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ABSTRACT
Enhancing rice yield in upland rice systems through genetic improvement remains a major 
challenge in the tropics. This review aims to provide the trends on upland rice cultivation over the 
last 30 years and recent distribution of upland rice in the tropics, and to report progress in studies 
on genetic improvement for enhancing productivity in Africa, Asia, and Latin America. While upland 
rice cultivation area has reduced in Asia and Latin America over the last 30 years, the area in Africa 
has increased. The current share of upland rice area in total rice area is related to rainfall and gross 
national income per capita, especially in Africa, and higher share is associated with lower rice self-
sufficiency at national level. Breeding programs in Asia and Latin America have developed high-
yielding varieties using indica materials as parents. In Africa, New Rice for Africa (NERICA) varieties 
were developed from crosses between improved tropical japonica and Oryza glaberrima. However, 
recent studies report that there is scope for improving existing NERICA using upland indica materials 
from Asia. In highlands of Africa, there are ongoing breeding programs using japonica varieties, such 
as the Nepalese Chhomrong Dhan. Key important plant traits used in the breeding programs are not 
largely different across regions, especially intermediate plant height and tillering capacity (which 
may be related to weed-suppressive ability), and high harvest index. In conclusion, we propose an 
international network for breeding upland rice with accelerating seed exchange across regions that 
could enhance upland rice productivity through genetic improvement.

1.  Introduction

Rice, wheat, and maize are the world’s three most impor-
tant food crops. Of these, rice is the most consumed by 
humans, being eaten by more than half of the world’s 
population. It provides 27% of the calories in the world’s 
low- and middle-income countries (Dawe et al., 2010). 
About 900 million of the world’s poor depend on rice as 
consumers or producers (Pandey et al., 2010).

Rice production systems can be simply classified into 
lowland and upland rice. In lowland rice, fields are usually 
flooded during part or all of the growing season; lowland 
rice includes rain-fed lowland, irrigated lowland, deep-wa-
ter and mangrove swamp (Saito et al., 2013). Upland rice 
is generally grown on level or sloping, unbunded fields. 
Flooding is rare in this system. In some cases, especially 
in Latin America, supplemental irrigation may be used. 
Upland rice is grown under crop rotation systems with 
other crops, or under slash-and-burn systems (Atlin et al., 

2006; Pinheiro et al., 2006; Saito, Linquist, Keobualapha, 
et al., 2006). Recent statistics from 71 countries from Asia, 
Latin America and sub-Saharan Africa show that lowland 
and upland rice account for 92 and 8% of total rice culti-
vation area, respectively, (Figure 1).

Global rice research and development efforts have 
largely focused on lowland rice. Together with inputs of 
fertilizer and irrigation, improved rice varieties have con-
tributed to great yield increases in lowland rice through-
out the world (Evans, 1993; Fischer et al., 2014; Saito, 
Dieng, Toure, Samodo, & Wopereis, 2015). It is generally 
agreed that yield is higher in lowland rice than in upland 
rice (Saito et al., 2017; van Oort et al., 2015), and most of 
future additional production will come from lowland rice 
to meet increasing demand (CGIAR Research Program on 
Rice, 2017). Nevertheless, upland rice is still important 
for some countries (Figure 1). The countries having lower 
gross national income (GNI) per capita tend to have higher 
share of upland rice area in total rice area (Figure 2(a)) 
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of Congo, the Gambia, Ghana, Republic of Guinea, 
Madagascar, and Mali) have reported low yields of upland 
rice (less than 2 t/ha in most cases) and their causes 
(Affholder et al., 2013; Becker & Johnson, 2001; Saito, 
Linquist, Keobualapha, et al., 2006; Tanaka et al., 2017; 
Tsujimoto et al., 2014). In Brazil, where upland rice is pre-
dominantly grown on large mechanized farms in the cer-
rados, long-term statistics on upland rice yield at national 
level show that on-farm yield level has increased over the 
last 20 years, but recent yield in the late 2000s was still 
low, remaining around 2 t/ha (Fischer et al., 2014). Saito, 

and also have lower self-sufficiency for rice (production–
consumption ratio; van Ittersum et al., 2016; van Oort et 
al., 2015) (Figure 2(b)). However, their relationships were 
weak. When correlation analysis was performed in each 
region, there were no significant relationships in Figure 
2(a) and (b) (data not shown). Thus, within each region, 
high share of upland rice area does not mean poverty nor 
food insecurity.

On-farm studies in the tropics including Asia (Lao 
People’s Democratic Republic and Vietnam) and Africa 
(Benin, Burkina Faso, Côte d’Ivoire, Democratic Republic 

(a)

(b)

Figure 1. Spatial distribution of upland rice, as expressed in (a) share of upland rice in total rice harvested area and (b) actual upland 
rice harvested area at national level. Gray-colored countries are not included. Data source for Africa: Diagne et al. (2013). The predicted 
averages and proportions of upland rice area to total rice area were multiplied with total rice harvested area in 2009 obtained from 
FAOSTAT (2012). Sudan includes what is now South Sudan. Data source for Asia: IRRI strategic assessment (IRRI, 2013). Estimates of 
upland rice area have been combined from the best available sources for each country. Area data for each country were averaged 
over 2001–2010 where available and adjusted to match FAOSTAT county totals for 2008–2010. Data source for Latin America: Farmers’ 
questionnaire investigation in 2016 (Graterol & Orrego, 2017).
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Dieng, Toure, et al. (2015) show that recent yield increases 
at national level are associated with share of irrigated area 
in total rice area in sub-Saharan Africa. This indicates that 
enhancing yield in rain-fed systems, including upland rice, 
remains a major challenge.

Low yields of upland rice are often attributed to sub-op-
timal crop management practices, limited availability of 
high-yielding varieties, and abiotic and biotic stresses (some 
of which might be associated with land use pressure) (Becker 
& Johnson, 2001; Diagne et al., 2013; Niang et al., 2017; Saito, 
Linquist, Keobualapha, et al., 2006; Saito et al., 2013; Tanaka 
et al., 2017). Typical major abiotic and biotic stresses include 
cold stress in highlands (Ahmadi et al., 2004; Raboin et al., 
2014), drought (Kijima et al., 2011; Niang et al., 2017, 2018; 
Saito et al., 2013, 2017), soil-related problems including acid-
ity and N and P deficiency (Asai et al., 2009; Haefele et al., 
2014; Okada & Fischer, 2001; Saito, Linquist, Keobualapha, et 
al., 2006; Saito et al., 2007, 2013), weeds (Becker & Johnson, 
2001; Saito et al., 2010), and soil-borne pests such as nem-
atodes (Balasubramanian et al., 2007). There are also large 
year-to-year variations in abiotic and biotic stresses due to 
climate conditions (such as rainfall pattern), which could 
lead to reduced investment by farmers in inputs and result 
in larger yield gaps (van Oort et al., 2017). The vulnerability 
of upland rice production could be accelerated with global 
climate change (Wassmann et al., 2009). Overcoming these 
constraints and improving yields have been major research 
topics addressed through genetic improvement.

Recent breeding progress in upland rice in the tropics 
has replaced traditional upland rice varieties characterized 
by low yield, tall plants, and few tillers by improved varie-
ties; in West Africa, the traditional varieties are often tropical 

japonica (Oryza sativa) or Oryza glaberrima, which is highly 
weed competitive, and resistant to local biotic and abiotic 
stresses (Arouna et al., 2017; Atlin et al., 2006; Futakuchi 
et al., 2012; Pinheiro et al., 2006; Saito & Futakuchi, 2009). 
However, few reports have provided an overview of pro-
gress in genetic improvement and yield gains observed for 
upland rice in the tropics (Gupta & O’Toole, 1986).

Therefore, the objectives of this review are to: (i) provide 
the trends in upland rice cultivation over last 30 years and 
the recent distribution of upland rice in the tropics and 
(ii) report progress in studies on genetic improvement for 
enhancing productivity. In the conclusion, we propose 
strategies that international researchers could adopt to 
improve upland rice productivity in the tropics.

This paper does not deal with drought tolerance of 
upland rice varieties as this has already been covered by 
numerous studies, review papers, and books (e.g. Bernier 
et al., 2007; Fischer et al., 2012; Serraj et al., 2008, 2011). In 
addition, we do not consider aerobic rice systems, in which 
rice plants are also grown in non-puddled, non-flooded 
conditions, but do not encounter any serious water stress 
because of supplemental irrigation (Kato & Katsura, 2014; 
Zhao et al., 2010). However, ‘aerobic rice varieties’ that are 
developed for ‘aerobic rice systems’ can also be used as 
upland rice varieties, and grown in uplands having no 
severe drought.

2.  Trend of upland rice cultivation and its recent 
distribution in the tropics

Comparing data from Gupta and O’Toole (1986) with 
recent data shown in Figure 1 for Africa, Asia, and Latin 

Figure 2. Relationship between share of upland rice to total rice area at national level and (a) gross national income (GNI) per capita and 
(b) rice sufficiency. Rice sufficiency was the ratio of domestic rice production to rice consumption. Data sources: The parameter of GNI per 
capita were the average over 2008–2010 from World Bank (2017). Rice self-sufficiency was based on the average over 2008–2010 from 
FAOSTAT (2012). Data source on share of upland rice as indicated in Figure 1. Japan and Uruguay were excluded as outliers, because of 
the extremely high value of GNI per capita (US$ 40,360 for Japan) and rice sufficiency (1.142% for Uruguay).



upland rice area. In mountainous regions of southern 
China, upland rice is grown on non-flooded terraces under 
intensive management, replacing the traditional upland 
rice-based slash-and-burn systems (Atlin et al., 2006). In 
mountainous area of Lao People’s Democratic Republic 
(PDR), use of inputs such as herbicides has been rapidly 
adopted by smallholder farmers (Asai et al., 2017). The suc-
cess of such a transition requires new varieties adapted to 
intensified upland rice systems (Atlin et al., 2006; Dingkuhn 
et al., 2006; Pinheiro et al., 2006).

Recent statistics have shown that Asia, Latin America, 
and sub-Saharan Africa accounted for 65, 10, and 25% of 
total upland rice area across 71 countries, which is equiv-
alent to 8.8, 1.2, and 3.2 million ha respectively (Figure 1). 
Upland rice accounted for 6, 19, and 32% of total rice area 
in Asia, Latin America, and Africa, respectively. In Asia, there 
was no more than 10% of upland rice in most countries. 
Coastal West and Central African countries had larger shares 
of upland rice area. These countries tended to have higher 
rainfall (>1500 mm), and belong to tropical-warm/humid 
zone (Saito, Dieng, Toure, et al. 2015). In Latin America, 
Costa Rica and Honduras had the largest shares of upland 
rice. There was more than 1 million ha of upland rice culti-
vation in India and Indonesia (6.0 and 1.2 million ha, respec-
tively). Brazil had the third largest upland rice area among 
the 71 countries (0.9 million ha), followed by three African 
countries – Côte d’Ivoire, Nigeria, and Guinea.

Following Tanaka et al. (2015), we performed classi-
fication and regression tree (CART) using region (three 
regions as mentioned above), national rainfall index (as 

America (14, 15, and 9, countries, respectively), upland 
rice cultivation area has been reduced by more than 2 mil-
lion ha in both Asia and Latin America, whereas the area 
has increased by more than 1 million ha in Africa (Figure 
3). In contrast, the share of upland rice in total rice area has 
reduced in all three regions. In Africa, the area of lowland 
rice cultivation also increased, and consequently the share 
of upland rice decreased. Dramatic reduction in upland rice 
area (>0.5 million ha) has occurred in India, Thailand, and 
Brazil, whereas Nigeria had significant increases (>0.4 mil-
lion ha) (data not shown). The global trend of reduction in 
upland rice area could be attributed to efforts to reduce 
slash-and-burn agriculture, which is a farming system 
involving cutting and burning forest vegetation to make 
fields for upland crop production (van Vliet et al., 2012). 
Policies for establishing permanent agricultural land uses 
such as grass pasture and rubber plantation have been 
observed in regions such as Latin America (e.g. Brazil) and 
Southeast Asia. Such policies include land tenure security, 
forest conservation, land taxes, and promotion of lowland 
rice cultivation (Binswanger & Deininger, 1997; Padoch et 
al., 2007). Furthermore, this trend could be also associated 
with transition from traditional subsistence agriculture 
with few inputs to intensified systems for upland rice cul-
tivation, as the production needs to be increased within 
smaller areas, unless there is any possibility to expand 
lowland area. In Brazil, the rice cultivation area has been 
shifted to less risky savannah areas, where farmers adopted 
modern technologies (Pinheiro et al., 2006); consequently, 
the reduction in production did not follow the trend of 

Figure 3. Change in upland rice harvested area and share of upland rice in total rice area during the past 30 years in three regions (Africa, 
Asia, and Latin America). Data sources: Data from Figure 1 and from Gupta and O’Toole (1986) for 1981–1982. Only those countries having 
data in both databases were included in this analysis. African data covers 14 countries: Benin, Côte d’Ivoire, Egypt, The Gambia, Ghana, 
Guinea, Guinea-Bissau, Liberia, Madagascar, Mali, Nigeria, Senegal, Sierra Leone, and Togo. Asian data covers 15 countries: Bangladesh, 
Bhutan, Cambodia, India, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Nepal, Pakistan, Philippines, South Korea, Sri 
Lanka, Thailand, and Vietnam. Latin American data covers 9 countries: Brazil, Colombia, Costa Rica, Ecuador, Honduras, Mexico, Republic 
of Dominica, and Venezuela.
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sub-Saharan Africa. We do not cover all the countries, but 
focus on a few countries in each region, where progress in 
research has been reported internationally. Furthermore, 
we did not include India and its research on improve-
ment of drought tolerance (Mandal et al., 2010; Sinha et 
al., 2009).

3.1.  Asia

In Asia, the International Rice Research Institute (IRRI) has 
played important roles in the development and distribution 
of improved upland rice varieties (Atlin et al., 2006; Lafitte 
et al., 2002), as it has for lowland rice varieties. It is noted 
that Upland Rice Research Consortium was established in 
1991, and enhanced collaboration between national agri-
cultural research institutes in Asia and IRRI (Piggin et al., 
1996). Furthermore, the International Network for Genetic 
Evaluation of Rice (INGER) has enabled to exchange and 
evaluate promising varieties and elite breeding materials 
(for detailed information, see http://inger.irri.org). In this 
sub-section, we review cases from China, Indonesia, Lao 
PDR, and the Philippines.

Yunnan Province in southern China is located in humid 
sub-tropical zone. The trends in breeding are similar to 
other countries in the Asian tropics and Yunnan has made 
some advanced progress. The upland rice breeding pro-
gram that was initiated in the early 1980s led to the release 

an indicator of the precipitation quality of the agricul-
tural season), GNI per capita, and population density for 
explaining variation in share of upland rice. This analysis 
found that the primary factor was region (Figure 4): Latin 
America and Africa were in the same group, and tended 
to have larger share of upland rice. This group was fur-
ther divided by national rainfall index. In the group with 
higher national rainfall index (≥1137 mm/year), share of 
upland rice is higher in countries with low GNI per cap-
ita (<3036 USD/year). The group consists of 13 coun-
tries – Cameroon, Central African Republic, Côte d’Ivoire, 
Democratic Republic of Congo, Guinea, Guinea-Bissau, 
Liberia, Madagascar, Nigeria, Republic of Congo, Sierra 
Leone, and Uganda from Africa, and Honduras from Latin 
America. Another group having higher GNI comprised six 
Latin American and four African countries. The group with 
lower national rainfall indices (<1137 mm/year) comprised 
2 Latin American and 26 African countries. These results 
confirm the importance of rainfall for upland rice cultiva-
tion, its cultivation in relation to poverty, and historical dif-
ferences in rice cultivation between Asia and other regions.

3.  Breeding efforts and genetic gains in the 
tropics

In this section, we describe research on genetic improve-
ment in the three regions, Asia, Latin America, and 

Figure 4. Regression tree analysis explaining variation in share of upland rice area in total rice area at national level.
The analysis was performed with rcart library of R software. The predictor parameters tested included a categorical variable of ‘region’ and quantitative variables 
of ‘rice consumption amount per capita’, ‘population density per land area’, ‘net amount of rice import (= export – import)’, ‘GNI per capita’, and ‘national rainfall 
index’. The data on GNI per capita and national rainfall index are from the database of World Bank (2017) and AQUASTAT (2017), respectively, and the others from 
FAOSTAT (2012) . Each parameter was the average over 2008–2010, except for national rainfall index obtained from the data of 2002.
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ability, resistance of diseases (blast and bacterial blight). In 
the practice of varietal development at IRRI, screening pro-
tocols were also developed or refined and have been used 
for effective breeding (Atlin et al., 2006; Zhao et al., 2006, 
2010). One example is to use two-stress-level to screen 
for yield and drought tolerance in field (Zhao et al., 2010). 
Another is indirect selection criteria for weed competitive-
ness, which include early vegetative vigor and yield under 
weed-free conditions (Zhao et al., 2006). Disease resistance 
was firstly screened in ‘disease nurseries’ at F2 and then in 
main field at later generations (Zhao et al., 2016). Recently, 
IRRI incorporated grain quality into its screening protocol 
to improve the market acceptability of upland rice varie-
ties, and also looked into root-knot nematode tolerance 
(Zhao & Kumar, 2016).

In northern Lao PDR, where low-yielding traditional 
upland rice varieties were grown under slash-and-burn 
systems (Saito, Linquist, Atlin, et al., 2006), improved ind-
ica varieties Apo and B6144F-MR-6-0-0 showed better 
yield performance in both non-fertilized and fertilized 

of Yunlu 29, Yunlu 52, Luyin 46 (B6144F-MR-6-0-0 from 
Indonesia) and Siluxuan 6 (Tao et al., 2009). These varieties 
are well adapted to high-input intensified systems, and can 
reach yields of 4  t/ha, while traditional upland varieties 
produce only 2 t/ha (Atlin et al., 2006; Tao et al., 2009). The 
yield advantage of the improved cultivars results mainly 
from the significant increase in tillering ability and panicle 
size. Adoption rate of these improved high-yielding upland 
rice varieties increased from 25% in 2000 to 35% in 2004 
(Wang, 2006), and further to 50% in 2011 (Yunnan Science 
& Technology Department, 2014) across Yunnan Province. 
The increased adoption of improved upland rice varieties 
concurred with shifting from cultivation on slopes to more 
on terraces, from low to high inputs, and from monocul-
ture to intercropping with maize (Wang, 2006; Yunnan 
Science & Technology Department, 2014). The Yunnan case 
shows that the adoption of improved varieties together 
with improved practices is an entry point that can effec-
tively help farmers break out of the vicious circle of low 
productivity–poverty–environmental degradation that 
characterizes upland rice-based systems in Asia (Wang 
et al., 2010). Since 2002, upland rice breeding program in 
Yunnan has shifted from targeting at sloping uplands to 
favorable uplands with good management, developing 
varieties with high yield, blast resistance, and fine grain 
quality (Tao et al., 2009). A new generation of upland rice 
varieties suitable for favorable uplands such as Yunlu 101, 
Yunlu 103, Yunlu 140, and Yunlu 142 were released for 
cultivation in Yunnan in 2010–2016 (Tao Dayun, personal 
communication, 22 December 2017) (Table 1).

In IRRI, the Philippines, Lafitte et al. (2002) show that 
upland rice yield has been improved through traditional 
breeding approaches in both unfavorable and favorable 
conditions in terms of soil fertility and water conditions. 
Improved upland indica varieties such as IR  55423-01 
(Apo) that have intermediate plant height and number of 
panicles, strong weed-suppressive ability, and can main-
tain harvest index under water deficit conditions during 
reproductive stage (one of the traits for drought tolerance), 
have been developed (Atlin et al., 2006; Lafitte et al., 2002). 
Apart from IRRI breeding materials, B6144F-MR-6-0-0 was 
also identified as high yielding with strong weed-suppres-
sive ability (Zhao et al., 2006). Zhao et al. (2010) report 
progress in the development of new breeding materials 
that outyielded Apo by 10%. Seven of these new breeding 
materials have been officially released as upland varieties 
in Bangladesh, India, Indonesia, Nepal, and Philippines 
since 2009 (Zhao & Kumar, 2016) (Table 1). Zhao and Kumar 
(2016) summarize the following important traits to work on 
in IRRI’s varietal improvement program: grain yield, plant 
height (intermediate plant type: 100–120 cm), crop dura-
tion (short to medium growth duration: 100–115  days), 
lodging resistance, drought tolerance, weed-suppressive 

Table 1. A list of selected varieties which were recently released 
in selected countries.

Designation/parentage Variety name Country Year
Asia
Teqing/BG300 Yunlu 101 China 2010
WAB450-24-3-P33-HB/

WAB-24-2-5-P4-HB
Yunlu 103 China 2013

Dianjingyou 1/B6144F-
MR-6

Yunlu 140 China 2014

Yundao 1/Acc.104613//
Yundao 1

Yunlu 142 China 2016

IR 74371-54-1-1 Sahod Ulan 1 Philippines 2009
IR 79913-B-176-B-4 Katihan 1 Philippines 2011
IR 82635-B-B-47-2 Katihan 2 Philippines 2014
IR 86857-101-2-1-3 Katihan 3 Philippines 2014
B6144F-MR-6-0-0 Hardinath 2 Nepal 2010
IR 74371-70-1-1 Sukha Dhan 3 Nepal 2010
IR 74371-46-1-1 Sukha Dhan 1 Nepal 2011
IR 74371-54-1-1 Sukha Dhan 2 Nepal 2011
IR 79971-B-191-B-B Inpago LIPI Go 1 Indonesia 2011
IR 79971-B-227-B-B Inpago LIPI Go 2 Indonesia 2011
IR 79971-B-102-B-B Inpago LIPI Go 4 Indonesia 2014
Latin America
CT11891-2-2-7-M CORPOICA Llanura 11 Colombia 2011
PCT11:Bo:1:1>1-M-89-2-

1-M-M 
Yara Bolivia 2009

PCT11:Bo:1:1>1-M-53-1-
1-M-M 

Paya Bolivia 2009

CNAx7100-B-13-M1-M1-3 BRS Esmeralda Brazil 2013
Sub-Saharan Africa
ART3-11L1P1-B-B-2 ARICA 4 Uganda 2013
WAB95-B-B-40-HB ARICA 5 Uganda 2013
WAB95-B-B-40-HB ARICA 5 Guinea 2014
CNAX 3031-78-2-1-1 ARICA 16 Benin 2013
CNAX 3031-78-2-1-1 ARICA 16 Mali 2016
SCRiD 6-3-2-3-2-5 FOFIFA 173 Madagascar 2012
SCRiD186-32-2-4-4-5 FOFIFA 180 Madagascar 2014
SCRiD 198-15-2-2-4-4 FOFIFA 181 Madagascar 2014
SCRiD 91-10-1-3-2-5 FOFIFA 182 Madagascar 2014
SCRiD111-1-4-3-3-5 FOFIFA 185 Madagascar 2015
SCRiD185-26-1-5-3-5 FOFIFA 186 Madagascar 2015
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enhanced germplasm (Guimarães, 2005). Historically, the 
upland rice breeding program has focused on highly pro-
ductive, blast-resistant, short-cycle rice, mainly of tropical 
japonica type with specific adaptation to acid soils such as 
cerrados of Brazil and savannas of Colombia. In 1980s to 
early 1990s CIAT successfully developed two varieties for 
the savanna condition of Colombia, Oryzica sabana 6 and 
Oryzica sabana 10, released in 1991 and 1995, respectively. 
Both varieties were characterized with high tolerance to 
acid soils and aluminum toxicity and yield ranging from 
2.9 to 3.6 t/ha. In 1990s, in collaboration with CIRAD, CIAT 
developed new genetic materials with focus on widen-
ing the genetic basis of the germplasm used in upland 
rice breeding program. As a result, CORPOICA Llanura 11 
was released in Colombia in 2011 by the national partner 
Corporación Colombiana de Investigación Agropecuaria 
(CORPOICA) for the savannah agroecosystem, with high 
potential yield (4.6 t/ha), short cycle (105 days to har-
vest), disease resistance, and a good grain quality that 
particularly fits industrial uses. A large number of lines 
extracted from populations managed through recurrent 
selection were distributed to various national programs 
and exploited to include as parental lines in breeding 
programs, or to develop genetically advanced and highly 
performing lines. As a result, two upland rice composite 
populations, PCT4 and PCT11 gave rise to three varieties, 
Esperanza, Yara, and Paya released for the upland condi-
tions in Bolivia (Martinez et al., 2014). Various candidate 
lines, extracted from upland rice composite populations 
developed and improved for adaptation to acid soil con-
ditions (pH ~ 4 and with >70% aluminum saturation) and 
blast resistance (Châtel et al., 2008), are currently under 
testing for release in Colombia, Bolivia, and Nicaragua. 
Additionally, in the early 2000s, CIAT–CIRAD engaged on 
research projects on participatory breeding of upland rice 
focused on small and medium scale famers (Trouche et 
al., 2006). While these activities allowed identifying can-
didate lines for varietal release in the certain regions, they 
also highlighted the complexity and the need to adapt 
breeding objectives to the diversity of farmers’ expectation 
in terms of new varieties. More recently, the CIAT–CIRAD 
upland rice breeding program is optimizing its breeding 
pipeline by including model-assisted multi-trait pheno-
typing approaches (Rebolledo et al., 2013), crop models 
(Rebolledo et al., 2015), and genomic prediction (Grenier et 
al., 2015) to accelerate genetic gain in upland rice breeding.

In Brazil, where landraces of upland rice are tropi-
cal japonica types that are often tall and susceptible to 
lodging, and have bold grains with low amylose content 
(Pinheiro et al., 2006), Guimarães (2002) reports historical 
genetic diversity and improvement, including material 
exchanges. Since the 1990s, introduction of materials 
from CIAT and the United States has accelerated progress 

conditions than local traditional varieties (Asai et al., 2009; 
Asai & Soisouvanh, 2017; Saito, Linquist, Atlin, et al., 2006; 
Saito et al., 2007). B6144F-MR-6-0-0 has better ability to 
recover from weed competition at early vegetative stage 
than Apo (Saito et al., 2010). Furthermore, it was reported 
that B6144F-MR-6-0-0 produced 4.8 t/ha of grain, two folds 
of yield of the local check (2.2 t/ha), in a demonstration of 
rice-maize intercropping in the Oudomxai Province in 2011 
(Chen, 2011). Although Apo and B6144F-MR-6-0-0 showed 
great yield advantage over local traditional varieties, they 
have not been broadly adopted in northern Lao PDR, due 
to consumers’ preference for glutinous rice. Besides out-
standing yield in northern Lao PDR, good performance 
of B6144F-MR-6-0-0 was also reported in India, Nepal 
(Mandal et al., 2016; Yadaw et al., 2016), and Vietnam. 
This variety was released in Nepal in 2010 (Table 1), and 
in Vietnam in 2017 (Tao Dayun, personal communication, 
22 December 2017).

In Indonesia, several improved varieties have been 
released with major improvements in yield, maturity, blast 
resistance, and tolerance of aluminum toxicity and drought 
in recent years (Lubis & Kustiano, 2009). These include Situ 
Bagendit, released in 2002. Chin et al. (2011) report that 
introgression of the major quantitative trait locus (QTL) 
Phosphorus uptake1 (Pup1) into this variety, in which this 
locus is naturally absent, has the potential to significantly 
improve plant performance. Pup1 confers tolerance of 
soil phosphorus deficiency. Additionally, three improved 
varieties derived from the cross Vandana × Way Rarem in 
IRRI were released in Indonesia in 2011–2014 (Zhao et al., 
2016) (Table 1). This is an example of success of empirical 
breeding in combining high yield with drought tolerance 
(Bernier et al., 2007).

3.2.  Latin America

Martinez et al. (2014) review rice breeding activities in Latin 
America, and report on the upland rice breeding programs 
at the International Center for Tropical Agriculture (CIAT) 
and in Brazil. CIAT and Centre de coopération internation-
ale en recherche agronomique pour le développement 
(CIRAD) have contributed to upland rice breeding in Latin 
America through distribution of breeding materials or 
populations (indica, tropical japonica, and indica × trop-
ical japonica materials) to national agricultural research 
institutes and their capacity development. These institutes 
have focused on population breeding scheme whereby 
a population composed of various upland varieties from 
Africa, Asia, and Latin America was improved through 
successive cycles of recurrent selection (Breseghello 
et al., 2011; Guimarães, 2005; Martinez et al., 2014). The 
materials developed by those institutes have been used 
by national partners to develop their own genetically 
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yielding ability in harsh environments characterized by 
(e.g.) poor soil fertility and heavy weed infestation. Since 
the publication of that paper, there have been many reports 
supporting this argument in West Africa (Saito, 2014, 
2016; Saito & Futakuchi, 2014; Sito, Dieng, Vandamme, 
et al., 2015; Saito, Vandamme, Segda, et al., 2015; Saito 
et al., 2014; Vandamme et al., 2016a; Vandamme et al., 
2016b). In East and Southern Africa, good performance 
of upland NERICA varieties has been frequently observed 
in field trials and on farm (Kijima et al., 2008; Sekiya et al., 
2013; Shrestha et al., 2012). The reasons for differences in 
performance of upland NERICA varieties between sub-re-
gions are not well known. However, they may be related 
to soil fertility and water conditions. Some NERICA varie-
ties show good performance under drought conditions 
in West Africa (Dr K. Futakuchi, personal communication, 
23 August 2017). Higher yield response to fertilizer has 
also been observed in NERICA 1 (Saito & Futakuchi, 2009). 
Recently, new high-performing upland rice varieties were 
identified and nominated as Advanced Rice Varieties for 
Africa (ARICA), based on results from multi-locational trials 
through ‘Africa-wide Breeding Task Force’ led by AfricaRice 
(Table 1). The Breeding Task Force comprises international 
and national rice breeders from more than 30 African 
countries. Up to now, three upland ARICA varieties have 
been officially released in four countries (Table 1).

Exploring new donors and development of efficient 
and high-throughput phenotyping protocols have been 
initiated to develop new rice varieties beyond NERICA at 
AfricaRice. Similar to results from Asia (Asai et al., 2009; Atlin 
et al., 2006; Saito et al., 2007), Saito and Futakuchi (2009), 
Saito et al. (2012, 2014) identified B6144-F-MR-6-0-0 (an ind-
ica variety developed in Indonesia) as a potential donor for 
improving yield under low-input conditions. Aus257 was 
identified as early maturing and high yielding, with strong 
weed-suppressive ability and greater nutrient uptake than 
NERICA 1 (Saito, 2016; Saito & Futakuchi, 2014). IR 74371-3-
1-1 (an indica variety developed in the Philippines) showed 
higher nutrient-use efficiency than NERICA 1, which contrib-
uted to higher yield in low-input conditions (Saito, 2016). 
Recently, DJ123 was also identified as a potential donor 
for tolerance to soil P deficiency and good responsiveness 
to P fertilizer application (Vandamme et al., 2016b, 2018). 
Growth and yield performance of CG14 (O. glaberrima) 
under low-input conditions, including low P conditions, was 
also confirmed (Saito & Futakuchi, 2009; authors’ unpub-
lished data). Currently, identification of a QTL conferring 
an adaptation mechanism to low soil fertility conditions is 
ongoing. Obara et al. (2010) identified a QTL that promotes 
root elongation under N-deficient conditions. That QTL 
was from Kasalath, which is well-known material. Aus257, 
DJ123, and Kasalath are indica type, belonging to the aus 
group of varieties, which are very early maturing, drought 

in breeding for high-yielding ability and grain quality 
(Breseghello et al., 2011), as Brazilian consumers prefer 
the slender and high-amylose content of lowland rice 
(indica type). CIAT upland materials, although based on 
a japonica background, have some introgression from 
indica. Materials from the United States have good grain 
quality, which is required to ensure competitiveness in 
terms of market price against irrigated rice from south-
ern Brazil and to increase the profitability of upland rice 
cultivation. Furthermore, since 1990s, the breeding pro-
gram has focused on high-input, fully mechanized crop-
ping systems, primarily targeting favorable production 
zones, in which grain appearance, yield potential, blast 
resistance, and lodging resistance are prioritized. Major 
breeding achievements were the development of BRS 
Premavaila with grain quality competitive against low-
land rice, and CN8555 with wide environment adaptability. 
Direct grain-yield selection has been targeted primarily 
to the most favorable conditions, and showed signifi-
cant genetic yield gain over 25 years (Breseghello et al., 
2011). Over this period, there was a shortening in time to 
flowering and plant height (0.25 days/year and 0.52 cm/
year, respectively). Key plant types are intermediate plant 
height (90–100 cm), abundant and upright tillering ability 
(200–250 tillers/m2), and resistance to lodging and com-
petitiveness against weeds and grass (Brachiaria) under 
rice-pasture rotations (Pinheiro et al., 2006). Recent studies 
have shown the importance of genotype × environment 
interaction, and propose new breeding approaches that 
take into account drought-stress patterns (Heinemann et 
al., 2008, 2015).

3.3.  Sub-Saharan Africa

One famous achievement in genetic improvement in 
upland rice in sub-Saharan Africa over the last 30 years is 
development and diffusion of New Rice for Africa (NERICA) 
(Dingkuhn et al., 2006; Saito et al., 2012; Tollens et al., 2013). 
In the 1990s, the Africa Rice Center (AfricaRice; then known 
as the West Africa Rice Development Association [WARDA]) 
initiated the development of interspecific varieties from 
the wide cross between improved tropical japonica and 
O. glaberrima. Some 18 good-performing varieties derived 
from these crosses were named as NERICA 1 to NERICA 18. 
Many studies have shown the wide adaptation of NERICA 
varieties and their impact on farmers’ livelihoods in sub-Sa-
haran Africa (e.g. Arouna et al., 2017; Kijima et al., 2008, 
2011; Yokouchi & Saito, 2016, 2017). Diagne et al. (2015) 
reported rice area planted to NERICA varieties at national 
level in 13 countries. Based on available data at that time 
(e.g. Saito et al., 2010; Saito & Futakuchi, 2009; Touré et 
al., 2011), Saito et al. (2012) argued that, in comparison 
with their parents, NERICA varieties did not have superior 
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2013, 2014). This variety clearly showed yield advantage 
over varieties released in the 1990s and 2000s in field trials 
(Raboin et al., 2014), and its higher yield was attributed 
to higher leaf area index, high harvest index, and long 
duration; it also has weed-suppressive ability. Chhomrong 
Dhan now accounts for more than 80% of upland rice area 
in Madagascar, and has been used as donor in recent 
breeding. Among the six varieties releases in Madagascar 
shown in Table 1, except for FOFIFA 185 are derivatives of 
Chhomrong Dhan. Chhomrong Dhan was also released in 
Rwanda, where cold is a major constraint.

4.  Synthesis and conclusions

In Asia and Latin America, progress in upland rice breed-
ing has been made through the use of indica materials 
as donors. In Africa, tropical japonica and O. glaberrima 
have been major donors for upland rice breeding (e.g. 
development of NERICA varieties adapted not only to 
West Africa but also to East and Southern Africa). However, 
recent studies have clearly shown that the use of indica 
materials could enhance upland rice productivity in Africa. 

tolerant, and grown under upland conditions in Bangladesh 
and West Bengal state of India (Khush, 1997). Aus geno-
types could be useful genetic resource for Africa as well. 
Several protocols have recently been developed to improve 
screening (Saito, 2010, 2014; Sito, Dieng, Vandamme, et al., 
2015, Saito, Vandamme, Segda, et al., 2015; Vandamme et 
al., 2016b), and plant types required for high yield proposed 
(Saito, 2016; Saito & Futakuchi, 2009).

In the highlands of Madagascar, CIRAD and Centre 
National de Recherche Appliquée au Développement 
Rural (FOFIFA) initiated breeding programs in the 1980s 
to introduce upland rice cultivation where the develop-
ment of new lowland fields was not possible and there 
was no upland rice cultivation due to a lack of rice varieties 
adapted to cold conditions. Ahmadi et al. (2004) report 
on initial efforts in the breeding program, and achieve-
ments to the early 2000s. Raboin et al. (2010) report that 
materials developed in Madagascar had also been tested 
in the highland areas of the Andes in Bolivia and Colombia, 
Latin America. The collaborative efforts resulted in official 
release of Nepalese irrigated-lowland japonica variety 
Chhomrong Dhan in 2006 in Madagascar (Raboin et al., 

Table 2. Desirable traits for developing the superior upland rice varieties in the tropics.

*Tolerance/resistance to abiotic and biotic stresses and input-responsiveness were not included in this table.

  Country Early vigor

Weed sup-
pressive 
ability

Lodging 
resistance

Harvest 
index

Biomass 
accumula-

tion Maturity 
Plant 

height
Tillering 
ability

Grain 
quality

Asia
Atlin et al. 

(2006) 
Philippines ✓ ✓ ✓ ✓ ✓

Saito, Lin-
quist, Atlin, 
et al. (2006)

Lao PDR ✓ ✓ ✓ ✓

Saito et al. 
(2007)

Lao PDR ✓ ✓ ✓ ✓

Asai et al. 
(2009)

Lao PDR ✓ ✓

Lubis and 
Kustiano 
(2009)

Indonesia ✓ ✓

Tao et al. 
(2009)

China ✓ ✓ ✓

Zhao et al. 
(2010)

Philippines ✓ ✓

Asai and 
Soisouvanh 
(2017)

Lao PDR ✓ ✓ ✓ ✓ ✓

Latin America
Pinheiro et al. 

(2006)
Brazil ✓ ✓ ✓ ✓ ✓

Breseghello 
et al. (2011)

Brazil ✓ ✓ ✓ ✓

Sub-Saharan 
Africa

Saito and 
Futakuchi 
(2009)

Benin ✓ ✓ ✓ ✓ ✓

Saito et al. 
(2012) 

Benin ✓ ✓ ✓ ✓ ✓ ✓

Raboin et al. 
(2014)

Madagas-
car

✓ ✓ ✓ ✓

Saito (2016) Benin ✓ ✓ ✓ ✓ ✓ ✓
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For cold-prone environments such as the highlands of 
Madagascar, cold-tolerant Asian materials could also play 
an important role as shown in the case of Chhomrong 
Dhan. Such cold-tolerant materials could also be tested 
in the highlands of Latin America. The cases of Chhomrong 
Dhan, B6144F-MR-6-0-0, and NERICA varieties indicate that 
broad adaptation across regions in the tropics is possible, 
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national network for testing of newly developed breeding 
materials or populations beyond the existing networks in 
each region (International Network for Genetic Evaluation 
of Rice for IRRI’s target countries mainly in Asia; Fondo 
Latinoamericano para Arroz de Riego (FLAR) in Latin America; 
Africa-wide Rice Breeding Task Force in Africa). Within the 
framework of CGIAR, the CGIAR Research Program on Rice 
(RICE) was initiated in 2017 (CGIAR Research Program on 
Rice, 2017). An international germplasm-exchange net-
work will be established as part of RICE’s ‘flagship project’. 
Although the current proposal seems to largely target irri-
gated and rainfed lowland rice, it is desirable that a sub-net-
work for upland rice be established.
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across three regions discussed in this review paper. Harvest 
index, plant height, and tillering ability are predominantly 
reported as key types. Intermediate height, intermediate 
number of tillers, and high harvest index have been pro-
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early ages except that for Latin America and Indonesia. 
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