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Abbreviations 

BPS : Bisphenol S ; BPSG Bisphenol S glucuronide ; BPA : Bisphenol A ; BPAG : 

Bisphenol A glucuronide ; LLOQ : lower limit of quantification ; P-gp : P glycoprotein. 
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Highlights 29 

• The placenta is more efficient to restrict fetal exposure to BPS than to BPA.  30 

• Materno-fetal transfer of Bisphenol S glucuronide was almost non-existent. 31 

• It is likely that BPS and its metabolite are effluxed out of the fetal 32 

compartment.  33 
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Abstract 34 

The aim of our study was to evaluate the bidirectional transfer of Bisphenol S 35 

(BPS) and its main metabolite, BPS Glucuronide (BPSG), using the model of 36 

perfused human placenta and to compare the obtained values with those of 37 

Bisphenol A (BPA) and BPA Glucuronide.  38 

Fourteen placentas at term were perfused in an open dual circuit with 39 

deuterated BPS (1 and 5 µM) and non-labelled BPSG (2.5 µM) and a freely diffusing 40 

marker antipyrine (800 ng/ml) in the presence of albumin (25 mg/ml). In a second 41 

experiment, the potential role of P-glycoprotein in the active efflux of BPS across the 42 

placental barrier was studied using the well-established P-glycoprotein inhibitor, 43 

PSC833 (2 and 4 µM). 44 

Placental transfer of BPS was much lower than that of BPA in both directions. 45 

The placental clearance index of BPS in the materno-fetal direction was three times 46 

lower than in the opposite direction, strongly suggesting some active efflux transport. 47 

However, our results show that P-glycoprotein is not involved in limiting the materno-48 

fetal transfer of BPS. Placental transfer of BPSG in the fetal compartment was almost 49 

non-existent indicating that, in the fetal compartment, BPSG originates mainly from 50 

feto-placental metabolism. The feto-maternal clearance index for BPSG was 20-fold 51 

higher than the materno-fetal index. 52 

We conclude that the blood-placental barrier is much more efficient in limiting 53 

fetal exposure to BPS than to BPA, indicating that the placenta has a crucial role in 54 

protecting the human fetus from BPS exposure. 55 

Keywords : Bisphenol S, Bisphenol S Glucuronide, human placental transport, 56 

endocrine disruptor, Bisphenol A.  57 

58 
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1. Introduction  59 

Widespread human exposure to bisphenol A (BPA) and serious concern about 60 

its harmful effects on human health have led to the ban or restriction of BPA 61 

production and use (ECHA, 2017; French government, 2012; USEPA, 2014), and its 62 

replacement by structural analogues. Bisphenol S (BPS), one of the principal BPA-63 

alternative chemicals, is increasingly used for the production of epoxy resins and 64 

paper products and as an anticorrosive agent in epoxy glues and a reagent in 65 

polymer reactions (Wu et al., 2018). Recent human biomonitoring studies revealed 66 

the presence of BPS in 89.4 % of urine samples from the general U.S. population 67 

(Lehmler et al., 2018), and in 67.8 % of urine samples from a large population 68 

(n=1396) of pregnant women in the Netherlands (Philips et al., 2018). In addition, 69 

BPS was found in four maternal (0.03-0.07 ng/ml) and seven cord serum samples 70 

(0.03-0.12 ng/ml) from a population of 61 mother-newborn pairs in China, suggesting 71 

that BPS can cross the placental barrier (Liu et al., 2017). Due to the structural 72 

similarity of BPS to BPA and its extensive use in our daily life, concern about the 73 

safety of BPS has become an important issue. Recent in vitro and in vivo data 74 

showed that BPS has equal or even greater toxicological effects, with an endocrine-75 

disrupting effect similar, at least in part, to that of BPA (Eladak et al., 2015; Goldinger 76 

et al., 2015; Rochester and Bolden, 2015; Roelofs et al., 2015; Rosenmai et al., 77 

2014; Siracusa et al., 2018). Furthermore, in vivo exposure to BPS during 78 

development has been reported to disrupt reproductive, metabolic and 79 

developmental endpoints through endocrine pathways in zebrafish, rodents and 80 

sheep (Hill et al., 2017; Ji et al., 2013; Naderi et al., 2014; Pu et al., 2017; Qiu et al., 81 

2016). This highlights the vulnerability of the developmental period to BPS exposure 82 

(Catanese and Vandenberg, 2017; Crump et al., 2016). 83 



6 

 

Data about human fetal exposure to BPS are to date extremely scarce. 84 

Toxicokinetic investigations in the pregnant ewe showed that only 0.4 % of the 85 

maternal dose was transferred to the fetus. During the late stage of pregnancy, the 86 

fetus is very efficient in metabolizing BPS into its main metabolite, BPS glucuronide 87 

(BPSG), that remains trapped in the fetal compartment because of its inability to 88 

cross the placenta. The elimination of fetal BPSG thus requires its back conversion 89 

into bioactive BPS in the feto-placental unit. Furthermore, the restricted feto-maternal 90 

placental passage of BPS leads to an accumulation of both BPS and BPSG in the 91 

fetal compartment (Grandin et al., 2018). Thus, the placental transfers of BPS and 92 

BPSG are crucial in determining exposure of the fetus to BPS and its conjugate. 93 

However, the direct extrapolation of animal studies to humans is hindered by 94 

structural differences in the placenta between species. This highlights the need to 95 

develop models to predict fetal exposure relevant to humans. An ex vivo system of 96 

perfused isolated human cotyledon (vascular functional unit of the placenta) in an 97 

open-circulating system had been used to quantify the transplacental transfer of BPA 98 

(Corbel et al., 2014). This relevant model was therefore used in the current study to 99 

investigate the placental transfer of BPS and its main metabolite, BPSG. 100 

Our first objective in this study was to evaluate the transplacental transfer of 101 

BPS and BPSG in both the materno-fetal and feto-maternal directions, using the 102 

human perfused cotyledon and to compare these values with those of BPA and BPA 103 

glucuronide (BPAG) determined previously with the same model (Corbel et al., 2014). 104 

The limited materno-fetal transfer of BPS prompted us to examine, in a second 105 

experiment, the possible involvement of an efflux transporter in limiting the materno-106 

fetal placental transfer of BPS. The P-glycoprotein (P-gp or ABCB1), the most 107 

abundant member of the ATP-binding cassette protein transporter family, is 108 



7 

 

expressed in the apical membrane of the syncytiotrophoblast, a placental epithelial 109 

structure at the interface with maternal blood (Ceckova-Novotna et al., 2006), and is 110 

involved in the efflux transport of a wide variety of xenobiotics and thereby in 111 

protection of the fetus (Joshi et al., 2016; Syme et al., 2004). Our second objective in 112 

this study was therefore to test the hypothesis that P-gp might be involved in limiting 113 

BPS materno-fetal transfer (Mölsä et al., 2005; Rahi et al., 2009; Sudhakaran et al., 114 

2005).  115 

2. Materials and Methods 116 

Placenta cotyledons were perfused in an open double circuit using a method 117 

modified from that of Schneider et al., (Schneider et al., 1972) as previously 118 

described (Corbel et al., 2014). Placentas (547 ± 132 g) were collected from HIV-119 

seronegative women (age range : 28-42 years) between July and December 2017 120 

after uneventful and single pregnancy  and after vaginal (n=3) or caesarean (n=7) 121 

delivery in the CHU Paule de Viguier, Toulouse, France. The study received 122 

institutional approval (DC-2013-1950) and each patient gave written informed 123 

consent to participate in the study. 124 

2.1. Chemicals  125 

BPS-d4 (purity ≥ 97 %) and BPSG (purity ≥ 97 %) were purchased from 126 

Toronto Research Chemicals (Toronto, Canada). BPS was dissolved in ethanol at a 127 

concentration of 1 mg/ml and BPSG was dissolved in isotonic saline at 10 mg/ml. 128 

Antipyrine and PSC833 (purity ≥ 98 %) were purchased from Sigma-Aldrich (Saint-129 

Quentin Fallavier, France) and were dissolved at 10 mg/ml and 4.9 mg/ml in 130 

apyrogenic water and DMSO, respectively. All solutions were stored at -20°C until 131 
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use. Bovine serum albumine (BSA, Fraction V, purity ≥ 96 %) and Earle’s Balanced 132 

Salt solution were purchased from Euromedex (Souffelweyersheim, France). 133 

All materials for placenta perfusion, including the materials used for the 134 

preparation of solutions, sampling, processing and analysis, were in glass or BPS-135 

free plastic. 136 

2.2. Placental perfusion 137 

The study was designed to evaluate the simultaneous placental transfer of 138 

BPS and BPSG, both in the materno-fetal and feto-maternal directions (Figure 1). 139 

The maternal and fetal perfusion solutions were prepared with Earle medium 140 

supplemented with 25 g/L of BSA to reflect the physiological plasma protein 141 

concentration at late pregnancy (Larsson et al., 2008). BPS was used in deuterated 142 

form (BPS-d4) in order to distinguish the d4-labelled BPS added to the media from 143 

non-labelled BPS potentially resulting from BPSG hydrolysis. 144 

Antipyrine (800 ng/ml), a free passive diffusion reference substance which is 145 

not bound to plasma proteins, and the test substances, BPS-d4 and BPSG, were 146 

added to the maternal or to the fetal reservoir to study the materno-fetal or feto-147 

maternal transfers, respectively. BPS-d4 was infused at 1270 ng/ml (5 µM) and 254 148 

ng/ml (1 µM) in the maternal and fetal medium, respectively, while BPSG was infused 149 

at the same concentration (1065 ng/ml, 2.5 µM) in both compartments (Figure 1). 150 

Because a low BPS placental transfer was previously observed in the pregnant 151 

sheep model (Grandin et al., 2018), high nominal concentrations of both BPS-d4 and 152 

BPSG were used to ensure their effective detection in the opposite compartment 153 

after placental transfer. 154 
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Each perfusion lasted 90 min. The pH was adjusted continuously throughout 155 

the perfusion to 7.41 ± 0.013 and 7.31 ± 0.011 for the maternal and fetal perfusion 156 

media, respectively. Maternal and fetal exudates were collected every 5 min after 157 

adding the test substances and the volumes were measured. BPS-d4 and BPSG 158 

materno-fetal (feto-maternal) transfers were determined after simultaneously adding 159 

antipyrine, BPS-d4 and BPSG to the maternal (fetal) reservoir at time 0. Control 160 

samples (1 ml) were collected from the fetal and maternal inflow reservoirs before 161 

addition of these substances. Samples were then collected from the maternal (fetal) 162 

inflow reservoir immediately after adding the test molecules and at 30, 60 and 90 163 

min, from the maternal (fetal) outflow perfusate at 0, 30, 60 and 90 min, and from the 164 

fetal (maternal) outflow perfusate at time 0 and every 5 min up to 90 min, to evaluate 165 

the materno-fetal (feto-maternal) transfer).  166 

At the end of the perfusion, the isolated cotyledon was rinsed with phosphate-167 

buffered saline (pH 7.4) at 4°C for 20 min. This washing solution was collected. All 168 

samples were immediately chilled in ice and centrifuged for 10 min at 3000g and 4°C 169 

to discard placental cells and the supernatant was collected and stored at -20°C until 170 

assayed. 171 

The involvement of P-gp, in limiting the materno-fetal clearance of BPS, was 172 

determined by measuring the materno-fetal transfer of BPS-d4 before and after the 173 

addition of a P-gp inhibitor. PSC833 was selected because it is a specific inhibitor of 174 

P-gp efflux protein and its inhibitory effect during ex vivo placental open perfusion 175 

had already been observed within the range of concentrations used in this study 176 

(Rahi et al., 2007; Sudhakaran et al., 2008). It was added to the maternal reservoir 177 

after 40 min of perfusion. First, the placental passage of BPS-d4 and BPSG was 178 

evaluated before and after the addition of PSC833, at a concentration of 2µM (one 179 
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placenta). As the materno-fetal transfers of BPS-d4 and BPSG were not affected by 180 

this inhibitor under these conditions, the experiment was repeated with a higher 181 

concentration of PSC833, 4µM, and only with BPS-d4.  182 

Placental samples (about 1 g) were taken from a non-perfused cotyledon and 183 

from the perfused cotyledon (white area) after the washing perfusion and stored at -184 

80°C, to determine the tissue concentrations of BPS and BPSG. 185 

2.3. Placental tissue homogenization 186 

Placental tissue was reduced to 1 to 9 mm² fragments and aliquoted into 100 187 

mg-fractions. These fractions were then ground for 4 min at 30 Hz using a vibrating 188 

tissue homogenizer (MM 400, Retsch, Eragny sur Oise, France) in liquid nitrogen-189 

refreshed containers to avoid sample defrosting. Samples were stored at -80°C until 190 

assayed.  191 

The extent of potential BPSG hydrolysis during the homogenization step was 192 

determined, in a preliminary experiment, by processing 5 blank liver samples spiked 193 

with BPSG-d8. The mean hydrolysis rate of BPSG-d8 after the tissue 194 

homogenization procedure was 1.27 ± 0.24 % and was therefore considered 195 

negligible. This tissue homogenization procedure was then applied to placenta 196 

samples. 197 

2.4. Analytical procedure 198 

BPS-d4, BPSG and antipyrine were extracted from the perfusion medium and 199 

placental tissue by adding 200 µL of an acetonitrile/zinc sulfate mixture (50:50, 200 

vol:vol) containing internal standards (BPS at 50 ng/ml, BPSG-d8 and antipyrine-d3 201 

at 500 ng/ml in perfusion medium and BPS-d4 at 100 ng/mL and BPSG-d8 at 1000 202 

ng/mL in placental tissue). Samples were mixed for 5 min at 10°C and 1400 rpm 203 



11 

 

(MB-102, Bioer, Hangzhou, China) and then centrifuged at 20000g and 4°C for 20 204 

min.  205 

Antipyrine, BPS-d4 and BPSG concentrations in the perfusion medium and in 206 

placental tissue were determined by liquid chromatography coupled with tandem 207 

mass spectrometry detection using a previously described adapted method (Grandin 208 

et al., 2017). In the perfusion medium, the calibration curves ranged from 10 to 1000 209 

ng/ml, 1 to 100 ng/ml and 5 to 1000 ng/ml, for antipyrine, BPS and BPSG, 210 

respectively. In placental tissue, the calibration curves ranged from 5 to 1000 ng/ml 211 

for both BPS and BPSG. The mean intra- and inter-day coefficients of variation for 212 

the three concentration levels were below 15 %. In perfusion medium, the lower limits 213 

of quantification (LLOQs) were validated at 10 ng/ml for antipyrine, 1 ng/ml for BPS-214 

d4 and 5 ng/ml for BPSG. In placental tissue, the LLOQs were validated at 5 ng/g for 215 

both BPS and BPSG.  216 

BPS (but not BPS-d4) and BPSG were measured in cotyledon samples 217 

(around 100 mg) before and after perfusion. 218 

Because of the very low passage of BPSG in the materno-fetal direction, an 219 

analytical method using dansyl chloride derivation, which enabled a higher sensitivity 220 

(LLOQ at 0.25 ng/ml) to be obtained (Wang et al., 2013), was developed to measure 221 

BPSG in the fetal outflow perfusate. 222 

2.5. Calculation method and statistical analysis  223 

Only the concentrations at steady-state for antipyrine, BPS-d4 and BPSG, 224 

were used to calculate the transfer rate, the extraction rate, the placental clearance 225 

and the clearance index, according to the Challier formulas (Challier, 1985; Challier 226 

et al., 1977), as previously described (Corbel et al., 2014). The transfer rate was 227 
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calculated for each steady state time point as the ratio between the concentrations of 228 

BPS/BPSG in the receiving compartment to the concentration in the entrance 229 

compartment expressed as a percentage. The clearance index was the ratio of the 230 

transfer rate of BPS or BPSG to that of antipyrine. The transplacental clearance of 231 

BPS/BPSG was calculated as the ratio of the concentration in the receiving 232 

compartment multiplied by its flow rate to the concentration in the entrance 233 

compartment. The extraction rate was the fraction of the dose (corresponding to the 234 

concentration multiplied by its flow rate) transferred from the entrance compartment 235 

to the receiving one (Figure 1). In the materno-fetal direction, the perfusions were 236 

validated if the rate of antipyrine transfer was above the generally accepted threshold 237 

of 20 % (Gavard et al., 2009), whereas a threshold antipyrine transfer rate higher 238 

than the 15 %, previously reported by Challier et al. (1977), was chosen to validate 239 

the feto-maternal perfusions.  240 

The mass balance was calculated as the ratio of the sum of the quantities of 241 

substrate in the perfusion media, the tissue (for BPSG only) and the PBS washings to 242 

the measured amount of the substrate in the maternal or fetal reservoir, as previously 243 

described (Corbel et al., 2014).  244 

Data are expressed as means ( ± SD). The statistical analyses were done 245 

using the R®software (R development core team, 2005).  246 

For both the feto-maternal and materno-fetal transfers, the mean placental 247 

transfers of BPS, BPSG and antipyrine at each time point along the experiment were 248 

compared by a three-way ANOVA with the substrate and the perfusion time as fixed 249 

effect factors. The placenta and the double interactions between substrate, perfusion 250 

time and placenta were random-effect factors. 251 
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For each substance, the materno-fetal and feto-maternal clearance indices 252 

were compared using a three-way ANOVA with the direction (materno-fetal and feto-253 

maternal), the substrate and their interaction as fixed-effect factors and the placenta 254 

nested in the direction as a random-effect factor. 255 

The BPS clearance indices in absence or presence of the P-gp inhibitor were 256 

compared using a three-way ANOVA with the inhibitor, the perfusion time and their 257 

interaction as fixed-effect factors, and with the placenta and the perfusion time 258 

nested in the inhibitor as random-effect factors.  259 

3. Results 260 

The overall mean transfer rates of antipyrine, for all the validated perfusions 261 

(n=10), were 34.2 ± 10.1 % and 20.7 ± 4.84 % in the materno-fetal and feto-maternal 262 

directions, respectively. The wet weight of perfused cotyledons was 29.5 ± 17.2 g. 263 

The average flow rates were 12.7 ± 1.2 ml/min in the maternal circulation and 5.3 ± 264 

0.46 ml/min in the fetal circulation and remained stable throughout the perfusion. 265 

Before perfusion, BPS was quantified in two placentas out of nine, at 266 

concentrations close to the BPS LLOQ (6.66 and 5.90 ng/g), which probably reflect 267 

the environmental exposure to BPS, whereas no BPSG was detected in any 268 

placenta. BPS-d4, BPSG and antipyrine were never detected in control perfusion 269 

medium samples collected in the maternal and fetal reservoirs before the beginning 270 

of the perfusion.   271 

For all 10 placentas, the overall mean recovery (± SD) of infused substances 272 

at the end of the perfusion, in the fetal and maternal perfusates and in the cotyledon 273 

(BPSG only) were 85.8 ± 6.03 % (range 75.2-92.9 %) and 84.7 ± 5.12 % (range 79.9-274 

90.1 %) for BPS-d4 perfusion and 90.2 ± 9.54 % (range 78.3-99.2 %) and 81.6 ± 1.22 275 
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% (range 80.6-83.0 %) for BPSG perfusions in the materno-fetal and in the feto-276 

maternal directions, respectively. 277 

BPS was never detected in any perfusate following BPSG perfusion in either 278 

the feto-maternal or materno-fetal directions.  279 

3.1. Placental transfer of BPS and BPSG 280 

Figure 2A depicts the mean (± SD) time courses of the materno-fetal placental 281 

transfer of BPS-d4, BPSG and antipyrine at the concentrations of 1270 ng/ml, 282 

1065 ng/ml and 800 ng/ml (n=7), respectively. The materno-fetal transfer rates (mean 283 

± SD, range) of BPS (3.18 ± 2.64 %, 0.527-8.12 %, n=7) and BPSG (0.339 ± 284 

0.264 %, 0.113-0.717 %, n=4) were about 10-fold lower for BPS and 100-fold lower 285 

for BPSG than the transfer of freely diffusible antipyrine (34.2 ± 10.1 %, 23.8-52.4 %, 286 

n=7, p < 0.001, Table 1). The mean ± SD (range) materno-fetal clearances were 287 

0.174 ± 0.151 ml/min (0.0239-0.450 ml/min) and 0.0181 ± 0.0149 ml/min (0.006-288 

0.0398 ml/min) for BPS and BPSG, respectively. In the materno-fetal experiment, 289 

2.49 ± 2.36 % and 0.228 ± 0.221 %, respectively, of the BPS-d4 and the BPSG 290 

added to the maternal perfusate, were transferred across the placental barrier. A low 291 

fraction of the BPSG dose (0.112 ± 0.0754 %, ranging from 0.0489 to 0.216 %) 292 

remained in the cotyledon after BPSG perfusion. 293 

Figure 2B shows the time-courses (mean ± SD) for the feto-maternal placental 294 

transfer of BPS-d4, BPSG and antipyrine. The feto-maternal transfer rates (mean ± 295 

SD, range) of BPS (5.85 ± 1.22 %, 4.73-7.15 %, n=3) and BPSG (3.97 ± 0.919 %, 296 

3.02-4.85 %, n=3) were respectively about 3.5-fold and 5-fold lower than that of 297 

antipyrine (20.7 ± 4.84 %, 15.2-24.3 %, n=3, p < 0.001) (Table 1). The mean ± SD 298 

(range) feto-maternal clearances were 0.717 ± 0.144 ml/min (0.584-0.870 ml/min) for 299 

BPS and 0.487 ± 0.108 ml/min (0.374-0.590 ml/min) for BPSG. In the feto-maternal 300 



15 

 

experiment, 4.46 ± 0.702 % of BPS and 13.2 ± 2.60 % of BPSG added to the fetal 301 

perfusate were transferred across the placental barrier. Only 0.360 ± 0.125 % 302 

(ranging from 0.244 to 0.492 %) of the BPSG dose remained in the perfused 303 

cotyledon.  304 

The overall clearance indices of BPS and BPSG were much lower in the 305 

materno-fetal direction than in the opposite direction (3.4 and 23-fold, respectively, p 306 

< 0.001) (Table 1).  307 

3.2. Effect of PSC833, a P-gp inhibitor, on the materno-fetal placental 308 

transfer of BPS 309 

The materno-fetal rate of BPS transfer (2.56 ± 2.36 versus 2.30 ± 2.08 %, after 310 

and before the addition of PSC833, respectively), and consequently, its 311 

transplacental clearance (0.146 ± 0.137 versus 0.131 ± 0.126 ml/min) and clearance 312 

index (0.073 ± 0.051 versus 0.0717 ± 0.0543) were not significantly increased in the 313 

presence of PSC833, an inhibitor of P-gp (Figure 3). In addition, PSC833 had no 314 

significant effect on the transplacental transfer of antipyrine (31.7 ± 6.9 versus 29.5 ± 315 

4.94 %). 316 

4. Discussion 317 

Fetal life represents a critical window during which its developmental 318 

processes are extremely sensitive to endocrine disruption. The lack of data 319 

concerning exposure of the human fetus to BPS, a potential endocrine disruptor, 320 

highlights the urgent need to investigate the materno-feto-placental exchanges of 321 

BPS. In the present study, the open-circuit perfused cotyledon model was used to 322 

examine the passage of BPS and its main metabolite BPSG across the human 323 

placenta. 324 
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Antipyrine is a useful reference substance for assessing the transfer rate of 325 

lipid-soluble xenobiotics (Challier et al., 1983; Schneider et al., 1979). The rates of 326 

antipyrine transfer observed in this study, were similar to the values reported in 327 

previous studies (Berveiller et al., 2012; Ceccaldi et al., 2008; Corbel et al., 2014; 328 

Gavard et al., 2009). By expressing BPS clearance as a fraction of antipyrine 329 

clearance (clearance index), several hemodynamic factors in the perfusion system 330 

can be corrected, thus allowing comparisons between different substrates.  331 

The results reported here show that the placental passage of BPS is very 332 

limited, with a feto-maternal BPS clearance index 3.4-fold higher than the materno-333 

fetal clearance index (0.290 and 0.0852, respectively). Despite the structural 334 

similarities of BPS and BPA, these BPS clearance indices were about 3 and 10-fold 335 

lower than those of BPA (BPA feto-maternal clearance index = 0.81, BPA materno-336 

fetal clearance index = 0.84) (Corbel et al., 2014). These observations suggest that 337 

the efficiency of BPS transport differed from that of BPA which crosses the placenta 338 

by passive diffusion (Corbel et al., 2014). It can be hypothesized that BPS placental 339 

transport does not rely solely on weak diffusional permeability but might involve a 340 

differentially active transport. 341 

The main physico-chemical properties that determine the placental 342 

permeability of a substance are lipophilicity, polarity, size and hydrogen-binding 343 

capacity (Giaginis et al., 2009). The molecular weights of BPA and BPS are similar 344 

(228 and 250, respectively). Moreover, BPA is a highly lipid soluble molecule (LogP 345 

3.43) that is unionized at physiological pH. Its placental transfer by passive diffusion 346 

is therefore rapid and solely limited by the placenta perfusion rate, independently of 347 

placental permeability. In contrast, the lipid solubility of BPS is low (LogP 1.65) and 348 

the ionized and unionized forms are in equilibrium at physiological pH (pKa1 = 7.42, 349 
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pKa2 = 8.03, Choi and Lee, 2017). Thus, the low placental permeability of BPS 350 

compared to BPA could be due to its relative polarity and to its low lipophilicity 351 

(Garland, 1998; Syme et al., 2004).  352 

Alternatively, the different materno-fetal and feto-maternal transfer of BPS 353 

across the placenta might be explained by the activity of an unidirectional efflux 354 

transporter. We hypothesized that the placental efflux transporter P-gp could be 355 

involved in the limited transfer of BPS to the fetal circulation. Indeed, P-gp facilitates 356 

the active efflux of a wide range of xenobiotics on the placental barrier (Ceckova-357 

Novotna et al., 2006). Inter-individual variability in the expression of P-gp (Hutson et 358 

al., 2010; Pollex and Hutson, 2011) was taken into account by conducting the kinetic 359 

studies such that each placenta was used as its own control, by adding the P-gp non-360 

competitive inhibitor, PSC833, at the middle time of the perfusion. PSC833 361 

(valspodar), a cyclosporine D analog, has been shown to be one of the most potent 362 

and least toxic P-gp inhibitors (Friedenberg et al., 2006; May et al., 2008; Mölsä et 363 

al., 2005; Rahi et al., 2007; Sudhakaran et al., 2008). Despite these controlled 364 

experimental conditions, our data did not support the role of P-gp in the placental 365 

efflux of maternal BPS. However, we cannot rule out the impact of P-gp on the feto-366 

maternal clearance of BPS or the involvement of other efflux transporters on the 367 

active efflux of BPS, such as the multidrug-resistance-associated proteins and breast 368 

cancer-resistance proteins, located in the maternal-facing brush border membrane. 369 

Further investigations are needed to identify the specific transporters responsible for 370 

protecting the fetus from exposure to BPS. 371 

Taking into account the placental blood flows reported in the literature 372 

(Ferrazzi et al., 2001; Syme et al., 2004), the estimated maternal and fetal BPS 373 

placental clearances were 8.72 and 37.3 mL/min, respectively. The estimated human 374 
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maternal placental clearance of BPS is close to that previously evaluated in vivo in 375 

the pregnant ewe (5.22 mL/min, Grandin et al., 2018). By contrast, the placental 376 

clearance of BPS by the human fetus, which represents only about 12 % of the 377 

umbilical blood flow at term (Ferrazzi et al., 2001), is 8-fold higher than that estimated 378 

on the pregnant ewe (4.58 mL/min, corresponding to only 0.5 % of the umbilical 379 

blood flow) (Grandin et al., 2018). The lower fetal placental clearance in ovines 380 

compared to humans might be explained by a more limited placental permeability in 381 

sheep due to inter-species differences in placental structure and transport protein 382 

expression (Ceckova-Novotna et al., 2006; Joshi et al., 2016).  383 

In the pregnant ewe in vivo, once BPSG attained the fetal compartment, it 384 

remains trapped and can be reactivated into BPS (Grandin et al., 2018). 385 

Characterizing the mechanisms underlying fetal exposure to BPSG is therefore 386 

critical. Our results using the human placental perfusion model indicated that the 387 

materno-fetal passage of BPSG is almost non-existent (mean BPSG materno-fetal 388 

clearance index of 0.0085). This result is consistent with the absence of BPSG 389 

transfer from mother to fetus demonstrated in the in vivo pregnant sheep model 390 

(Grandin et al., 2018). Therefore, the BPSG found in the fetal compartment in vivo 391 

might likely be of feto-placental origin. Moreover, the placental transfer of BPSG in 392 

the feto-maternal direction was about two-fold lower than that of BPAG (Corbel et al., 393 

2014), consistently with the higher hydrophilicity of BPSG (LogP = -0.33) than that of 394 

BPAG (LogP = 1.12). Furthermore, the differential transfer of BPSG, twenty fold 395 

higher in the feto-maternal direction than in the opposite direction, suggests the 396 

involvement of a transport system that restricts the fetal exposure to BPSG. Several 397 

ATP-dependent transporters, including multi-drug resistance proteins 1 and 2 (MRP-398 

1, MRP-2) and Organic Anion Transporting Polypeptide transporters (OATP), 399 
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predominantly expressed in the syncytiotrophoblast, are known to transport 400 

glucuronide conjugates (Vähäkangas and Myllynen, 2009).  401 

All together, our data suggest that fetal exposure to BPS and to BPSG could 402 

be more limited than to BPA and BPAG for the same maternal exposure, suggesting 403 

that the human fetus might be better protected from exposure to BPS than to BPA. In 404 

agreement with this result, a biomonitoring study (Ihde et al., 2018) including 30 405 

maternal/fetal pairs in the USA, showed that BPS was never detected in the fetal 406 

cord blood, even though 60 % of the mothers were exposed to BPS. However, our 407 

data need to be treated with caution, because this human isolated cotyledon model, 408 

unlike the in vivo sheep model, does not incorporate the nonplacental toxicokinetic 409 

factors that determine fetal exposure, such as maternal and fetal BPS metabolism 410 

and relative maternal and fetal BPS protein binding. Another limitation is that the 411 

present results refer to placenta at term and cannot necessarily be extrapolated to 412 

earlier stages of gestation. Indeed, the placenta undergoes considerable changes 413 

throughout gestation (Syme et al., 2004). At term, the placental transfer layer is at its 414 

thinnest. In addition, the expression of certain efflux transporters, such as P-gp, is 415 

modified throughout gestation (Ceckova-Novotna et al., 2006; Joshi et al., 2016). All 416 

these physiological processes that determine fetal exposure will therefore require 417 

further investigations to be able to predict fetal exposure to BPS and to BPSG. 418 

5. Conclusions 419 

In conclusion, this is the first study to document the placental transports of both BPS 420 

and its main metabolite, BPSG, and to compare them with those of BPA and BPAG, 421 

using the human placental perfusion model. BPS was shown to cross placenta 422 

bidirectionally, but to a much lower extent than BPA, particularly in the materno-fetal 423 

direction. This suggests the involvement of a membrane efflux transporter which 424 
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impedes BPS transfer to the fetus. However, the implication of placental P-gp as a 425 

possible contributor to the low materno-fetal placental transfer of BPS could not be 426 

demonstrated, suggesting that BPS is probably effluxed by another transporter.  427 

Although BPSG could be detected in vivo in the fetal compartment, our results 428 

indicate that materno-fetal transfer of BPSG is almost non-existent. This suggests 429 

that fetal exposure to the BPS conjugate could result from fetal metabolism, at least 430 

during late gestation. Once in the fetal compartment, it is likely that BPS and BPSG 431 

are extruded, albeit slowly, since the BPS and BPSG feto-maternal clearance indices 432 

were considerably higher than the corresponding materno-fetal clearance indices. All 433 

together, our data clearly show that fetal exposure to BPS is more efficiently limited 434 

by the blood-placental barrier than fetal exposure to BPA. Nevertheless, all the 435 

toxicokinetic factors, i.e. placental and non placental, determining fetal exposure will 436 

need to be considered to ensure a meaningful evaluation of the risk of fetal exposure 437 

to BPS in humans and to determine whether the human fetus is better protected from 438 

exposure to BPS than to BPA.  439 
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Figure legends 645 

Figure 1 : Two-compartment model of the open-configuration double circuit placental 646 

perfusion used to evaluate (A) the materno-fetal transfer (TRMF) and (B) the feto-647 

maternal transfer (TRFM ) of antipyrine (800 ng/mL), BPS-d4 (1270 ng/mL, 5µM or 648 

254 ng/mL, 1µM) and BPSG (1065 ng/mL, 2.5 µM). Coutput and Coutput’ were the 649 

maternal and fetal outflow concentrations, respectively. QM and QF were the maternal 650 

and fetal system flow rates, respectively. 651 
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Figure 2 : Time courses of the mean (± SD) materno-fetal (A, n=7) and feto-maternal 

(B, n=3) transfer rates of antipyrine (○, left y axis), BPS-d4 (●) and BPSG (Δ) (right y 

axis) during the perfusion.  

 

Figure 3 : Mean materno-fetal placental clearance indices of BPS before (control 

condition) and after addition of the P-glycoprotein inhibitor, PSC833. The lines join 

the data from the same placenta (n=1 at 2 µM and n=3 at 4 µM of PSC833). 
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Table 

Table 1 : Materno-fetal and feto-maternal BPS and BPSG perfusion parameters.   

Direction Placenta 
Transfer rate (%) 1 

Clearance 

index² 

Placental clearance  

(ml/min) 3 

Antipyrine BPS  BPSG  BPS BPSG Antipyrine BPS BPSG 

Materno-

fetal 

Mean 34.2 3.18 0.339 0.0852 0.00852 1.83 0.174 0.0181 

SD 10.1 2.64 0.264 0.0515 0.00479 0.619 0.151 0.0149 

Feto-

maternal 

Mean 20.7 5.85 3.97 0.290 0.196 2.53 0.717 0.487 

SD  4.84 1.22 0.919 0.0469 0.0247 0.579 0.144 0.108 

1The ratio of the concentration in the receiving compartment to the concentration in the entrance compartment 

expressed as a percentage. ²The molecule-studied transfer rate divided by the antipyrine transfer rate. 3The 

concentration in the receiving compartment multiplied by its flow rate to the concentration in the entrance 

compartment. 




