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Abstract

Motivation: Metagenomics leads to major advances in microbial ecology and biologists need user

friendly tools to analyze their data on their own.

Results: This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of ampli-

con sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their

taxonomic affiliation. The clustering uses Swarm. The chimera removal uses VSEARCH, combined

with original cross-sample validation. The taxonomic affiliation returns an innovative multi-

affiliation output to highlight databases conflicts and uncertainties. Statistical results and numer-

ous graphical illustrations are produced along the way to monitor the pipeline. FROGS was tested

for the detection and quantification of OTUs on real and in silico datasets and proved to be rapid,

robust and highly sensitive. It compares favorably with the widespread mothur, UPARSE and

QIIME.

Availability and implementation: Source code and instructions for installation: https://github.com/

geraldinepascal/FROGS.git. A companion website: http://frogs.toulouse.inra.fr.

Contact: geraldine.pascal@inra.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The expansion of high-throughput sequencing of rRNA amplicons

has opened new horizons for the study of microbial communities.

By making it possible to study all micro-organisms from a given

environment without the need to cultivate them, metagenomics has

led to major advances in many fields of microbial ecology, from the

study of the impact of microbiota on human and animal pathologies

(Hess et al., 2011; Hooper et al., 2012; Jovel et al., 2016) to the

study of biodiversity in environmental ecosystems and the search for

biomarkers of pollution (Andres and Bertin, 2016; de Vargas et al.,

2015). Determining the composition of a microbial ecosystem, at

low cost and great depth, is still largely based on the amplification

and sequencing of biodiversity marker genes, also called amplicons,

such as rRNA genes and ITS. The clustering of sequences into
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operational taxonomic units (OTUs), which are used as a proxy for

species, is the first step in most studies.

However, the flood of data in the new high throughput

approaches is creating a bottleneck that challenges current comput-

ing architectures and requires refinement of processing algorithms.

Solutions that optimize the processing of these data in terms of infra-

structure and computation time are urgently required. Particularly,

Illumina data, with dozens of samples routinely sequenced at depths

over 100 000 reads, are hard to process in a reasonable time (Cai

and Sun, 2011; Fu et al., 2012). Moreover, the most effective solu-

tions are often designed for specialists, and bioinformatics skills are

generally needed to use such software. Most have to be launched

using command lines and are not always easy to install, making

them difficult to use for biologist end users who are not closely con-

nected to a computing facility (Boyer et al., 2016; Caporaso et al.,

2010; Edgar 2013; Hildebrand et al., 2014; Jeraldo et al., 2014;

Manter et al., 2016; Schloss et al., 2009).

These tools are designed to process amplicon sequences and

return an abundance table of OTUs together with their taxonomic

affiliations. But sequencing quality remains a notable barrier to

accurate taxonomic assignment and a-diversity assessment for

microbial communities: if care is not taken, amplicon data can lead

to huge over-estimations of bacterial diversity (Kunin et al., 2010).

There is, therefore, a huge demand for innovative, efficient, reliable

and easy to use tools for biologist end users. In this context, we

developed a tool that can be used by the largest possible number of

biologists. FROGS: « Find, Rapidly, OTUs with Galaxy Solution »

was designed to be used through either command lines or on Galaxy

platforms (Blankenberg et al., 2010; Giardine et al., 2005; Goecks

et al., 2010). The FROGS pipeline is user friendly with rich graphi-

cal outputs. The aim of this paper is to present FROGS and to dem-

onstrate the advantages and accuracy of FROGS compared to

mothur (Schloss et al., 2009), UPARSE (Edgar, 2013) and QIIME

(Caporaso et al., 2010), using in silico and real datasets. All data-

sets, tests and results are presented on the companion website http://

frogs.toulouse.inra.fr. The advantages of FROGS are that it relies on

Swarm (Mahé et al., 2014) and its adaptive sequence agglomeration

rather than on a global similarity threshold, combined with a rigor-

ous chimera removal step and the explicit consideration of conflict-

ing affiliations. FROGS is also fast and has efficient, scalable

and parallelizable algorithms to support the ever-increasing amounts

of data.

2 Materials and methods

2.1 Implementation
FROGS is written in python 2.7 and can be downloaded from the

GitHub code source repository (https://github.com/geraldinepascal/

FROGS). Installation procedure can be found on the GitHub server.

FROGS can be installed in a Galaxy instance or only for use in a

command line. It requires the following dependencies: the python

library scipy, splitbc for demultiplexing (a homemade script in Perl

provided with FROGS), Flash (Magoc and Salzberg, 2011) and

cutadapt (Martin, 2011), Swarm (Mahé et al., 2014), VSEARCH

(Rognes et al., 2016), NCBI blastþ (Camacho et al., 2009) and RDP

Classifier (Wang et al., 2007). The installation can be checked with

a reduced dataset included in the package. In terms of execution, the

longest steps (pre-processing, clustering, chimera removal and affili-

ation steps) can be threaded on multi-CPU and/or multi-core sys-

tems. This parallelization does not require a particular setup and

can save a lot of time (Supplementary Fig. S1). The memory used

during the process depends on the variability of data and the number

of cores used. For example, 10 million sequences from a low com-

plexity community (100 species, power law abundance distribution)

can be analyzed in 12 min on 1 CPU using at most 1.3 Gb. Most

tools produce an HTML report, including many interactive graphics

based on Highcharts (http://www.highcharts.com/) and D3js

(https://d3js.org/) libraries.

2.2 Tests with in silico data
To measure the ability of FROGS to correctly estimate the number of

OTUs in metagenomics datasets and to assess the performance of

taxonomic assignment using 16 S sequences, we tested and compared

FROGS with mothur, UPARSE and QIIME on 2000 large in silico

datasets generated as displayed in Figure 1. Therefore, to account for

possible biases introduced by the choice of the amplified region, we

produced, in silico, datasets with the V3V4 and V4 hypervariable

regions of the bacterial 16 S gene. We generated 25 sets of species of

increasing richness, manually extracted from UTAX http://drive5.

com/usearch/manual/utax_downloads.html termed ‘simulated data

from UTAX’ (SDFU) and 25 others from SILVA (v123) databank

(Quast et al., 2013) termed ‘simulated data from SILVA’ (SDFS)

(Fig. 1 and companion website http://frogs.toulouse.inra.fr: tab

SDFU/Datasets and SDFS/Datasets) (Supplementary Methods). We

tested FROGS, UPARSE, mothur and QIIME using their own guide-

lines for SDFU, i.e. with their own affiliation method on the UTAX

databank. These pipelines are called UPARSE_SOP, MOTHUR_SOP

and QIIME_SOP (SOP¼ standard operating procedure). However,

the in silico SDFU communities are not very diversified because

UTAX is smaller than SILVA. For this reason, we also ran the four

pipelines on SDFS. We used the appropriate guidelines for each

pipeline, except for the affiliation step, for which we used the

FROGS affiliation tools, because formatting the SILVA database

required for the affiliation step of UPARSE, was too complex to

implement. These pipelines are called UPARSE_MA, QIIME_MA

and MOTHUR_MA (MA¼multi-affiliation of FROGS). QIIME’s

SOPs do not normally include a chimera removal step, but to be sure

our results are fair, notably in terms of erroneous OTUs, we applied

it before the clustering step. As simulated data come from known

databanks, we used the same databanks for taxonomic assignment.

This corresponds to using a ‘perfect’ databank and allows us to sup-

press the effect of incomplete reference databanks and focus mostly

on composition reconstruction.

2.3 Tests with real data
In parallel, we compared FROGS with mothur, UPARSE and

QIIME using a real dataset from the publicly available BEI Resource

(BEI: HM-278 D, HM-279 D). It is an artificial mock community of

20 known bacteria, 1 yeast and 1 archaea, from genera commonly

found on or within the human body. The V3V4 region of this mock

mixture was amplified with the primers used for simulated data and

sequenced using the Illumina MiSeq protocol. We added other

sequences (Nelson et al., 2014) from the same BEI Resource (SRA

project ID PRJEB4688) but sequenced, them, on the V4 only and

V4V5 regions (Supplementary Methods). Other real datasets are

used and their description can be viewed on the companion website:

tab Overview.

2.4 Statistics
A detailed description of the benchmark process is provided in

Supplementary Methods. Our benchmark and metrics are computed

directly from OTUs and their abundances, as they constitute the
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results of the four pipelines. The four metrics used to compare

FROGS, UPARSE, QIIME and mothur are the divergence rate, the

number of false negative taxa (FN), the number of false positive

taxa (FP) and the number of supernumerary OTUs (SO)

(Supplementary Methods). Divergence is defined as the Bray–Curtis

distance between expected and observed abundances at a given

taxonomic level. FN is the number of taxa present in the original

community but not recovered as OTUs by the method. Conversely,

FP is the number of spurious OTUs: reconstructed but absent from

the original community. SOs is the number of additional OTUs with

same origin as the first expected OTUs. For all metrics, lower is

better.

For each of the three first metrics, we performed a two-sided

paired test, either a parametric (paired t-test) or a Mann–Whitney

non-parametric test to assess the difference in accuracy between

FROGS and each competitor. The tests were performed at the com-

munity level (5 per community size x abundance distribution x

amplicon region combination) using the 10 samples as replicates

(Fig. 1). For each community, we declared FROGS to be better (or

worse) than its competitor when (i) the test was significant at the

0.05 level and (ii) FROGS had a lower (or higher) metric than its

competitor. When the test was not significant, the methods were

deemed tied. Finally, we aggregated the results to explore the

parameters (size, abundance distribution and region) favoring one

or none of the methods. Given that biological mocks composition

are not always in accordance with manufacturer’s information, we

further characterized the OTUs produced by the four pipelines at

the sequence level to assign them to one of three classes: true,

accepted and spurious OTU (Supplementary Methods). The full

results are presented on the companion website: tab Statistical

analyses.

3 FROGS tool overview

FROGS is a set of 13 tools that process amplicon reads coming from

Illumina or Roche 454 sequencing technologies. Reads can be in sin-

gle or paired-ends, merged or not, multiplexed or not, with primers

or not (Supplementary Results). It combines both (i) the friendliness

of a graphical user interface, with a wide array of graphical diagnos-

tics and descriptive statistics for monitoring (Supplementary Fig.

S2), and (ii) the speed (Supplementary Fig. S1) and taxonomic accu-

racy of dedicated tools. All the tools are independent. The main

tools are described below and the others in the Supplementary

Results, as well as inputs and outputs of each tools.

3.1 Data pre-processing tool
This tool merges paired-end reads using Flash (Magoc and Salzberg,

2011). It joins read1 and read2 with a customizable rate of mis-

matches (fixed at 10% by default) in the overlapped region. Next,

except for reads from dual-index sequencing (Kozich et al., 2013),

cutadapt (Martin, 2011) is used to remove sequences in which the

two primers are not present and to trim the primers. Ten percent of

mismatches with expected primers are tolerated. The tool cleans the

data with user size criteria and removes all sequences containing an

ambiguous base. Specifically for 454 data, the tool removes sequen-

ces with at least one homopolymer with more than seven nucleotides

and with a distance of less than or equal to 10 nucleotides between

two poor quality positions, i.e. with a Phred quality score lesser than

10. The tool also dereplicates sequences. The user has access to an

html report with graphics that makes possible to check the general

configuration of cleaned sequences and, a posteriori, to see if the

sequencing is correct.

3.2 Clustering tool
FROGS clustering relies on Swarm (Mahé et al., 2014). The FROGS

guidelines suggest (Fig. 2) using clustering in two steps, i.e. a first

pass of Swarm executed with aggregation parameter d¼1 and a sec-

ond pass performed on the seeds of previous clusters with d¼3. As

Swarm is very fast, we advise users to perform the clustering step

first, in order to reduce the number of sequences and to make the

chimera removal step more efficient.

3.3 Chimera removal tool
FROGS chimera detection relies on VSEARCH with de novo

UCHIME method (Edgar et al., 2011; Rognes et al., 2016). No

parameter has to be set. In addition, FROGS uses an innovative

cross-sample validation step to confirm the chimeric status on all

samples. Chimeras are first detected independently in each sample

but in the end, a sequence is only considered chimeric if it is flagged

as a chimera in all samples where it is present. Other cases corre-

spond to FP detection. Note that cross-validation leaves chimera

detection power unchanged for suspect sequences found in only one

sample but requires stronger evidence of chimeric status for suspect

sequences found in multiple samples. This approach is different

from the one implemented in mothur, where the dereplicate parame-

ter removes only the redundant chimeric sequences in the corre-

sponding sample.

Fig. 1. Diagram of the in silico datasets for benchmarking. From the UTAX

(SDFU) or SILVA (SDFS) databases, a subset of phylogenetic diverse species

(¼sp.), ranging from 20 to 1000, were selected. For each species set, either

the V3V4 or V4 regions were conserved. The species abundances are distrib-

uted according to either a power law (P) or a uniform law (U) to generate five

different communities (the five peripheral circles in the figure). The five com-

munities distributed following a power law are made of the same species but

in different quantities (c.f. top zoom). Finally, each community was sequenced

in silico 10 times at a depth of 100 000 reads/sample to create replicates

FROGS: a pipeline for amplicon metagenomics 1289
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3.4 Filtering tool
FROGS guidelines recommend to apply an abundance filter before

the taxonomic affiliation process. Filtering tool makes it possible to

screen clusters according to (i) their abundance and their distribu-

tion among samples i.e. keep only clusters with at least x sequences

and/or present in at least y samples and/or among the z most abun-

dant clusters, (ii) their taxonomic affiliation from the RDP Classifier

(Wang et al., 2007) and blastnþ (Camacho et al., 2009) (see affilia-

tion tool section) and (iii) their presence in a contaminant bank, by

blastnþ (for now, only including phiX, used in Illumina sequencing

technologies). The filtering tool also optionally allows clusters that

are not always present in replicated samples to be deleted (compan-

ion website http://frogs.toulouse.inra.fr: tab FAQ).

3.5 Affiliation tool
Assignment is done using databanks formatted to include taxonomic

levels up to species, so that FROGS offers taxonomic assignment up

to the species level. For now, SILVA 16 S (complete or filtered at dif-

ferent levels of pintail score), 18 S, 23 S (Quast et al., 2013), green-

genes (DeSantis et al., 2006), Midas (McIlroy et al., 2015) and

customized laboratory databases are available in FROGS, but others

can be added. Assignment relies on either the RDP Classifier (Wang

et al., 2007) or blastnþ (Camacho et al., 2009), both implemented

in FROGS. Optional affiliation with the RDP Classifier associates

each OTU with a taxonomy and the corresponding bootstrap score.

The method recommended in the guidelines is affiliation by

blastnþwhich finds an alignment between each OTU seed and

the database. Only the best hits with the same score are reported.

If several blastnþ results have identical scores for an OTU, a

taxonomy is determined for each hit at each taxonomic level.

If these taxonomies differ across hits, the first level of conflict and

all lower ones are set to ‘Multi-affiliation.’ For example, two hits

with equal scores and respective taxonomies Bacteria; Proteobacteria;

Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Afipia; Afipia

birgiae 34632 and Bacteria; Proteobacteria; Alphaproteobacteria;

Rhizobiales; Bradyrhizobiaceae; Bradyrhizobium; Bradyrhizobium

sp. would give the consensus Bacteria; Proteobacteria; Alphaproteo-

bacteria; Rhizobiales; Bradyrhizobiaceae; Multi-affiliation; Multi-

affiliation. A text file with details of the affiliation of all OTUs with

ambiguous taxonomies is provided as an output after the TSV format-

ting (Supplementary Methods). Assignment can be time consuming,

so it is recommended to perform it after a first filtering step. The fil-

tering tool can then be used once more as post-treatment and enables

data reduction based on affiliation criteria. The produced taxonomic

affiliations can be filtered based on (i) the bootstrap of the RDP

Classifier taxonomic level (ii) on e-value, identity percentage, cover-

age percentage and alignment length of blastnþ.

4 Benchmarking

We compared FROGS with three very popular applications

(UPARSE, QIIME and mothur) using their SOPs, with or without

FROGS multi-affiliation method (MA), on both in silico and real

data. We compared the Divergence rate, FP OTUs, FN OTUs and

SOs produced by the pipelines at the community level to assess their

performances in different settings.

4.1 Tests on in silico data
The tests on simulated datasets revealed that FROGS generally

achieved good results, in this case low divergences:<5% at the

genus level on SDFU and on SDFS when using the V3V4 region,

much lower at higher taxonomic levels, and slightly higher at the

species level (SDFS only) or using the less informative V4 region

(companion website: tab Statistical analyses/on simulated data

3.1.1.c and 4.1.1.c). Figure 3 shows the results of non-parametric

tests of affiliation divergence on SDFU. It shows that FROGS per-

formed as well as or better than UPARSE and mothur in most set-

tings. FROGS only performed worse than UPARSE for small

community sizes (20 species), except at genus level. It performed

better than QIIME_SOP in all settings. On SDFS (Supplementary

Fig. S3), where communities are more complex but affiliation bene-

fits from the MA strategy of FROGS, the non-parametric tests

showed that FROGS performed as well as or better than

UPARSE_MA and MOTHUR_MA in most conditions. Again,

FROGS only performed worse than UPARSE_MA for small com-

munity size (20 species), except at genus level. On data with power

law abundance, QIIME_MA and FROGS are comparable but

FROGS performed better at genus level. On data with uniform

abundance, FROGS performed better than QIIME_MA in most set-

tings using V3V4 region but QIIME_MA performed better with

large communities (size>200 species) using the V4 region. Note

that, on SDFU (Supplementary Fig. S4), results are comparable to

the previous ones.

We also compared the pipelines with respect to the number of

FP and FN OTUs (Fig. 4). On SDFU datasets, we found that (i) the

V3V4 region led to more FP and less FN than the V4 and (ii) mothur

infers a huge number of FP (up to 20 times more than the

expected community size). Focusing on FROGS and UPARSE

(Supplementary Fig. S5) revealed that: (i) FROGS always produced

fewer FNs than UPARSE but (ii) a few more FPs under power

law abundance distributions and a few less under uniform abun-

dance distributions (except for size<100 species). The paired tests

on FP and FN data (Supplementary Fig. S6) supported the previous

results and also showed that (i) FROGS truly outperformed mothur

in terms of both FP and FN taxa, and (ii) it always produced fewer

FPs but sometimes more FNs, especially on the V4 region, than

QIIME.

Fig. 2. Flow chart of FROGS SOP. In the clustering tool, d¼ the number of dif-

ferences, required Swarm parameter (seed¼ representative sequence of a

cluster)
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Overall, FROGS performed much better than mothur in all set-

tings, was less conservative than UPARSE for small size commun-

ities and better (for both FPs and FNs) for large size communities,

more conservative than QIIME on the V4 region and better (for

both FPs and FNs) on V3V4 regions. The results also showed that

on SDFS, for which communities are more diverse and more com-

plex than SDFU, mothur and QIIME produced a huge number of

FPs (companion website: tab Statistical analyses/on simulated data

4.1.2): up to 20 times more than the expected OTU number.

FROGS never produced SOs, UPARSE produces only a few SOs,

whereas QIIME and to, a lesser extent, mothur, produce (it is

QIIME and Mothur that produce huge number of SOs) a huge num-

ber of SOs on both SDFU and SDFS communities (companion web-

site: tab SDFU/Results and SDFS/Results).

4.2 Tests on real data
The limitations of handling real mock communities meant that we

did not have a full factorial experimental design, with replication at

all levels. We were, therefore, unable to compare the four pipelines

in all settings, but instead focused on the impact of a limited set of

factors. On the BEI communities, all the methods showed high

divergences (Supplementary Fig. S7), ranging from 15% (phylum

level) to 30% (genus level). On the V3V4 region (Supplementary

Fig. S8), FROGS was better than MOTHUR_SOP, UPARSE_SOP

and QIIME_SOP for staggered abundances and worse for uniform

ones. But FROGS produces less spurious OTUs than the other pipe-

lines while having a high number of true OTUs (Supplementary Fig.

S9) (see others results on real communities on the companion web-

site: tab Real data and tab Statistical analyses/on real data). Because

of the small number (n¼4) of replicates in that setting, we did not

perform any statistical tests.

5 Discussion

5.1 About the tool
FROGS is a workflow designed for biologists and bioinformaticians.

One of its advantages is that most of the tools included in FROGS

have been widely tested by the community. Moreover, it also

Fig. 3. Comparison of divergence rates at different taxonomic levels between

FROGS and competing pipelines (UPARSE, mothur and QIIME) using their SOP.

Pipelines were compared on in silico communities generated from UTAX (SDFU,

Fig. 1). The communities are organized by size (20 to 1000, vertical panels),

amplicon and abundance distribution (V3V4/V4 and uniform/power law, horizon-

tal panels). For each, the 10 replicates were used to perform a Mann–Whitney

non-parametric paired test and to identify whether FROGS (green), its competitor

(blue) or none (grey) achieved significantly lower (P<0.05) divergence

Fig. 4. Comparison of FROGS and competing pipelines (UPARSE, mothur and

QIIME). Pipelines were compared on in silico communities generated from

UTAX (SDFU, Fig. 1) based on the number of FP OTUs (left) and FN OTUs

(right). FP or FN count is not related to the affiliation and is, therefore, identi-

cal according to the SOP or MA strategy
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includes a new and performant clustering approach, Swarm

(Mahé et al., 2014). FROGS can be installed on personal computers

without too much difficulties as it depends on seven tools and one

python library only. The Galaxy interface makes it very easy to use.

In addition, we took care to limit the number of parameters and to

set them to sensible default values. Most processing steps are accom-

panied by interactive graphics and tables to help the user understand

the results and monitor the pipeline. FROGS software is thus easy to

use by non-specialists. It is also quite fast and, thanks to the paralle-

lization of calculations on several CPUs, it is quite competitive

speedwise (Supplementary Fig. S1). The bulk of computing time is

devoted to the clustering step. This step has two key components: a

highly sensitive OTU picking method, producing high resolution

OTUs, to achieve a high recall rate at the cost of many FPs (mostly

chimera), followed by rigorous post-treatment to discard the bulk of

artefactual OTUs and recover low levels of FPs.

Swarm was chosen as clustering tool considering the limits of

current global threshold tools. Indeed, popular clustering tools use a

global threshold (Edgar 2010; Fu et al., 2012; Oh et al., 2016)

implying that each OTU is composed of sequences with less than

3% divergence with the OTU seed, typically. This rule is applied to

all OTUs during clustering and the 3% level of divergence is usually

considered sufficient to infer different species, even if the matter is

the subject of debate (Goodrich et al., 2014; Goris et al., 2007;

Hugenholtz et al., 1998; Kim et al., 2014; Konstantinidis et al.,

2006). However, the global threshold does not account for the dif-

ferent evolution rates among taxonomic branches, resulting in sev-

eral different ‘species-distances’ according to different phyla and a

recent large scale study pointed out the weakness of similarity

thresholds (Nguyen et al., 2016). Swarm is well-suited for paraphy-

letic groups such as protists, where the 3% clustering produces too

may erroneous OTUs. Other solutions exist that are not greedy, but

most are not really able to handle very large amounts of data (Eren

et al., 2015). Swarm is an exception: it scales really well to large

datasets. It does not agglomerate sequences based on the typical

97% threshold but relies instead on both the number of differences

and the likely series of accumulation of those differences. Thus, it

defines clusters with extremely high precision and was recently

described as one of the most accurate clustering tools (Kopylova

et al., 2016).

Chimeras are artificial sequences formed by two or more biologi-

cal sequences joined together. These anomalous sequences are

formed due to incomplete extension during a PCR cycle. During

subsequent cycles, a partially extended strand can bind to a template

derived from a different but similar sequence. This phenomenon is

particularly common in amplicon sequencing where closely related

sequences are amplified (Haas et al., 2011), and removal of chimera

sequences is thus critical in diversity analyses. After comparing the

two chimera detection tools Usearch (Edgar, 2010) and VSEARCH,

VSEARCH was preferred as it produced better results

(Supplementary Fig. S10). Although chimera are generally removed

before clustering, as they can disturb OTU building, we recommend

(Fig. 2) removing them after the two steps of clustering. Thus,

Swarm produces high-resolution clusters with satisfactory separa-

tion of chimeric and non-chimeric sequences. Chimera detection is

faster and more efficient on cluster seeds, as they represent a reduced

sequence dataset.

Swarm finds high definition clusters: it does not make the mis-

take of merging FP OTUs with the closest available true OTU. It is

therefore necessary to remove these FP OTUs, which are often chi-

mera clusters not detected by VSEARCH. Indeed, after clustering,

the seeds are composed mostly chimeras (median proportion of

97%) whereas after the complete FROGS process, there are almost

no chimera left in the in silico datasets (median proportion of 5%).

Bokulich et al. showed that removing clusters with abundances

lower than 0.005% (5.10�5) eliminates most of the FP OTUs

(Bokulich et al., 2013). Testing showed this threshold to be indeed

very effective. Without this filtering step, Swarm systematically

overestimated sample richness, so the FROGS guidelines recom-

mend filtering. Filtering based on prevalence (presence in multiple

samples) is also very efficient using either technical replicates (OTUs

with low prevalence are expected to be FP) or biological replicates,

if individual variability is not in the focus of the study. Of course,

post-treatment is not perfect and will erroneously discard rare but

genuine OTUs. However, tests using in silico datasets showed that

FROGS has a very high detection rate, even with power law distrib-

uted abundances. Moreover, with current sequencing technologies,

sequencing noise strongly blurs the signal, so it is difficult to distin-

guish rare but genuine OTUs from sequencing noise (Huse et al.,

2010; Sinclair et al., 2015). The filtering step is thus indispensable

and very efficient.

Finally, describing microbial diversity requires clusters with a

taxonomic affiliation. OTUs are generally thought of as a proxy for

species, but due to resolution problems in some taxonomic groups,

taxonomic assignment is often limited to the genus level in existing

software solutions. FROGS MA is an innovation that avoids affilia-

tion errors when a sequence corresponds to several sequences in the

database. This phenomenon is very common: in amplicon sequenc-

ing strategies, only a small part of the target gene is amplified (e.g.

the V3V4 region of 16 S), and such a small region is often not suffi-

ciently discriminating at lower taxonomic levels (Mizrahi-Man

et al., 2013). Attributing an OTU affiliation deduced from a single

assignment can thus lead to affiliation errors. Because any false

taxonomic assignment results in counting the whole corresponding

abundance as wrong, MA has a huge impact on divergence scores.

The FROGS SOP does not advise using the RDP Classifier for

taxonomy affiliation, because we observed some non-concordant

taxonomies between blastnþ results and RDP Classifier results.

Note that QIIME_MA outperformed FROGS on SDFU thanks to

FROGS affiliation tool. This indicated that QIIME_SOP clusters are

not well affiliated, possibly due to QIIME_SOP assigning taxonomy

with the uclust consensus taxonomy assigner.

5.2 About the tests
The results on in silico data showed that the divergence rate of

FROGS varied between 0% and 10%, which are low values. As

expected, divergence increased with richness and diversity: com-

munities with uniform abundances are more difficult to reconstruct

accurately than those with staggered abundances.

In addition to its good performance in terms of divergence,

FROGS maintained both the number of FP and FN OTUs low, espe-

cially in complex communities. This is possible thanks to the cross-

validation of chimeras, only used in FROGS, which avoids confus-

ing real OTUs with chimeras. This proves that the three step strategy

(clustering by Swarmþ chimera removal with cross-valida-

tionþ filtering) used to select final OTUs can achieve both a low FP

rate and the high probability of detecting a species that is really

present in the dataset i.e. a high recall rate. Moreover, unlike

QIIME or mothur, FROGS never produced SOs, which further vali-

dates the FROGS OTU picking strategy.

The results on the simple mock communities were not as favor-

able as those on in silico datasets. Despite high divergence rates, the

FROGS results are in line with or better than those achieved by
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QIIME, mothur and UPARSE. This means that the compositions

recovered by different pipelines on those mock communities are all

highly distorted. Such strong biases are systematically described in

studies involving mock communities that compare expected relative

abundances to theoretical ones (Comeau et al., 2017; Pinto and

Raskin, 2012). This probably reflects experimental and biological

shortcomings (uneven mixing of degenerate primers, extraction and

amplification/PCR biases, polymerase efficiency due to GC%, copy

number biases, primer mismatches, etc.) rather than a systematic

bias from the bioinformatics pipeline. Moreover, with staggered dis-

tribution of BEI mocks, some species may be entirely missing from

the reads. Library construction and DNA sequencing led to differen-

ces between the theoretical community and the one actually

sequenced, leading to a basal divergence that no bioinformatics

pipeline can overcome, no matter how accurate.

In conclusion, we showed that FROGS compares favorably with

widely used pipelines. In simple communities, it is on a par with or

better than QIIME, mothur and UPARSE in terms of divergence but

less conservative than UPARSE and more conservative than QIIME.

The aggressive abundance-based filters of UPARSE explain its low

level of FPs whereas the paucity of filters applied by QIIME

accounts for its low level of FNs. However, QIIME’s high recall rate

comes at the cost of literally hundreds or thousands of FP OTUs.

Abundance-based filters would probably mitigate this problem, just

like they do for UPARSE and FROGS but they are not part of the

QIIME SOP. In more complex and realistic settings (a large number

of species, heterogeneous abundances), FROGS outperforms the

three other pipelines on all metrics (divergence, FP, FN and SO).

Thus, the main contribution of FROGS is its ability to produce

accurate community compositions even at fine scales (species or

genus) and in large communities (>100 different species) with very

heterogeneous abundances, while proposing an user friendly web

interface and graphical tools to help the user navigate through the

analyses. Current improvements include the implementation of stat-

istical and graphical tools to explore the communities composition

and structures (alpha and beta diversities, hierarchical clustering,

ordination, heatmap) based on phyloseq R package (McMurdie and

Holmes, 2013).
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