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Abstract

Soil fungi associated with plant roots, notably ectomycorrhizal (EcM) fungi, are central in

above- and below-ground interactions in Mediterranean forests. They are a key component

in soil nutrient cycling and plant productivity. Yet, major disturbances of Mediterranean for-

ests, particularly in the Southern Mediterranean basin, are observed due to the greater

human pressures and climate changes. These disturbances highly impact forest cover, soil

properties and consequently the root-associated fungal communities. The implementation

of efficient conservation strategies of Mediterranean forests is thus closely tied to our under-

standing of root-associated fungal biodiversity and environmental rules driving its diversity

and structure. In our study, the root-associated fungal community of Q. suber was analyzed

using high-throughput sequencing across three major Moroccan cork oak habitats. Signifi-

cant differences in root-associated fungal community structures of Q. suber were observed

among Moroccan cork oak habitats (Maâmora, Benslimane, Chefchaoun) subjected to dif-

ferent human disturbance levels (high to low disturbances, respectively). The fungal com-

munity structure changes correlated with a wide range of soil properties, notably with pH, C:

N ratio (P = 0.0002), and available phosphorus levels (P = 0.0001). More than 90 below-

ground fungal indicators (P < 0.01)–either of a type of habitat and/or a soil property–were

revealed. The results shed light on the ecological significance of ubiquitous ectomycorrhiza

(Tomentella, Russula, Cenococcum), and putative sclerotia-associated/ericoid mycorrhizal

fungal taxa (Cladophialophora, Oidiodendron) in the Moroccan cork oak forest, and their

intraspecific variability regarding their response to land use and soil characteristics.
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Introduction

Soil fungi are one of the most diverse groups of organisms on Earth [1] colonizing a wide

range of ecological niches [2] and playing a central role in major ecological and biogeochemi-

cal processes, notably in forests [3,4]. Yet, forest ecosystems are highly threatened by global

changes [5,6]. Recent extreme droughts in Southern Mediterranean forests have increased tree

mortality [5]. This negative impact has been exacerbated by increasing human pressures such

as deforestation and overharvesting [7]. In this context, the Mediterranean cork oak (Quercus
suber) forest (covering more than 20,000 square kilometers) is particularly at risk due to bark

exploitation, intensive agro-silvo-pastoral management, and oak decline [7]. The degradation

of cork oak forests strongly affects soil fungi, notably ectomycorrhizal (EcM) fungi [8–10], a

key component of nutrient cycling and plant productivity [11]. Conservation strategies of

these forests are dependent on our understanding of the soil fungal biodiversity, notably the

fungal components directly associated with plant roots. The conservation of soil fungi them-

selves has seldom been considered compared to other Eukaryotes [12] and initiatives are rela-

tively recent (http://iucn.ekoo.se/en/iucn/welcome). For instance, in December 2016, 34

fungal species mostly distributed in Europe, were present in the IUCN Red List of threatened

species (http://www.iucnredlist.org). The diversity and dynamic of soil and root-associated

fungal communities in cork oak ecosystems has been mainly investigated in the Northern

Mediterranean basin [8–10,13,14]. Hitherto, estimations of soil fungal diversity in Southern

cork oak forests have been almost exclusively based on fungal sporocarp surveys [15], but this

approach has been shown to provide a partial view of true below-ground soil fungal diversity,

even for the EcM community [16]. To address the challenges of cork oak forest conservation,

soil fungal diversity in Southern cork oak ecosystems must be more extensively explored and

environmental drivers affecting fungal diversity identified. The influence of environmental

factors has been shown to vary with the type of habitats, the spatial scale considered and the

fungal taxa analyzed [2,17,18]. For instance, variations in phosphate (P) and nitrogen (N) soil

content have been suggested as important drivers of intraspecific variability of Pisolithus spp.

in the Maâmora habitat, the largest cork oak forest in Morocco [19].

The main goals of the present study are (i) to characterize in depth the molecular diversity

of the root-associated fungal community of Q. suber (fungal endophytes, EcM fungi and fungi

in adherent soil); (ii) to determine the main environmental factors (habitats, soil characteris-

tics) driving this fungal community; and (iii) to identify fungal indicators associated with a

type of habitat and/or a soil property.

Material and methods

Study site and sampling

The study was conducted in three habitats of the Moroccan cork oak forest, located in the

Moroccan Northern Mountains known as “Chefchaoun” (35˚15’5.14”N 005˚30’6.68”W, 1534

m elevation), and in the lowland bordering the Atlantic Ocean (North-West of Morocco)

known as “Maâmora” (34˚17’06.186”N 6˚28’30.792”W, 27 m elevation) and “Benslimane”

(33˚41’9.85”’N, 6˚54’7.26”W; 326 m elevation). The three habitats are under a Mediterranean-

type climate characterized by hot and dry summers, mild and wet winters, and mean annual

rainfall levels of 453 mm (Benslimane), 570 mm (Maâmora) and 880 mm (Chefchaoun). They

are characterized by an abundant understory, notably Cistus salviifolius, Lavandula stoechas,
and Thymeleae lythroides for Maâmora, and Arbutus unedo and Pistacia lentiscus for Bensli-

mane, and Erica arborea and Arbutus unedo for Chefchaoun. Twenty seven cork oak trees

were sampled between February and June 2013. The sampling design was based on the

Moroccan cork oak root-associated fungal community
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selection of three plots per forest spaced 100 meters apart, each composed of three trees 20–30

meters away from any other. Roots with soil were sampled under the crown of each tree and

stored at +4˚C. The roots were rinsed under tap water to remove the non-adherent soil and

observed under a binocular microscope to select root zones rich in ectomycorrhizal (EcM)

fungi, dried and stored at -20˚C. The product of this sampling process resulted in a fungal

community including fungal endophytes, EcM fungi and fungi in adherent soil. This fungal

community is hereafter named “root-associated fungal community”.

Soil physico-chemical parameters were measured at the LAMA Laboratory (Dakar, Sene-

gal): pH, total nitrogen (N), total carbon (C), Carbon:Nitrogen ratio (C:N ratio), total and

available phosphate (P), K+, Mg2+, Na+, Cation exchange capacity (CEC). The habitats are

managed by the High Commission for Water and Forests and Combatting Desertification.

The permissions for root and soil sampling were provided by the Forestry Research Centre of

Rabat (Morocco).

DNA extraction, ITS amplification and Illumina Miseq sequencing

For each of the 27 cork oak tree samples, all root pieces and the adherent soil were subjected to

liquid nitrogen grinding for homogeneization. The total DNA was extracted from a sub-sam-

ple (70–80 mg) using a FastPrep-24 homogenizer (MP biomedicals Europe, Illkirch, France)

and the FastDNA1 SPIN kit (MP biomedicals Europe) according to the manufacturer’s

instructions. The purity of DNA extracts was improved by adding 20–30 mg Polyvinylpolypyr-

rolidon (PVPP) during the first step of DNA extraction in order to avoid the presence of PCR

inhibitors.

The Internal transcribed spacer ITS1 of the nuclear ribosomal RNA was amplified using the

primers ITS1FI2 (5’-GAACCWGCGGARGGATCA-3’) and ITS2 (5’-GCTGCGTTCTTCATC
GATGC-3’) [20]. The amplification reaction was performed in a final volume of 25 μl with

the primers ITS1FI2 and ITS2 (0.6 μM each), 2 μl of DNA extract, 200 μM of each dNTP, 200

ng/ml BSA, GoTaq1 DNA Polymerase (2 units) and 1X Green GoTaq1 Reaction Buffer

(Promega, Charbonnieres, France), with the following cycling conditions: 95˚C for 15 min; 30

cycles of 95˚C for 30 s, 58˚C for 30 s, 72˚C for 30 s; a final elongation step at 72˚C for 5 min.

To increase richness recovery and to limit PCR biases, three PCR replicates per sample were

pooled and purified using an illustra GFX PCR DNA and Gel Band Purification Kit (GE

Healthcare Life Sciences, Velizy-Villacoublay, France) following manufacturer’s guidelines. All

amplicon products were subjected to paired-end Illumina MiSeq sequencing (2×300 bp) by

Molecular Research LP (MR DNA, TX, USA).

Bioinformatic data processing

Paired Illumina MiSeq reads were assembled with vsearch v1.11.1 [21] using the command fas-

tq_mergepairs and the option fastq_allowmergestagger. Demultiplexing and primer clipping

was performed with cutadapt v1.9 [22], enforcing a full-length match for sample tags and

allowing a 2/3-length partial match for forward and reverse primers. Only reads containing

both primers were retained. For each trimmed read, the expected error was estimated with

vsearch’s command fastq_filter and the option eeout. Each sample was then dereplicated, i.e.

strictly identical reads were merged, using vsearch’s command derep_fulllength, and con-

verted to FASTA format.

To prepare the clustering, the samples were pooled and submitted to another round of dere-

plication with vsearch. Files containing expected error estimations were also dereplicated to

retain only the lowest expected error for each unique sequence. Clustering was performed

with swarm v2.1.8 [23], using a local threshold of one difference and the fastidious option.

Moroccan cork oak root-associated fungal community
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Molecular operational taxonomic unit (OTU) representative sequences were then searched for

chimeras with vsearch’s command uchime_denovo [24]. In parallel, representative sequences

received taxonomical assignments using the stampa pipeline (https://github.com/frederic-

mahe/stampa) and a custom version of the fungal reference database UNITE v7 (https://unite.

ut.ee/; [25]). In brief, the stampa pipeline requires the reference sequences to be trimmed with

cutadapt, using the same primers as those used for the amplification of the environmental

sequences. Using vsearch’s exact global pairwise comparisons, each environmental sequence is

compared to all reference sequences and is assigned to the closest hit. In case of a tie, the envi-

ronmental sequence is assigned to the last-common ancestor of the co-best hits. The abbrevia-

tion “cf.” is used throughout the text for interpretation at the species level because of potential

taxonomic biases relative to length and variability of the amplified region (ITS1 region). As the

UNITE database contains only fungal sequences, 20 sequences were added to our custom ref-

erence database to identify the plants also amplified by our ITS primers (see S1 File).

Clustering results, expected error values, taxonomic assignments and chimera detection

results were used to build a raw OTU table (script available in S1 File). Up to that point, reads

that could not be merged, reads without tags or primers, reads shorter than 32 nucleotides and

reads with uncalled bases (“N”) were eliminated. To create the “cleaned” OTU table, additional

filters were applied to retain: non-chimeric OTUs, OTUs with an expected error divided by

length below 0.0002, OTUs containing more than 3 reads or seen in 2 samples, OTUs assigned

to plant or fungal taxa with at least 80% similarity or containing more than 10,000 reads. All

codes and representative sequences of OTUs can be found in HTML format (S1 File) and raw

data are available under the BioPproject ID PRJNA378471 (https://www.ncbi.nlm.nih.gov/

bioproject).

Statistics

Diversity (Shannon, inverse Simpson [1/D]), richness (number of MOTUs, Chao1) and even-

ness (Pielou) indexes were estimated using R [26] and the R package vegan version 2.4–3 [27],

and differences among cork oak habitats were assessed by non-parametric permutational mul-

tivariate analysis of variance (PERMANOVA), as implemented in the perm.anova() function

from the R package RVAideMemoire version 0.9–65 [28].

Fungal community membership was assessed using venn diagram analysis with the R pack-

age VennDiagram version 1.6.17 [29]. The differences in fungal community structure among

the three habitats were displayed with nonmetric multi-dimensional scaling (NMDS) imple-

mented in themetaMDS() function. Significance in fungal community structure variation was

also assessed using PERMANOVA in the adonis() function. Multivariate dispersion was esti-

mated using the betadisper() function and permutest() as it can affect PERMANOVA results.

Soil parameters were fitted to the NMDS using the envfit() function (9,999 permutations). Cor-

relation among soil parameters was assessed using the Pearson correlation coefficient, as

implemented in the cor.test() function. All functions are available in the R package vegan.

Table transformations in R were performed with the tidyverse packages version 1.1.1 [30], and

plots were visualized with the packages ggplot2 version 2.2.1 [31] for NMDS and ggtern ver-

sion 2.2.1 [32] for ternary plots.

The presence of fungal indicator species of a specific type of habitat (Maâmora, Benslimane,

Chefchaoun) was determined using the corrected Pearson’s phi coefficient of association (r.g;

9,999 permutations) implemented in themultipatt() function from the R package indicspecies

[33]. Fungal indicator species with respect to soil properties (pH, C:N ratio, and available P)

were determined using the indicator value (IndVal) index, as implemented in indicspecies’

multipatt(). Two different probabilities were calculated, i.e. A (specificity), representing the

Moroccan cork oak root-associated fungal community
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probability of a site to be defined by a given soil property, given that the species have been

detected, and B (sensibility) representing the probability of finding the species in different sites

characterized by a given soil property. We considered as valid indicators the OTUs showing both

A (specificity) and B (fidelity) superior to 0.8 and 0.6 respectively, as recommended in [18].

Results

Composition of cork oak root-associated fungal community

A filtered dataset of 792,931 sequences was obtained from a raw dataset of 1,129,145 trimmed-

and paired-sequences (see material and methods for more details). Sixty percent of sequences

were affiliated to ITS sequences from plants (Streptophyta). Overall, a dataset of 315,597 fungal

sequences (27 samples) was rarefied down to 3,447 sequences per sample to improve the

robustness of fungal community comparison among the three habitats [34].

Analysis of taxonomic fungal community composition in the Moroccan cork oak forest

detected 1,768 OTUs belonging to 4 known fungal phyla, 39 orders, 78 families, and 127 gen-

era (S1 Table). Two percent of OTUs were uncharacterized at the phylum level (about 0.2% of

sequences), and 43% at the genus level (about 30% of sequences). The root-associated fungal

community of Q. suber was mostly composed of Basidiomycota and Ascomycota, 60% and

39%, respectively. However, a higher number of genera was found for Ascomycota compared

to Basidiomycota, 94 and 31, respectively. The ten most abundant fungal orders (89% of

sequences) were Thelephorales (17,084 sequences), Russulales (16,275), Agaricales (14,017),

Hysteriales (12,815), Sebacinales (5,902), Chaetothyriales (5,622), Heliotales (4,796), Hypo-

creales (2,575), Capnodiales (1,895), and Eurotiales (1,690) (S1 Table). The ten most abundant

fungal genera (55% of sequences) were Cenococcum (12,459 sequences), Tomentella (11,609),

Russula (7,019), Inocybe (4,744), Cortinarius (4,568), Cladophialophora (3,046),Hygrophorus
(2,643), Lactarius (2,196), Sebacina (1,667), and Cryptosporiopsis (1,317) (S1 Table).

Habitat-related root-associated fungal indicators

No habitat-related impact (Maâmora, Benslimane, Chefchaoun) was detected on root-associ-

ated fungal community richness, diversity and equitability (Table 1), except for Chao1 estima-

tion between Benslimane and Chefchaoun (P< 0.015).

By contrast, analysis of fungal OTU distribution in ternary plots revealed strong fungal

community patterns (abundance and membership) among habitats (Fig 1). Russulales (40%

of sequences) was the most abundant fungal order in Maâmora, Thelephorales (41%) in Ben-

slimane, and Hysteriales (20% of sequences) and Agaricales (19%) in Chefchaoun. At least

Table 1. Alpha diversity of root-associated fungal communities of Q. suber in Moroccan cork oak forests.

MOTUs number (Richness) Chao1

(Richness)

Shannon’s index

(diversity)

Inverse Simpson’s index (diversity) Pielou’s index

(Evenness)

Maâmora 211±30 a 2 476±67 ab 2.74±0.22 a 6.17±1.50 a 0.31±0.10 a

Benslimane 183±69 a 365±119 a 2.34±0.90 a 6.27±4.55 a 0.27±0.06 a

Chefchaoun 239±47 a 509±101 b 2.97±0.55 a 8.42±6.52 a 0.34±0.02 a

Forest ns 1 * ns ns ns

1 Statistics were performed using PERMANOVA (Habitat type as factor). Data in the same column followed by the same letter are not significantly different

according to PERMANOVA (P < 0.05).

‘*’ P < 0.05; ‘ns’ non significant.
2 Values indicate mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0187758.t001
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65% of OTUs were habitat-specific (318 OTUs for Maâmora, 378 for Benslimane, 461 for

Chefchaoun), but these accounted for only 6% of total sequences (S1 Fig). The most abundant

taxonomic orders for each habitat (> 50% sequences) composed of habitat-specific OTUs were

Trechisporales, Agaricales, Russulales in Maâmora, Thelephorales in Benslimane, and Agari-

cales, Cantharellales, Heliotales, Sebacinales in Chefchaoun. Meanwhile, 17% of OTUs were

shared among the three habitats, representing 84% of total sequences (S1 Fig). However, strong

differences were observed for shared OTUs among habitats in terms of relative abundance. For

instance, few sequences belonging to Agaricales OTUs were present in Maâmora (). A high vari-

ability in OTU abundance and distribution was also observed among habitats for the most

abundant genera (Fig 2). Among the three most abundant fungal genera, Cenococcum and
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the taxonomic affiliation of OTUs at order level. The category “others” corresponds to all OTUs, except the one belonging to the

eight most abundant orders).
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Russula were predominant in Maâmora and Chefchaoun, whereas Tomentella was more pre-

dominant in Benslimane and Chefchaoun (Fig 2).

Permutational multivariate analysis of variance (PERMANOVA) based on the Bray-Curtis

dissimilarity matrix confirmed that cork-oak habitats are significant drivers of root-associated

fungal community structures (Table 2). Non-significant multivariate dispersion of data was

detected, emphasizing the robustness of PERMANOVA results (Table 2). Pairwise PERMA-

NOVA comparisons of cork oak habitats showed significant differences between root-associ-

ated fungal communities (S2 Table). Indicator species analysis revealed 40 OTUs significantly

associated with Maâmora, 21 to Benslimane and 49 to Chefchaoun (S3 Table). The most sig-

nificant OTUs (r.g> 0.5; P< 0.01) (Fig 3) belonged almost exclusively to Ascomycota, and

were affiliated to Archaeorhizomycetaceae, Herpotrichiellaceae, Mycosphaerellaceae, Myxotri-

chaceae, Trichocomaceae, and unidentified Sordariomycetes for Maâmora; unidentified

Dothideomycetes and Sordariomycetes for Benslimane; Dermateaceae, Geoglossaceae, Glonia-

ceae, Herpotrichiellaceae, Dothideomycetes, and Eurotiomycetes for Chefchaoun (S1 Table).

Soil-related drivers of root-associated fungal community structures

Soil characteristics in the Moroccan cork oak forest were investigated (S4 Table) in order to

identify the main abiotic soil parameters driving root-associated fungal community structures.

Correlation analysis between each of the soil parameters (S5 Table) revealed strong positive
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Table 2. Impact of forest habitat on cork oak root-associated fungal community structures.

Model/Factors Df SS MS F. Model R2 P-value 1

PERMANOVA

Habitat 2 1.701 0.85356 2.3665 0.16473 0.001

Residuals 24 8.6563 0.36068 0.83527

Total 26 10.3634 1

BETADISPER

Habitat 2 0.033575 0.0167876 2.9099 0.077

Residuals 24 0.138459 0.0057691

Df, degrees of freedom; SS, sum of squares; MS, mean squares; R2, R-squared; F.Model, F value by permutation.
1 The significance of multivariate analysis of variance and dispersion was assessed with a permutational test (Iterations = 999).

https://doi.org/10.1371/journal.pone.0187758.t002
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correlations among almost all of them, with the notable exceptions of (i) the C:N ratio, which

is not correlated with pH, total N, total C, available P, Na+ and K+; and (ii) the available P,

which is not correlated with pH and total N. Available P, Mg2+, K+ and Cation exchange

capacity were the soil parameters the most strongly correlated (r> 0.75) with others.

NMDS ordination showed the habitat effect on root-associated fungal community structure

(Fig 4), which was confirmed by a significant correlation (R2 = 0.5512, P = 0.0001). All ten soil

parameters fitted in NMDS were also significantly correlated with the root-associated fungal

Fig 3. Major fungal indicators of habitat and soil property. Only fungal indicators with a significant association with at least one ecological condition

(black box) are shown, i.e. fungal OTUs associated with a habitat with r.g > 0.5 and P < 0.01 and/or a soil property with A > 0.8, B > 0.6 and P < 0.01. For

certain major fungal indicators, a low but significant association with a habitat (r.g > 0.5 and 0.01 < P < 0.05) and/or a soil property (A > 0.8, B > 0.6 and

0.01 < P < 0.05) was also revealed (gray box). See S3 and S6 Tables for details. The taxonomic assignment is provided until genus level, except for those

with an unidentified genus (where higher taxonomic level is indicated).

https://doi.org/10.1371/journal.pone.0187758.g003
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community structure (Fig 4). The Maâmora habitat appeared as the most different in terms of

soil characteristics compared to Benslimane and Chefchaoun habitats. The three most signifi-

cant drivers of root-associated fungal community structures were pH, C:N ratio (P = 0.0002),

and available P (P = 0.0001). Analysis of fungal indicators with respect to these three main soil

properties revealed the significant association (A [specificity] > 0.8; B [sensitivity] > 0.6;

P< 0.05) of 27 OTUs with soil acidity levels (pH), 28 OTUs with soil organic decomposition

rates (C:N ratio), and 60 OTUs with soil available P contents (S6 Table). As observed for the

fungal indicators of habitat, a higher diversity of Ascomycota than Basidiomycota (only Agari-

comycetes) was significantly associated with soil properties. Among the most significant

OTUs (P< 0.01), seven OTUs affiliated to Cenococcum, Cladophialophora, Aspergillus, Cryp-
tosporiopsis, and Ilyonectria, were also indicators of a habitat (Fig 3).

Discussion

We conducted an in-depth investigation of the molecular diversity of the root-associated fun-

gal community of Q. suber in the Moroccan cork oak forest to decipher the main environmen-

tal (habitats, soil parameters) drivers of this fungal community and to characterize fungal

indicators associated with a type of habitat and/or a soil property.

Ectomycorrhiza but also ericoid mycorrhiza are predominant in

Moroccan cork oak root-associated fungal community

EcM fungi (notably Cenococcum, Tomentella, Russula, Inocybe, Cortinarius) were the most

abundant fungal groups associated with the roots, as previously observed in most oak forests

[13,18,35–39]. Fungi belonging to Tomentella, Russula, and Cenococcum were proposed as

major actors of forest ecosystems under drought conditions [8], and the predominance of Cen-
ococcum and Tomentella confirmed previous EcM surveys based on morphological identifica-

tion in the Maâmora habitat [40]. Cenococcum is one of the most common and abundant fungi

Fig 4. Nonmetric multidimensional scaling analysis of Q. suber root-associated fungal community structures (OTU level) in Moroccan

cork oak habitats (Maâmora, Benslimane and Chefchaoun) and soil parameter fitting. The stress of the ordination is 0.1584. All significant

soil parameters are shown by arrows (the length is proportional to the strength of the correlation. Factor fitting (Habitat) is indicated below the soil

parameter. The most significant soil parameters and factor (P < 0.001) are indicated in bold in the table.

https://doi.org/10.1371/journal.pone.0187758.g004
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in forest ecosystems [41,42], but over 40 different OTUs were unequally distributed in the

three forest habitats, confirming reports of intraspecific diversity at local and large geo-

graphical scales [43–45]. Remarkably, potential parasites of Cenococcum sclerotia [46], Clado-
phialophora and Oidiodendron (10% of Ascomycota sequences) were present along with

Cenoccocum.. An in-depth investigation of ecological interactions between sclerotia-associated

fungi and Cenococcummay thus be important for a better understanding of fungal assembly

rules affecting forest ecosystem functioning, particularly in Mediterranean drought scenarios.

By contrast, well-known oak-associated EcM fungal taxa, i.e. Tuber [47] and Pisolithus [15],

represented a minor part of the root-associated fungal community of Q. suber (0.4%

and< 0.00001% of total sequence number, respectively). The recently-characterized Tuber cf.

cistophilum, isolated from Spanish acidic argillaceous soils [48], constituted 7% of Tuber abun-

dance. Similarly, Terfezia, a genus of truffle-like fungi that is an important edible fungus for

local Moroccan inhabitants, was also detected. The main species detected was Terfezia cf. pini,
but at low abundance (0.0005% of total sequence number). Whereas, the low abundance of

Tuber had been previously observed in the Sardinian cork oak forest [10], Pisolithus had been

described as predominant in different Moroccan cork oak habitats [15]. Discrepancy in EcM

community composition and abundance may be due to method-dependent biases as previ-

ously highlighted in other fungal surveys [9,10,38,49].

Surprisingly, ericoid mycorrhizal (ErM) fungi, Oidiodendron [50] and Cryptosporiopsis
[51], were relatively abundant in cork oak roots analyzed in the current study. The presence of

Oidiodendron members had been also evidenced in EcM roots of Quercus ilex [50]. Two prin-

cipal ecological implications of EcM-ErM interactions in forest ecosystem functioning have

been proposed by [50], (i) nutrient exchanges among EcM and ErM plants through hyphal

links of shared mycorrhizal fungi, and (ii) EcM plants acting as an ErM fungal reservoir for the

efficient land recolonization of ErM plants. The significance of the second hypothesis is of par-

ticular importance for cork oak ecosystems, strongly affected by fire events in the Mediterra-

nean basin [52]. It also raises the question: could other fungi, such as arbuscular mycorrhizal

(AM) fungi, play a role in EcM plants? Evidence of AM fungal colonization of EcM plants and

their functional role has been demonstrated [53–55]. However, AM fungi generally constitute

a minor part of the total fungal community in EcM-dominated ecosystems [14]. In the current

work, AM fungi were almost absent from the raw data using the ITS-based approach. A more

AM specific approach based on the 18S rRNA gene could address AM fungal community

structures in EcM ecosystems [56,57].

Ecological specificity of Moroccan cork oak root-associated fungal

community

A worldwide fungal survey highlighted differences between Mediterranean forests and tem-

perate deciduous forests regarding EcM fungal communities [2]. The current results strength-

ened the specificity of the Mediterranean oak-associated EcM fungal community compared to

Northern European oak forests. Indeed, the predominance of the three main EcM families,

Thelephoraceae, Russulaceae and Gloniaceae in different Mediterranean oak forests [8,9,58]

were confirmed in the current study. These accounted for almost half of total root-associated

fungal abundance, whereas Cortinariaceae constituted one of the three predominant EcM

families in Northern European oak forests [18,59]. The stronger predominance of Gloniaceae

(Cenococcum spp.) in Mediterranean forests may be linked to its resistance to drought condi-

tions [60,61] and thus also to precipitation rates [35].

At the Mediterranean scale, results also highlighted the ecological specificity of Moroccan

cork oak root-associated fungal community. Lactarius chrysorrheus, a predominant

Moroccan cork oak root-associated fungal community
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Russulaceae species in the Sardinian cork oak forest [10], widely distributed in Mediterranean

oak forests [8,9,13,35,38], was not detected in the present study. Nevertheless, other known spe-

cies of Lactarius were detected, notably Lactarius cf. quietus, which is considered as an oak spe-

cialist [18]. However, L. quietus distribution appears more related to Northern Europe oak

ecosystems [18,59] than Mediterranean oak ecosystems [8,38]. A wide range of Russula (Russula
cf. heterophylla, Russula cf. olivobrunnea, Russula cf. violeipes) and Inocybe (Inocybe cf. bresado-
lae, Inocybe cf. glabripes, Inocybe cf. posterula, Inocybe cf. subporospora) species were detected

specifically in Morocco and not in other Mediterranean cork oak forests [9,10,13,15,62]. By con-

trast, Russula cf. decipiens was also described in Corsica [62], Russula cf. foetens in Portugal [8],

and Russula cf. odorata in Corsica and Sardinia [10,14,62], and only Inocybe cf. asterospora was

described in the Portuguese cork oak forest [8]. Surprisingly, Laccaria and Tricholoma, two EcM

Agaricales frequently observed at above and below-ground levels in Mediterranean oak ecosys-

tems [9,10,13,14,38,39] were not detected in the current work. These two fungal genera had

been however observed in the Moroccan cork oak forest at above-ground level, reflecting, as for

Pisolithus, the discrepancy between above- and below-ground fungal abundance. Remarkably,

Archaeorhizomyces, a genus of ubiquitous root endophyte fungi [63], was relatively abundant

(> 3% of Ascomycota) in Moroccan cork oak roots. The presence of this genus in Mediterra-

nean ecosystem surveys is rarely described and few data are available regarding its ecological

role, but a continuum from root endophytic to free-living saprophytic life strategies has been

proposed [64].

Land use and soil parameters are major drivers of Moroccan cork oak

root-associated fungal community

More than 90 fungal OTUs were significantly (P< 0.01) associated with habitat and/or soil

properties, notably EcM and ErM fungi, underlining the value of fungi as below-ground indica-

tors of forest status and environmental conditions [18,65]. The high number of habitat-associ-

ated fungal OTUs for Maâmaora and Chefchaoun suggested their strong ecological specificity.

Differences in human pressure levels may explain a part of these specificities since Maâmora

is more disturbed (intensive cork exploitation, overgrazing, aging of tree population) than

Chefchaoun (lower human pressure, natural tree regeneration). Remarkably, an intraspecific

Cenococcum ecological preference related to land use and succession stages (association with

Chefchaoun, low disturbances), and not only to drought resistance, was shown in the Moroccan

cork oak forest. However, Cenococcum is usually described as a multi-stage fungus due to its

worldwide predominance and stability in forest ecosystems [41,42,58]. Certain RussulaOTUs

might also be seen as indicators of disturbance levels (association with Maâmora, high distur-

bances). Russula is generally considered as a late-successional fungal genus [62,66,67], which

may explain its high sensitivity to land use as observed in the current study and in the Portu-

guese cork oak forest (Azul et al., 2009), but also its reliability as an indicator of ecosystems

characterized by the aging of cork oak populations (Maâmora being an open forest with low

regeneration rate). Russula was also shown as highly sensitive to soil nitrogen levels, seasons,

and cork oak decline [18,40,58,68], and whereas no decline symptoms were observed, N total

content was significantly correlated to differences in the root-associated fungal community

structure among the three cork oak habitats. The potential status of Tomentella as an indicator

of land use [40] was unclear in the current study. Tomentella was associated with the habitat

characterized by the lowest rainfall level, but its high sensitivity to seasonal fluctuations [58]

makes it difficult to relate its resistance to environmental stresses such as drought.

ErM fungi were also among the most abundant fungal groups significantly associated with

habitat disturbances, Oidiodendron maius [69,70] and Cryptosporiopsis [51], and were

Moroccan cork oak root-associated fungal community
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respectively associated with high and low disturbances. This observation strengthens the

hypothesis that EcM plants can act as reservoirs of ErM fungi [50], but also suggests that cer-

tain ErM fungal members such as Oidiodendronmight play a role for efficient Ericaceae re-col-

onization of habitats characterized by strong Ericaceae layer degradation such as found in

Maâmora.

A wide range of soil characteristics, whether or not related to land use, were also described

as strongly affecting soil fungal communities in forest ecosystems [2,17,18]. In the current

work, pH, C:N ratio, and available P appeared as the most significant soil parameters corre-

lated to differences in the root-associated fungal community structure. Soil pH is described as

the most influential driver of fungal OTU richness and composition [2]. While a narrow soil

pH range was observed in the current study for the Moroccan cork oak habitats, a wide range

of fungal OTUs associated with high and low acidity were identified. The impact of phospho-

rus and C:N ratio was shown as more taxa-specific [2]. Some EcM fungi notably able to adopt

a saprophytic lifestyle depending on environmental conditions [71] were associated with C

and P cycling in the current study. Tomentella species were notably associated with a high

SOM decomposition rate and low available soil P content. By contrast, the EcM Cenococcum
appeared strongly associated with high P soils.

The present study sheds new light on the below-ground interactions taking place in the

Moroccan cork oak forest, a severely threatened ecosystem. A highly diverse soil fungi commu-

nity, both in Ascomycota and Basidiomycota, strongly structured by habitat type (related to dis-

turbance levels) and the soil properties has been observed. However, the characterization of

robust fungal indicators of environmental conditions remains a critical point depending of the

taxonomic level considered. Indeed, high intraspecific variability (OTU level) were observed for

certain fungal genera or species, reflecting not only a taxonomic variability but a probable func-

tional variability since their association with environmental conditions differed. This has been

pointed out for several EcM fungi (e.g Tomentella, Russula) [66], and its extent at the whole

community level remains a major issue in fungal-based functional ecology [72]. At the biogeo-

graphic level, the results suggest a Southern Mediterranean fungal pattern, reinforcing the need

to investigate the Southern Mediterranean fungal diversity more extensively. In addition, the

strong geographical structure ofQ. suber in the Mediterranean basin [73] may also affect fungal

diversity associated with cork oak, probably contributing to the differences between fungal

community structures in Morocco, as compared to Sardinia and Corsica. Indeed, intra-specific

plant host diversity has been described as a soil fungal diversity driver [74] but remains poorly

investigated. The success of future conservation strategies thus depends on joint initiatives on a

Mediterranean scale, associating plant population geneticists, botanists, naturalists, microbiolo-

gists and pedologists to picture in a broader framework of the tremendous complexity of plant-

fungal and fungal-fungal assembly rules in forest ecosystems [16,62,75,76].
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Sanguin.

References
1. Blackwell M. The Fungi: 1, 2, 3. . . 5.1 Million Species? Am J Bot. 2011; 98: 426–438. https://doi.org/10.

3732/ajb.1000298 PMID: 21613136

Moroccan cork oak root-associated fungal community

PLOS ONE | https://doi.org/10.1371/journal.pone.0187758 November 20, 2017 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187758.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187758.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187758.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187758.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187758.s008
http://andrewmorris.fr/
https://doi.org/10.3732/ajb.1000298
https://doi.org/10.3732/ajb.1000298
http://www.ncbi.nlm.nih.gov/pubmed/21613136
https://doi.org/10.1371/journal.pone.0187758


2. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geog-

raphy of soil fungi. Science. 2014; 346: 1256688–1256688. https://doi.org/10.1126/science.1256688

PMID: 25430773

3. Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, et al. The role of ectomycorrhizal

communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biol Bio-

chem. 2010; 42: 679–698.

4. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, et al. Diversity meets decomposi-

tion. Trends Ecol Evol. 2010; 25: 372–80. https://doi.org/10.1016/j.tree.2010.01.010 PMID: 20189677

5. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview

of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol

Manag. 2010; 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

6. Sala OE, Chapin FS 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, et al. Global biodiversity scenar-

ios for the year 2100. Science. 2000; 287: 1770–4. PMID: 10710299

7. Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, et al. Mediterranean forests, land use

and climate change: a social-ecological perspective. Reg Environ Change. 2016; https://doi.org/10.

1007/s10113-016-0994-3

8. Azul AM, Sousa JP, Agerer R, Martin MP, Freitas H. Land use practices and ectomycorrhizal fungal

communities from oak woodlands dominated by Quercus suber L. considering drought scenarios.

Mycorrhiza. 2010; 20: 73–88. https://doi.org/10.1007/s00572-009-0261-2 PMID: 19575241

9. Azul AM, Castro P, Sousa JP, Freitas H. Diversity and fruiting patterns of ectomycorrhizal and saprobic

fungi as indicators of land-use severity in managed woodlands dominated by Quercus suber —a case

study from southern Portugal. Can J For Res. 2009; 39: 2404–2417. https://doi.org/10.1139/X09-148

10. Lancellotti E, Franceschini A. Studies on the ectomycorrhizal community in a declining Quercus suber

L. stand. Mycorrhiza. 2013; 23: 533–542. https://doi.org/10.1007/s00572-013-0493-z PMID: 23503869

11. Smith SE, Read DJ. Mycorrhizal symbiosis. 3. ed., Repr. Amsterdam: Elsevier/Acad. Press; 2009.

12. Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Griffith GW, Nordén J, et al. A Fungal perspec-

tive on conservation biology: Fungi and Conservation Biology. Conserv Biol. 2015; 29: 61–68. https://

doi.org/10.1111/cobi.12388 PMID: 25185751

13. Barrico L, Rodrı́guez-Echeverrı́a S, Freitas H. Diversity of soil basidiomycete communities associated

with Quercus suber L. in Portuguese montados. Eur J Soil Biol. 2010; 46: 280–287. https://doi.org/10.

1016/j.ejsobi.2010.05.001

14. Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, et al. Unravelling soil fungal com-

munities from different mediterranean land-use backgrounds. PLoS ONE. 2012; 7: e34847. https://doi.

org/10.1371/journal.pone.0034847 PMID: 22536336

15. Bakkali Yakhlef SB, Kerdouh B, Mousain D, Ducousso M, Duponnois R, Abourouh M. Phylogenetic

diversity of Moroccan cork oak woodlands fungi. Biotechnol Agron Soc Environ. 2009; 13: 521–528.

16. Baptista P, Reis F, Pereira E, Tavares RM, Santos PM, Richard F, et al. Soil DNA pyrosequencing and

fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards:

Fungal diversity by NGS and fruiting surveys. Environ Microbiol Rep. 2015; 7: 946–954. https://doi.org/

10.1111/1758-2229.12336 PMID: 26391727

17. Creamer RE, Hannula SE, Leeuwen JPV, Stone D, Rutgers M, Schmelz RM, et al. Ecological network

analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by

land use across Europe. Appl Soil Ecol. 2016; 97: 112–124. https://doi.org/10.1016/j.apsoil.2015.08.

006

18. Suz LM, Barsoum N, Benham S, Dietrich H-P, Fetzer KD, Fischer R, et al. Environmental drivers of

ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol. 2014; 23: 5628–5644.

https://doi.org/10.1111/mec.12947 PMID: 25277863

19. Bakkali Yakhlef SE, Abourouh M, Ducousso M, Duponnois R, Delaruelle C, Mousain D. Intraspecific

variability of Pisolithus spp. as a response to changes in soil characteristics in a Moroccan cork oak

plantation. Mycology. 2011; 2: 283–290. https://doi.org/10.1080/21501203.2011.592155

20. Schmidt P, Balint M, Greshake B, Bandow C, Rombke J, Schmitt I. Illumina metabarcoding of a soil fun-

gal community. Soil Biol Biochem. 2013; 65: 128–132.

21. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metage-

nomics. PeerJ. 2016; 4: e2584. https://doi.org/10.7717/peerj.2584 PMID: 27781170

22. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.jour-

nal. 2011; 17: 10. https://doi.org/10.14806/ej.17.1.200
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