model.

Phytopathologia Mediterranea 55: 62–72.
Brauer F, Van den Driessche P, Wu J. 2008.Mathematical epidemiology, Volume
1945 of lecture notes in mathematics. Berlin/Heidelberg, Germany: Springer-

Verlag.

Britton T, House T, Lloyd AL, Mollison D, Riley S, Trapman P. 2015. Five

challenges for stochastic epidemic models involving global transmission.

Epidemics 10: 54–57.

New Phytologist (2018) 219: 824–836 � 2018 The Authors

New Phytologist� 2018 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist834

https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa/susceptible_en
https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa/susceptible_en
http://www.tela-botanica.org
http://www.tela-botanica.org
http://orcid.org/0000-0003-2447-3067
http://orcid.org/0000-0003-2447-3067
http://orcid.org/0000-0003-2447-3067


Burdon JJ, Thrall PH. 2008. Pathogen evolution across the agro-ecological

interface: implications for disease management. Evolutionary Applications 1:
57–65.

Costello CJ, Solow AR. 2003.On the pattern of discovery of introduced species.

Proceedings of the National Academy of Sciences, USA 100: 3321–3323.
Cruaud A, Gonzalez A-A, Godefroid M, Nidelet S, Streito J-C, Thuillier J-M,

Rossi J-P, Santoni S, Rasplus J-Y. 2018. Using insects to detect, monitor and

predict the distribution of Xylella fastidiosa: a case study in Corsica. bioRxiv doi:
10.1101/241513.

Denanc�e N, Cesbron S, Briand M, Rieux A, Jacques M-A. 2017a. Is Xylella
fastidiosa really emerging in France? In: Costa J, Koebnik R, eds. 1st Annual
Conference of the EuroXanth – COST Action Integrating Science on
Xanthomonadaceae for integrated plant disease management in Europe. Dec. 13–

15, Coimbra, Portugal: EuroXanth, 7.

Denanc�e N, Legendre B, Briand M, Olivier V, Boisseson C, Poliakoff F, Jacques

M-A. 2017b. Several subspecies and sequence types are associated with the

emergence of Xylella fastidiosa in natural settings in France. Plant Pathology 66:
1054–1064.

Dobson A. 2004. Population dynamics of pathogens with multiple host species.

American Naturalist 164: S64–S78.
Dudas G, Rambaut A. 2014. Phylogenetic analysis of Guinea 2014 EBOV

Ebolavirus outbreak. PLoS Currents Outbreaks 1: 1–17.
European Commission, Directorate-General for Health and Food Safety. 2017.

List of demarcated areas established in the Union territory for the presence of

Xylella fastidiosa as referred to in Article 4(1) of Decision (EU) 2015/789,

Update 8. Ref. Ares (2017) 3773669–27/07/2017. https://ec.europa.eu/food/

sites/food/files/plant/docs/ph_biosec_legis_list-demarcated-union-territory_en.

pdf [accessed 16 April 2018].

Fabre F, Rousseau E, Mailleret L, Moury B. 2012. Durable strategies to deploy

plant resistance in agricultural landscapes. New Phytologist 193: 1064–1075.
Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ,

Sousa JD, Arinaminpathy N, P�epin J et al. 2014. The early spread and
epidemic ignition of HIV-1 in human populations. Science 346: 56–61.

Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL,

Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health.

Nature 484: 186–194.
Gardi C, Koufakis I, Tramontini S, Andueza M, Pautasso M, Stancanelli G,

Bau A, Gregoire JC, Bragard C. 2016. Update of a database of host plants of

Xylella fastidiosa: 20 November 2015. EFSA Journal 14: 4378.
Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2014.

Bayesian data analysis, 3rd edn. Boca Raton, FL, USA: CRC Press.

G�erard PR, Husson C, Pinon J, Frey P. 2006. Comparison of genetic and

virulence diversity ofMelampsora larici-populina populations on wild and

cultivated poplar and influence of the alternate host. Phytopathology 96: 1027–
1036.

Germain J-F (2016). Les insectes vecteurs potentiels de Xylella fastidiosa en France

metropolitaine. In Beuste P, Bigel R, Boutte B, Cassignol F, Dours CGO,

Ehret P, Gandon M, Gauthier B, Jugnet M-P, Lacordaire A-I et al., eds. 4e
Conf�erence sur l’Entretien des Jardins, Espaces V�eg�etalis�es et Infrastructures,
Toulouse, 19 et 20 Octobre 2016. Association Francaise de Protection des

Plante, 118–124.
Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. 2002. Identifying

reservoirs of infection: a conceptual and practical challenge. Emerging Infectious
Diseases 8: 1468–1473.

Heiler KC, Bij de Vaate A, Ekschmitt K, von Oheimb PV, Albrecht C, Wilke T.

2013. Reconstruction of the early invasion history of the quagga mussel

(Dreissena rostriformis bugensis) in Western Europe. Aquatic Invasions 8: 53–57.
Held L, Hofmann M, H€ohle M, Schmid V. 2006. A two-component model for

counts of infectious diseases. Biostatistics 7: 422–437.
Holt RD, Dobson AP, Begon M, Bowers RG, Schauber EM. 2003. Parasite

establishment in host communities. Ecology Letters 6: 837–842.
Hulme PE. 2009. Trade, transport and trouble: managing invasive species

pathways in an era of globalization. Journal of Applied Ecology 46: 10–18.
Jeanmonod D, Schl€ussel A, Gamisans J. 2011. Analyse de la ore Corse: aspects

biologiques. Candollea 66: 5–25.
Jeger M, Pautasso M, Stack J. 2011. Climate, globalization and trade: impacts on

dispersal and invasion of fungal plant pathogens. In: Olsen L, Choffnes ER,

Relman DA, Pray L, eds. Fungal diseases: an emerging threat to human, animal
and plant health. Washington, DC, USA: National Academies Press, 273–296.

Jones DR, Baker RHA. 2007. Introductions of non-native plant pathogens into

Great Britain, 1970–2004. Plant Pathology 56: 891–910.
Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M,

Aldrich S, Harrington T, Formenty P, Loh EH et al. 2012. Ecology of
zoonoses: natural and unnatural histories. Lancet 380: 1936–1945.

Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical
Association 90: 773–795.

Keeling MJ, Grenfell BT. 2000. Individual-based perspectives on R0. Journal of
Theoretical Biology 203: 51–61.

Kleczkowski A, Grenfell BT. 1999.Mean-field-type equations for spread of

epidemics: the ‘small world’ model. Physica A: Statistical Mechanics and its
Applications 274: 355–360.

Le Floc’h E. 1991. Invasive plants of the Mediterranean Basin. In: Groves RH,

Di Castri F, eds. Biogeography of Mediterranean invasions. Cambridge, UK:

Cambridge University Press, 67–80.
Li H, Zhang X, Zheng R, Li X, Elmer WH, Wolfe LM, Li B. 2014. Indirect

e_ects of non-native Spartina alterniora and its fungal pathogen (Fusarium
palustre) on native saltmarsh plants in China. Journal of Ecology 102: 1112–
1119.

McCormack RK, Allen LJS. 2006. Stochastic SIS and SIR multihost epidemic

models. In: Agarwal RP, Perera K, eds. Proceedings of the conference on
differential & difference equations and applications. New York, NY, USA:

Hindawi Publishing Company, 775–786.
M�edail F, Diadema K. 2006. Biodiversit�e v�eg�etale m�editerran�eenne et

anthropisation: approches macro et micro-r�egionales. Annales de g�eographie
651: 618–640.

Mollentze N, Nel LH, Townsend S, le Roux K, Hampson K, Haydon DT,

Soubeyrand S. 2014. A Bayesian approach for inferring the dynamics of

partially observed endemic infectious diseases from space-time-genetic data.

Proceedings of the Royal Society B 281: 20133251.

Monteil CL, Cai R, Liu H, Mechan Llontop ME, Studholme DJ, Morris CE,

Vinatzer BA. 2013. Nonagricultural reservoirs contribute to emergence and

evolution of Pseudomonas syringae crop pathogens. New Phytologist 199: 800–
811.

Morris CE, Kinkel LL, Xiao K, Prior P, Sands DC. 2007. Surprising niche for

the plant pathogen Pseudomonas syringae. Infection, Genetics and Evolution 7:
84–92.

Nunes MRT, Palacios G, Faria NR, Sousa EC Jr, Pantoja JA, Rodrigues SG,

Carvalho VL, Medeiros DB, Savji N, Baele G et al. 2014. Air travel is
associated with intracontinental spread of dengue virus serotypes 1-3 in Brazil.

PLoS Neglected Tropical Diseases 8: e2769.
Nunes LR, Rosato YB, Muto NH, Yanai GM, da Silva VS, Leite DB, Gonçalves
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