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RESEARCH ARTICLE Open Access

Genotyping-by-sequencing and SNP-arrays
are complementary for detecting
quantitative trait loci by tagging different
haplotypes in association studies
Sandra S. Negro1, Emilie J. Millet2,3, Delphine Madur1, Cyril Bauland1, Valérie Combes1, Claude Welcker2,
François Tardieu2, Alain Charcosset1 and Stéphane D. Nicolas1*

Abstract

Background: Single Nucleotide Polymorphism (SNP) array and re-sequencing technologies have different
properties (e.g. calling rate, minor allele frequency profile) and drawbacks (e.g. ascertainment bias). This lead us to
study their complementarity and the consequences of using them separately or combined in diversity analyses and
Genome-Wide Association Studies (GWAS). We performed GWAS on three traits (grain yield, plant height and male
flowering time) measured in 22 environments on a panel of 247 F1 hybrids obtained by crossing 247 diverse dent
maize inbred lines with a same flint line. The 247 lines were genotyped using three genotyping technologies
(Genotyping-By-Sequencing, Illumina Infinium 50 K and Affymetrix Axiom 600 K arrays).

Results: The effects of ascertainment bias of the 50 K and 600 K arrays were negligible for deciphering global
genetic trends of diversity and for estimating relatedness in this panel. We developed an original approach based
on linkage disequilibrium (LD) extent in order to determine whether SNPs significantly associated with a trait and
that are physically linked should be considered as a single Quantitative Trait Locus (QTL) or several independent
QTLs. Using this approach, we showed that the combination of the three technologies, which have different SNP
distributions and densities, allowed us to detect more QTLs (gain in power) and potentially refine the localization of
the causal polymorphisms (gain in resolution).

Conclusions: Conceptually different technologies are complementary for detecting QTLs by tagging different
haplotypes in association studies. Considering LD, marker density and the combination of different technologies
(SNP-arrays and re-sequencing), the genotypic data available were most likely enough to well represent
polymorphisms in the centromeric regions, whereas using more markers would be beneficial for telomeric regions.
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Background
Understanding the genetic bases of complex traits in-
volved in the adaptation to biotic and abiotic stress in
plants is a pressing concern, with world-wide drought
due to climate change as a major source of human food
and agriculture threats. Recent progress in next gener-
ation sequencing and genotyping array technologies

contribute to a better understanding of the genetic basis
of quantitative trait variation by allowing Genome-Wide
Association Studies (GWAS) on large diversity panels
[1]. Single Nucleotide Polymorphism (SNP)-based tech-
niques became the most commonly used genotyping
methods for GWAS because SNPs are cheap, numerous,
codominant and can be automatically analysed with
SNP-arrays or produced by genotyping-by-sequencing
(GBS), or sequencing [2–4]. The decreasing cost of
genotyping technologies has led to an exponential in-
crease in the number of markers used for the GWAS in
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association panels, thereby raising the question of
computation time to perform the association tests.
Computational issues were addressed by using either
approximate methods by avoiding re-estimating vari-
ance components for each SNP [5] or exact methods
using mathematical tools for sparing time in matrix
inversion [6, 7]. It is noteworthy that using approxi-
mate computation in GWAS can produce inaccurate
p-values when the SNP effect size is large or/and
when the sample structure is strong [8].
Several causes may impact the power of Quantitative

Trait Locus (QTL, locus involved in quantitative trait
variation) detection in GWAS. Highly diverse panels
have in general undergone multiple historical recombin-
ation, leading to a low extent of linkage disequilibrium
(LD). However, these panels can present different aver-
age and local patterns of LD [9–11]. A high marker
density and a proper distribution of SNPs are therefore
essential to capture causal polymorphisms. Furthermore,
minor allele frequencies (MAF), population stratification
and cryptic relatedness are three other important param-
eters affecting power and false positive detection [12,
13]. These last two factors are substantial in several cul-
tivated species such as maize [14] and grapevine [15],
and their impact on LD can be statistically evaluated
[16]. Population structure and kinship can be estimated
using molecular markers [17–20] and can be modelled
to efficiently detect marker-trait associations due to link-
age only [12, 21, 22]. These advances have largely in-
creased the power and effectiveness of linear mixed
models that can now efficiently account for population
structure and relatedness in GWAS [8, 12].
In maize, an Illumina Infinium HD 50,000 SNP-array,

named MaizeSNP50 array (hereafter 50 K) was devel-
oped by Ganal et al. [3] and has been used extensively
for diversity and association studies [23, 24]. For ex-
ample, GWAS were conducted to unravel the genetic
architecture of phenology, yield component traits and to
identify several flowering time QTLs linked to adapta-
tion of tropical maize to temperate climate [25, 26]. In
the same way, Rincent et al. [11] showed that LD occurs
over a longer distance in a dent than in a flint panel,
with appreciable effects on the power of QTL detection.
Low LD extent and relationship between allelic frequen-
cies with population and pedigree structure at some
SNPs reduce the power of GWAS [14, 26]. Therefore,
higher marker densities are desirable because the maize
genome size is large (2.4 Gb), the level of diversity is
high (more than one substitution per hundred nucleo-
tides), and LD extent is low [27]. As a consequence, an
Affymetrix Axiom 600,000 SNP-array (hereafter 600 K)
was developed and used in association genetics [28, 29]
and detection of selective sweeps [4]. Another possibility
is whole genome sequencing, but this is currently

impractical for large genomes such as maize because of
the associated cost. Hence, a Genotyping-By-Sequencing
(GBS) procedure has been developed [2] that targets
low-copy genomic regions by using restriction enzymes.
Genotyping-by-sequencing technology is cost-effective
and has been successfully used in maize for genomic
prediction [30]. Romay et al. [31] and Gouesnard et al.
[32] highlighted the interest of the GBS for (i) decipher-
ing and comparing the genetic diversity of the inbred
lines in seedbanks and (ii) identifying QTLs by GWAS
for kernel colour, sweet corn and flowering time.
Few studies in plants have compared datasets from differ-

ent high-throughput genotyping technologies [33–35].
Elbasyoni et al. [32] used GBS and a 90 K SNP-array in win-
ter wheat. They highlighted strong positive correlations be-
tween the population structure matrices and kinships
identified by both technologies. They showed that GBS-
SNPs led to higher genomic prediction accuracy compared
to Array-SNPs. Torkamaneh and Belzile [35] used GBS and
a 50 K SNP-array in soybean. They estimated ca. 98% ac-
curacy of genotype called by their GBS pipeline and showed
that the accuracy of imputation for missing genotypes was
hardly affected by the chosen MAF and only moderately af-
fected by the rate of missing values. Li et al. [34] created a
reliable integrated variation map using a 600 K and 50 K
SNP-array, GBS and RNA sequencing to dissect regulatory
causality and its link to maize kernel variation. These au-
thors used a fixed physical distance (< 10 kb) for grouping
associated SNPs into QTLs despite the variable LD pattern
along the genome. None of these studies compared QTL
detection between the different technologies.
The main drawback of the DNA arrays is that they do

not allow the discovery of new SNPs. This possibly leads
to some ascertainment bias in diversity analyses when
the SNPs selected for building arrays come from (i) the
sequencing of a set of individuals that did not represent
well the diversity explored in the studied panel, (ii) a
subset of SNPs that skews the allelic frequency profile
towards the intermediate frequencies [27, 36]. Ascertain-
ment bias can compromise the ability of the SNP-arrays
to reveal an exact view of the genetic diversity [36].
Genotyping-by-sequencing can overcome ascertainment
bias since it is based on sequencing and therefore allows
the discovery of alleles in the diversity panel analysed. It
can be generalized to any species at a low cost providing
that numerous individuals have been sequenced in order
to build a representative library of short haplotypes to
call SNPs [37]. Non-repetitive regions of genomes can
be targeted with two- to three-fold higher efficiency,
thereby considerably reducing the computationally chal-
lenging problems associated with alignment in species
with high repeat content. However, GBS may have low
coverage leading to a high missing data rate (65% in
both studies; [32, 33]) and heterozygote under-calling,
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depending on genome size and structure, and on the mul-
tiplexing level per sequencing flow-cell. Furthermore, GBS
requires the establishment of demanding bioinformatic
pipelines and imputation algorithms [37]. Pipelines have
been developed to call SNP genotypes from raw GBS se-
quence data and to impute the missing data from a haplo-
type library [37, 38].
Here, we investigated the impact of using GBS and

SNP-arrays on the quality of the genotyping data, to-
gether with the biological properties of data generated
by each technology, and the potential complementarity
of these approaches. In particular, we analyzed the im-
pact of marker density and genotyping technologies (se-
quencing vs array) on (i) the estimates of relatedness
and population structure, and (ii) the detection of QTLs
(power). To address these issues, we performed a GWAS
based on genotypic datasets obtained using either GBS
or SNP-arrays with low (50 k) or high (600 k) densities
on a diversity panel of maize hybrids obtained by cross-
ing a panel of dent lines with a common flint tester line.
Three traits were considered, namely grain yield, plant
height and male flowering time (day to anthesis), mea-
sured in 22 different environments (sites × years × treat-
ments) over Europe. We developed an original approach
based on LD extent in order to determine whether SNPs
significantly associated with a trait should be considered
as a single QTL or several independent QTLs.

Results
Combining TASSEL and beagle imputations improved the
genotyping quality for GBS
We estimated the genotyping and imputation concord-
ance of the GBS based on common markers with the 50
K or 600 K arrays (Additional file 1: Figure S1 and
Table 1). The genotyping concordance of the 600 K with
the 50 K was extremely high (99.50%), although slightly
lower for residual heterozygotes (92.88%). After SNP

calling from sequencing reads using AllZeaGBSv2.7 data-
base (direct reads, GBS1, Additional file 1: Figure S1), the
call rate was 33.81% for the common SNPs with the 50 K,
vs 37% for the whole GBS dataset. The genotyping con-
cordance rate between the direct reads of GBS and the 50
K was 98.88% (Table 1). After imputation using TASSEL
by Cornell Institute (GBS2), the concordance rate was
96.04% on the common markers with the 50 K and
11.91% of missing data remained for the whole GBS data-
set. In GBS3, all missing data were imputed by Beagle and
the remaining missing genotypes in GBS2 were excluded
here to be comparable with TASSEL. This method yielded
a lower concordance rate (93.04 and 92.84% with the 50 K
and 600 K, respectively). In an attempt to increase the
concordance rate of the genotyping while removing miss-
ing data, we tested two additional methods, namely GBS4
where the missing data and heterozygotes of Cornell im-
puted data (GBS2) were replaced by Beagle imputation,
and GBS5 where Cornell homozygous genotypes (GBS2)
were completed by imputations from GBS3 (Additional
file 1: Figure S1 and Table 1). GBS5 displayed a slightly
better concordance rate than GBS2 (96.25% vs 96.04%)
and predicted heterozygotes with a higher quality than
GBS4. GBS5 was therefore used for all genetic analyses
and named GBS hereafter.

GBS displayed rarer alleles and lower call rate than SNP-
arrays
The SNP call rate was higher for the SNP-arrays (average
values of 96 and > 99% for the 50 K and 600 K, respect-
ively), than for the GBS (37% for the direct reads). The
MAF distribution differed between the technologies
(Additional file 2: Figure S2): while the use of SNP-arrays
resulted in a near-uniform distribution, GBS resulted in
an excess of rare alleles with a L-shaped distribution (22%
of SNPs with MAF < 0.05 for the GBS versus 6 and 9% for
the 50 K and 600 K, respectively). This can be

Table 1 Percentage of GBS concordance and call rates (in parentheses)

Reference Total Homozygotes Heterozygotes

GBS1 Direct Read 50 K 98.88 (33.81) 99.03 (33.72) 45.09 (0.09)

600 K 98.99 (35.58) 99.21 (35.47) 28.67 (0.11)

GBS2 Cornell Imputation 50 K 96.04 (91.56) 98.66 (88.79) 12.51 (2.78)

600 K 95.50 (93.41) 98.69 (90.14) 7.75 (3.28)

GBS3 Beagle Imputation 50 K 93.04 (a91.56) 93.23 (91.30) 30.54 (0.26)

600 K 92.84 (a93.41) 93.07 (93.12) 22.50 (0.29)

GBS4 Beagle Imputation on the missing data and heterozygotes
after TASSEL Imputation (GBS2)

50 K 96.46 (a97.64) 96.46 (97.63) < 0.01 (< 0.01)

600 K 96.21 (a99,97) 96.21 (> 99.99) < 0.01 (< 0.01)

GBS5 Compilation of Homoz. genotypes from TASSEL Imputation
(GBS2) and Imputation by Beagle for Other Data (GBS3)

50 K 96.25 (a97.65) 96.36 (97.47) 39.07 (0.18)

600 K 95.98 (a99.97) 96.11 (99.78) 32.02 (0.22)

The 50 K and 600 K SNP-arrays were considered as reference genotypes. a After Beagle inference of missing data, the call rate was 100%. Here the call rate is <
100% because the comparison was made against the 50 K and the 600 K that include few missing data. For GBS3, the remaining missing genotypes in GBS2 were
also excluded to obtain comparable results
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explained by the fact that the 50 K was based on 27
sequenced lines for SNPs discovery [3], the 600 K was
based on 30 lines [4], whereas GBS was based on 31,
978 lines, thereby leading to higher discovery of rare
alleles. Consistent with MAF distribution, the average
gene diversity (He) was lower for GBS (0.27) than for
arrays (0.35 and 0.34 for the 50 K and 600 K arrays,
respectively). The distribution of SNP residual hetero-
zygosity of inbred lines was similar for the three
technologies, with a mean of 0.80, 0.89 and 0.22% for
the 50 K, 600 K and GBS, respectively. The residual
heterozygosity of inbred lines was highly correlated
between technologies with large coefficients of Spear-
man correlation: r50K–600K = 0.90, r50K-GBS = 0.76,
r600K-GBS = 0.83. The distribution of the SNPs along
the genome was denser in the telomeres for the GBS and
in the peri-centromeric regions for the 600 K, whereas the
50 K exhibited a more uniform distribution (Fig. 1 and top
graph in Additional file 3: Figure S3).

Population structure and relatedness were consistent
between the three technologies
We used the ADMIXTURE software to analyse the gen-
etic structure within the studied panel based on SNPs
from the three technologies, by considering two to ten
groups. Based on a K-fold cross-validation, the clustering
in four genetic groups (NQ = 4) was identified as the best
for the three datasets. Considering a threshold of 0.5 for
ancestral fraction, the assignation to the four groups was
identical except for a few admixed inbred lines
(Additional file 4: Figure S4). Based on the 50 K, the four
groups were constituted by (i) 39 lines in the Non Stiff
Stalk (Iodent) family traced by PH207, (ii) 46 lines in the
Lancaster family traced by Mo17 and Oh43, and (iii) 55
lines in the Stiff Stalk family traced by B73 and (iv) 107
lines that did not fit into these three primary heterotic
groups, such as W117 and F7057. This organization
appeared consistent with the organization of breeding
programs into heterotic groups, generally related to few
key founder lines.
We compared two estimators of relatedness between

inbred lines, IBS (Identity-By-State) and K_Freq (Iden-
tity-By-Descent), calculated per technology. For IBS,
pairs of individuals were on average more related using
GBS than SNP-arrays (mean IBS: 0.66, 0.67 and 0.73 for 50
K, 600 K and GBS, respectively). As expected, mean IBD
was close for the three technologies (K_Freq: − 0.004).
Relatedness estimates with the two SNP-arrays were
highly correlated: r = 0.95 and 0.98 for IBS and K_
Freq, respectively (Additional file 5: Figure S5b and
d). Likewise, relatedness estimates between arrays and
GBS were strongly correlated (between 0.94 and 0.98,
Additional file 5: Figure S5b and d).

We further carried out diversity analyses by perform-
ing Principal Coordinate Analyses (PCoA) on IBD (K_
Freq, weights by allelic frequency) estimated from the
three technologies (Fig. 2). The three first PCoA axes ex-
plained 12.9, 15.6 and 16.3% of the variability for the
GBS, 50 K and 600 K, respectively (Fig. 2). The same pat-
tern was observed regardless of the technology with the
first axis separating the Stiff Stalk from all other groups
(Iodent and Lancaster lines, see illustration with the 50
K kinship, Fig. 2). Key founder lines of the three heter-
otic groups (Iodent: PH207, Stiff Stalk: B73, Lancaster:
Mo17) were found at extreme positions along the axes,
which was consistent with the admixture groups previ-
ously described.

Long distance linkage disequilibrium was removed by
taking into account population structure or relatedness
In order to evaluate the effect of kinship and the genetic
structure on linkage disequilibrium (LD), we studied
genome-wide LD between 29,257 PANZEA markers
from the 50 K within and between chromosomes before
and after taking into account the kinship (K_Freq esti-
mated from the 50 K), structure (Number of groups = 4)
or both (Additional file 6: Figure S6). Whereas inter-
chromosomal LD was only partially removed when the
genetic structure was taken into account, it was mostly
removed when either the kinship or both kinship and
structure were considered (Additional file 6: Figure S6b
and c). Accordingly, long distance intra-chromosomal
LD was almost totally removed for all chromosomes by
accounting for the kinship, structure or both. Interest-
ingly, some pairs of loci located on different chromo-
somes or very distant on a same chromosome remained
in high LD despite correction for genetic structure and
kinship (Additional file 6: Figure S6). This can be ex-
plained either by genome assembly errors, by chromo-
somal rearrangements such as translocations or by
strong epistatic interactions. Linkage disequilibrium de-
creased with genetic or physical distance (Fig. 3). The
majority of pairs of loci with high LD (r2K > 0.4) in spite
of long physical distance (>30Mbp), were close genetically
(< 3 cM), notably on chromosome 3, 5, 7 and to a lesser
extent 9 and 10 (data not shown). These loci were located
in centromeric and peri-centromeric regions that dis-
played low recombination rate, suggesting that this pat-
tern was due to variation of recombination rate along the
chromosome. Only very few pairs of loci in high LD were
genetically distant (> 5 cM) but physically close (<2Mbp).
Linkage disequilibrium (r2K and r2KS) was negligible be-
yond 1 cM since 99% of LD values were less than 0.12 in
this case. Note that some unplaced SNPs remained in LD
after taking into account the kinship and structure with
some SNPs with known positions on chromosome 1, 3
and 4 (Additional file 6: Figure S6). Therefore, LD
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measurement corrected by the kinship can help to map
unplaced SNPs.

Linkage disequilibrium strongly differed between and
within chromosomes
We combined the three technologies together to calculate
the r2K for all pairs of SNPs which were genetically distant
by less than 1 cM. For any chromosome region, LD extent
in terms of genetic and physical distance showed a limited
variation over the 100 sets of 500,000 loci pairs (cf. Mater-
ial). This suggests that the estimation of LD extent did not
strongly depend on our set of loci. LD extent varied sig-
nificantly between chromosomes for both high recombi-
nogenic (> 0.5 cM/Mbp) and low recombinogenic regions
(< 0.5 cM/Mbp, Table 2). Chromosome 1 had the highest

LD extent in high recombination regions (0.062 ± 0.007
cM) and chromosome 9 the highest LD extent in low
recombinogenic regions (898.6 ± 21.7 kbp) (Table 2). Link-
age disequilibrium extent relative to genetic and physical
distances was highly and positively correlated in high
recombinogenic regions (r = 0.86), whereas it was not in
low recombinogenic regions (r = − 0.64).

Large differences in genome coverage between
technologies
We estimated the percentage of the genome that was cov-
ered by LD windows around SNPs, calculated by using ei-
ther physical or genetic distances (Fig. 3, Table 2). We
observed a strong difference in coverage between the three
technologies at both genome-wide and chromosome scale,

Fig. 1 Variation of the markers density, the recombination rate and the genome coverage in non-overlapping 2 Mbp windows along
chromosome 3. Markers have MAF above 5%. Top panel shows the variation of SNP number. In the bottom panel, dotted line represents the
variation of recombination rate (cM / Mbp) and solid lines the proportion of genome covered by the SNPs using the cumulated length of
physical LD windows around each SNP in each 2Mbp-windows. In these two panels, green, blue, red and black lines represent variation for GBS,
600 K, 50 K and combined technologies, respectively. Vertical dotted gray lines indicate limits of centromeric regions. Vertical lines between the
two panels indicate the position of QTLs for flowering time (DTA), grain yield (GY) and Plant Height (PHT). Green, blue, red vertical lines indicate
QTLs detected only by GBS, 600 K and 50 K technologies, respectively. Grey lines indicated QTLs detected by at least two technologies. Only QTLs
including a marker associated with -log10(pval) above 6 were shown
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as illustrated in Fig. 1 on chromosome 3 (Table 2, and Add-
itional file 3: Figure S3). For a LD extent of r2K = 0.1, 74, 82
and 89% of the physical map, and 42, 58 and 71% of the
genetic map were covered by the 50 K, the GBS and the
600 K, respectively (Table 2). For the combined data (ALL:
50 K + 600 K +GBS), the coverage strongly varied between
chromosomes, ranging from 83% (chromosome 7) to
98% (chromosome 1) of the physical map, and from
51% (chromosome 7) to 97% (chromosome 1) of the
genetic map (Table 2). For the physical map, increas-
ing the LD extent threshold to r2K = 0.4 reduced the
genome coverage from 89 to 49% for 600 K, 82 to
28% for GBS, 74 to 20% for 50 K and 90 to 52% for
the combined data. Increasing the MAF threshold
reduced slightly the genome coverage, with smaller
reduction for the physical map than genetic map.
Surprisingly, increasing the SNP number by combin-
ing the markers from the arrays and GBS did not
strongly increase the genome coverage as compared
to the 600 K, regardless of the threshold for LD ex-
tent (Fig. 1 and Additional file 3: Figure S3).
We observed a strong variation of genome coverage

along each chromosome with contrasted patterns in low

and high recombinogenic regions (Fig. 1 and Additional
file 3: Figure S3). While low recombinogenic regions
were totally covered with all the technologies (except for
few intervals using the 50 K), the genome coverage in
high recombinogenic regions varied depending on both
technology and SNP distribution. Forty-seven percent of
the 2Mbp intervals in high recombination regions were
better covered by the 600 K than the GBS against only
1%, which were better covered by GBS than 600 K.
When exploring smaller window sizes (20, 100, 500 kb),
the number of intervals better covered by 600 K than
GBS decreased strongly when the intervals were short-
ened (17.1% of 20 kbp-intervals vs 47.1% of 2 Mbp-
intervals). In the contrary, the intervals better covered
by GBS than 600 K increased slightly (4.1% vs 1.1% of 2
Mbp-intervals). The number of interval with no or weak
coverage differences between GBS and 600 K increased
strongly: 84.5% of 20 kbp-intervals vs 68% of 2 Mbp-
intervals with coverage differences inferior to 10%. Inter-
estingly, the proportion of interval with strong coverage
differences (> 50%) increased when the intervals were
shortened (7.8% of 20 kbp-intervals vs 0% of 2 Mbp-
intervals).

Fig. 2 Principal coordinate analysis (PCoA) of the DROPS panel. The PCoA was based on the covariance matrix K_Freq estimated from the 50 K
Illumina array. The genetic groups identified by ADMIXTURE (NQ = 4) are colored. Three key founders are found at extreme positions (Iodent:
PH207 in red, Stiff Stalk: B73 in violet, Lancaster: Mo17 in turquoise)
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Number of QTLs detected using genome-wide association
studies increases with markers density
We observed a strong variation in the number of SNPs
significantly associated with the three traits across the
22 environments (Table 3). The mean number of signifi-
cant SNPs per environment and trait was 3.7, 44.7, 17.9
and 62.4 for the 50 K, 600 K, GBS and the three tech-
nologies combined, respectively (Table 4). Considering
the p-value threshold used, 28, 303 and 204 false posi-
tives were expected among the 243, 2,953 and 1,182 as-
sociations detected for 50 K, 600 K and GBS,
respectively. False discovery rate appeared therefore
higher for GBS (17.2%) than for DNA arrays (11.5 and
10.2% for 50 K and 600 K, respectively). It can be ex-
plained by the higher genotyping error rate of GBS due
to imputation and/or by its higher number of markers
with a low MAF. Both reduce the power of GBS com-
pared to DNA arrays and therefore lead to a higher false

discovery rate. Proportionally to the SNP number, the
50 K and 600 K resulted in 1.5- and 1.7-fold more associ-
ated SNPs per situation (environment × trait) than GBS
(p-value< 2 × 10− 6, Table 4). This difference between
SNP-arrays and GBS was higher for grain yield (GY) and
plant height (plantHT) than for male flowering time
(DTA, Table 4).
We used two approaches based on LD for grouping

significant SNPs (Fig. 3): (i) considering that all SNPs
with overlapping LD windows for r2K = 0.1 belong to the
same QTL (LD_win) and (ii) grouping significant SNPs
that are adjacent on the physical map and are in LD
(r2K > 0.5, LD_adj). The QTLs defined by using the two
approaches were globally consistent since significant SNPs
within QTLs were in high LD whereas SNPs from different
adjacent QTLs were not (Additional file 7: Figure S7-LD-
Adjacent and Additional file 8: Figure S8-LD-Windows).
LD_adj detected more QTLs than LD_win for flowering

Fig. 3 Linkage disequilibrium based approach to delineate a physical window around each SNP, exemplified with chromosome 3. Linkage
disequilibrium (LD) windows were defined for each SNP based on physical LD extent in low recombinogenic regions (left part) and based on
genetic LD extent in high recombinogenic regions (right part). These LD windows were used (i) to group significant SNPs into QTLs when they
overlapped, (ii) to estimate genome coverage region covered by LD windows around SNPs, and (iii) identify putative genes underlying QTLs
involved in trait variations
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time (242 vs 226), plant height (240 vs 160) and grain yield
(433 vs 237). The number of QTLs detected with the LD_
adj approach increased strongly when the LD threshold was
set above 0.5. Differences in QTL groupings between the
two methods were observed for specific LD and recombin-
ation patterns. This occurred for instance on chromosome 6
for grain yield (Additional file 7: Figure S7-LD-Adjacent and
Additional file 8: Figure S8-LD-Windows). Within this re-
gion, the recombination rate was low and the LD pattern be-
tween associated SNPs was complex (Additional file 3:
Figure S3). While LD_adj splitted several SNPs in high LD
into different QTLs (for instance QTL 232, 235, 237, 249),
LD_win grouped together associated SNPs that are genetic-
ally close but displayed a low LD (Additional file 7: Figure
S7-LD-Adjacent and Additional file 8: Figure S8-LD-
Windows). Reciprocally, for flowering time, we observed dif-
ferent cases where LD_win separated distant SNPs in high
LD into different QTLs, whereas LD_adj grouped them
(QTL 25 and 26, 51 to 53, 95 to 97, 208 and 209, 218 and
219). As these differences were specific to complex LD and
recombination patterns, we used the LD_win approach for
the rest of the analyses.
Although a large difference in number of associated

SNPs was observed between 600 K and GBS, little differ-
ence was observed between QTL number after grouping
SNPs (Table 3, Table 4). The mean number of QTLs was
indeed 1.0, 5.9, 5.2 and 9.5 for the 50 K, 600 K, GBS, and
the three technologies combined, respectively (Table 4).
Note that the number of QTLs continued to increase
with marker density when SNPs from GBS, 50 K and
600 K were combined (Additional file 9: Figure S9). The
number of SNPs associated with each QTL varied ac-
cording to the technology (on average 3.7, 7.6, 3.4 and

6.6 significant SNPs for the 50 K, 600 K, GBS, and the
combined technologies, respectively). The total number
of QTLs detected over all environments using the 600 K
and GBS was close for flowering time (130 vs 133) and
plant height (96 vs 90). It was 1.4-fold higher for the
600 K than GBS for grain yield (166 vs 120).

The 600 K and GBS were highly complementary for
association mapping
Seventy-eight percent, 76 and 71% of the QTLs of flow-
ering time, plant height and grain yield were specifically
detected by the 600 K or GBS, respectively (Fig. 4). On
the contrary, the 50 K displayed very few specific QTLs.
When we combined the GBS and 600 K markers, 7% of
their common QTLs had -log10(Pval) increased by 2 and
21% by 1, potentially indicating a gain in accuracy of the
position of the causal polymorphism (Additional file 10:
Table S1).
This complementarity between GBS and 600 K is well

exemplified with two strong association peaks for flow-
ering time on chromosome 1 (QTL32) and 3 (QTL95)
detected in several environments (Additional file 10:
Table S1 and Fig. 5a). In order to better understand the
origin of the complementarity between GBS and 600 K
technologies for GWAS, we scrutinized the LD between
SNPs and the haplotypes within these two QTLs (Fig. 5b
and c, and Additional file 11: Figure S10 for other exam-
ples). QTL95 showed a gain in power. It was only identi-
fied by the 600 K although the region included
numerous SNPs from GBS close to the associated peak.
None of these SNPs were in high LD with the most
associated marker of the QTL95 (Fig. 5b). QTL32 was
detected by 1 to 10 GBS markers in 9 environments with

Table 2 Variation of LD extent, and percentage of genome covered

Chromosome Whole
Genome1 2 3 4 5 6 7 8 9 10

Physical Size (Mbp) 301 237 232 241 217 169 176 175 156 150 2,058

Genetic Size (cM) 268 211 188 150 205 129 148 182 145 139 1766

Physical LD extent (kbp) in low recombination regions 306 491 846 808 658 418 547 497 899 815 629

Genetic LD Extent (cM) in high recombination regions 0.062 0.027 0.033 0.022 0.031 0.019 0.012 0.038 0.023 0.019 0.029

Percent of physical genome covered 50 K 81% 72% 76% 77% 74% 67% 71% 73% 71% 71% 74%

600 K 98% 88% 91% 89% 90% 84% 81% 90% 87% 84% 89%

GBS 92% 81% 84% 83% 83% 77% 77% 81% 79% 76% 82%

ALL 98% 90% 92% 90% 91% 87% 83% 92% 88% 85% 90%

Percent of genetic map covered 50 K 72% 41% 44% 38% 41% 32% 24% 46% 32% 27% 42%

600 K 96% 71% 76% 68% 72% 62% 47% 78% 63% 53% 71%

GBS 86% 58% 61% 53% 61% 48% 37% 63% 48% 40% 58%

ALL 97% 74% 78% 72% 74% 65% 51% 81% 66% 57% 74%

Genetic and Physical LD extent were obtained by adjusting Hill and Weir model’s on 100 different sets of 500,000 loci randomly sampled in high (> 0.5 cM / Mbp)
and low (< 0.5 cM / Mbp) recombination regions, respectively. The value represented the average across these 100 sets. The percentage of genome coverage was
estimated using markers with MAF > 5% and E(r2K) = 0.1, for each technology and for the three technologies combined (ALL: GBS + 600 K + 50 K)
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Table 4 Comparison of associated SNPs and QTLs detected between traits and three technologies

Significant SNPs QTLs

Technology 50 K 600 K GBS ALL 50 K 600 K GBS ALL

Marker Nb 42046 459191 308929 810580 42046 459191 308929 810580

Total Nb DTA 52 759 345 1115 20 130 133 226

plantHT 68 778 299 1061 16 96 90 160

GY 123 1416 538 1941 33 166 120 238

Per trait 81 984 394 1372 23 131 114 208

Average per envir. DTA 2.4 34.5 15.7 50.7 0.9 5.9 6.0 10.3

plantHT 3.1 35.4 13.6 48.2 0.7 4.4 4.1 7.3

GY 5.6 64.4 24.5 88.2 1.5 7.5 5.5 10.8

Per trait 3.7 44.7 17.9 62.4 1.0 5.9 5.2 9.5

QTLs were obtained by grouping associated SNPs with overlapping LD windows (LD_win) for the three traits (DTA male flowering time, PlantHT plant height, GY
grain yield). “Marker Nb” indicates the number of markers tested in GWAS. “Total number”: is the sum of associated SNPs or QTLs across environments. “Average
per envir” indicates the average number of QTLs obtained in 22 environments for three traits (66 trait-environments combinations)

Table 3 Number of significant SNPs per environment, per technology and for the combined technologies

Flowering Time Plant Height Grain Yield

Env. Herit. 50 K 600 K GBS ALL Herit. 50 K 600 K GBS ALL Herit. 50 K 600 K GBS ALL

Cam12R 0.40 0 3 1 4 0.57 23 209 88 289 0.37 21 286 102 381

Cam12W 0.60 1 18 13 31 0.39 22 270 72 339 0.54 41 525 167 684

Cam13R 0.46 0 9 7 16 0.21 0 2 3 5 0.19 0 1 3 4

Cra12R 0.69 1 40 18 59 0.32 0 6 3 9 0.25 3 57 45 103

Cra12W 0.72 3 25 19 43 0.19 10 69 16 83 0.53 12 98 53 150

Deb12R 0.63 1 14 16 30 0.33 0 1 0 1 0.57 2 14 0 16

Deb12W 0.71 0 25 38 61 0.37 0 6 7 7 0.47 0 6 2 8

Deb13R 0.59 1 17 5 23 0.08 0 33 9 42 0.37 1 22 15 37

Gai12R 0.64 8 80 24 104 0.18 1 47 41 89 0.31 0 23 8 31

Gai12W 0.66 5 42 15 59 0.46 0 1 3 4 0.58 3 71 14 85

Gai13R 0.62 0 24 8 31 0.66 0 6 6 11 0.63 0 4 5 9

Gai13W 0.73 1 45 9 54 0.33 0 1 3 4 0.76 2 7 1 9

Kar12R 0.72 4 30 21 52 0.30 0 4 3 7 0.71 0 5 6 11

Kar12W 0.77 8 60 10 73 0.23 1 10 4 14 0.53 2 19 11 29

Kar13R 0.68 3 65 11 77 0.31 0 4 2 6 0.75 4 37 24 62

Kar13W 0.73 0 17 12 29 0.26 0 2 7 9 0.67 4 12 6 19

Mur13R 0.83 3 48 19 68 0.32 7 61 7 68 0.84 14 90 28 116

Mur13W 0.76 0 11 8 19 0.32 3 4 2 9 0.74 10 80 25 104

Ner12R 0.72 7 23 18 45 0.34 0 7 3 10 0.54 1 10 6 16

Ner12W 0.81 1 80 30 107 0.24 0 2 2 4 0.59 1 8 6 15

Ner13R 0.76 3 60 26 88 0.26 1 25 13 38 0.32 0 13 7 20

Ner13W 0.81 2 23 17 42 0.20 0 8 5 13 0.73 2 28 4 32

Average 0.68 2.4 34.5 15.7 50.7 0.31 3.1 35.4 13.6 48.2 0.55 5.6 64.4 24.5 88.2

Median 0.71 1 25 15.5 47.5 0.32 0 6 4.5 9.5 0.56 2 20.5 7.5 30

SD 0.11 2.6 22.7 8.7 27.7 0.13 6.8 69.6 23.2 90.2 0.18 9.6 120.1 39.5 156.8

The average, median and standard deviation (SD) per environment are calculated for each trait (male Flowering Time, Plant Height, Grain Yield). “Herit.”: narrow
sense heritability. “Env.”: Environment
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–log(p-value) ranging from 5 to 7.6, whereas it was de-
tected by only two 600 K markers in one environment
(Ner12W) with –log(p-value) slightly above the signifi-
cance threshold (Additional file 10: Table S1 and Fig. 5b).
Haplotype analyses showed that the SNPs from the

GBS within QTL95 were not able to discriminate all
haplotypes (Fig. 5c). In QTL95, the 600 K markers dis-
criminated the three main haplotypes (H1, H2, H3),
whereas the GBS markers did not discriminate H3
against H1 + H2. As H1 contributed to an earlier flower-
ing time than H2 or H3, associations appeared more sig-
nificant for the 600 K than for GBS (Fig. 5c). In QTL32,
the use of GBS markers identified late individuals that
mostly displayed H1, H2 and H3 haplotypes, against
early individuals that mostly displayed H4 and H5 haplo-
types (Fig. 5c). The gain of power for GBS markers as
compared to 600 K markers for QTL32 originated from
the ability to discriminate late individuals (black alleles)
from early individuals (red alleles) within H4 haplotypes
(Fig. 5c).
To further decipher the GWAS differences between

600 K and GBS, we used a resampling approach to ex-
plore the interplay between (i) MAF distribution and (ii)
SNP distribution along the genome, at different SNP

densities. We detected more SNP associations, but less
QTLs with a MAF distribution skewed towards low than
high MAF. This difference increased as marker density
increased (Additional file 12: Figure S11). As GBS has a
MAF distribution skewed towards low MAF compared
to 600 K, GBS detected more QTLs but less associated
SNPs than 600 K. This discrepancy between association
and QTL detection came from the fact that QTLs with
low MAF were identified by less associated SNP than
those with high MAF (Additional file 13: Figure S12).
SNPs distributed similarly to GBS detected more QTLs

but less significant SNPs than those following the distribu-
tion of the 600 K and 50 K, notably for the highest SNP
density (Additional file 13: Figure S12). We observed that
SNPs evenly distributed according to the physical distance
detected more associations, but less QTLs than all other
SNP distributions along the genome. It was the contrary
for SNPs evenly distributed according to genetic distance
(Additional file 12: Figure S11 C and D). This is consistent
with QTL distribution along the genome being more cor-
related to the genetic than physical distance (see below),
and the fact that recombination is higher in gene rich re-
gions, leading to less associated SNPs per QTL. Superior-
ity of QTL detection by the GBS distribution as compared

Fig. 4 Complementarity of the three technologies to detect QTLs. The numbers of specific QTLs detected by each technology for the three traits
(flowering time, plant height, grain yield) are shown
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Fig. 5 Complementarity of QTLs detection between the 600 K array and the GBS for two regions (QTL 32/QTL95). a Manhattan plot of the
-log10(p-value) along the genome. Dotted red lines correspond to QTL32 and QTL95 located on chromosome 1 and 3, respectively, for the
flowering time in one environment (Ner13R). b Local manhattan plot of the -log10(p-value) (top) and linkage disequilibrium corrected by the
kinship (r2K) (bottom) of all SNPs with the strongest associated marker within QTL 32 (left) and QTL 95 (right). Colored vertical lines between
manhattan plot and linkage disequilibrium plot represents the distribution of markers for different technologies. Dotted lines between panels b
and c linked the first marker, the most associated marker, and the last marker of each QTL (c) Local haplotypes displayed by all SNPs within the
QTLs 32 (left) and 95 (right) with MAF > 5%. Inbred lines are in rows and SNPs are in columns. Inbred lines were ordered by hierarchical clustering
based on local dissimilarity estimated by all SNPs within each QTL. Genotyping matrix is colored according to their allelic dose at each SNP. Red
and black represent homozygotes and gray represent heterozygotes. The associated peaks (red vertical lines) and other associated SNPs with
-log10(p-value) > 5 (orange vertical lines) are indicated above the genotyping matrix. H1, H2, H3, H4, H5 represent the 5 and 3 haplotypes
obtained by cutting the dendograms with the most 5 and 3 dissimilar clusters within QTL32 and QTL95, respectively
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to the 600 K and 50 K SNP distributions came from the
higher proportion of SNPs in high recombinogenic re-
gions for GBS than for 600 K and 50 K (Fig. 1). This sug-
gests that the complementarity of 600 K and GBS in terms
of QTL detected and SNP associations came also from
their specificities for both SNP distributions along the
genome and MAF distribution. In the end, we studied the
impact of genomic coverage differences between 600 K
and GBS on QTL detection along the genome. QTLs de-
tected by both 600 K and GBS were located in intervals
with large differences in coverage less frequently than
their proportion in the entire genome (0.8% vs 7.8%, re-
spectively). Intervals with specific QTLs showed an en-
richment in such intervals with high differences in
coverage (3.5%), but still below the proportion in the en-
tire genome. It confirms that most specific QTLs showed
no strong genomic coverage differences between GBS and
600 K and therefore that complementarity of QTL

detection between these two technologies came from the
ability to tag different haplotypes.

Colocalization of QTLs between environments and traits
and distribution of QTLs along the genome
After combining the three technologies, we identified
226, 160, 238 QTLs for flowering time, plant height and
grain yield, respectively (Table 4 and Additional file 10:
Table S1). We highlighted 23 QTLs with the strongest
effects on flowering time, plant height and grain yield
(−log10(Pval) ≥ 8, Table 5). The strongest association cor-
responded to the QTL95 for flowering time (−log10(p-
value) = 10.03) on chromosome 3 (158,943,646 – 159,
005,990 bp), the QTL135 for GY (−log10(p-value) = 18.7)
on chromosome 6 (12,258,527 – 29,438,316 bp) and
QTL78 on chromosome 6 (12,258,527 – 20,758,095 bp)
for plant height (−log10(p-value) = 17.31). The QTL95
for flowering time trait was the most stable QTLs across

Table 5 Summary of the main QTLs (−log10(Pval) ≥ 8) identified for the three traits

Trait QTL Chr Pos Lower Limit Upper Limit R2 Effect Log Minor All Major All MAF EnvMax Nb DiffEnv

DTA 95 3 158,974,594 158,943,646 159,005,990 0.15 1.27 10.03 G C 0.41 Ner13R 19

plantHT 21 2 130,441,738 129,971,437 130,912,039 0.15 −6.74 9.21 A G 0.14 Cam12W 3

71 6 6,614,012 6,593,785 6,636,807 0.13 −4.76 8.39 G A 0.18 Cam12R 2

72 6 6,807,230 6,793,841 6,837,747 0.14 −4.87 8.77 T G 0.18 Cam12R 2

78 6 20,330,595 12,258,527 20,758,095 0.27 −8.99 17.31 C T 0.26 Cam12W 4

79 6 22,905,376 21,037,721 23,951,687 0.19 −5.45 11.42 T G 0.31 Cam12R 3

80 6 25,3178,25 24,184,017 26,606,537 0.13 −4.41 8.17 T C 0.2 Cam12R 2

81 6 28,130,108 26,695,327 28,659,766 0.16 −5.14 9.84 C G 0.44 Cam12R 2

94 6 101,482,646 101,463,249 101,501,936 0.14 −5.98 8.22 T A 0.17 Cam12W 2

110 8 12,782,777 12,767,198 12,798,330 0.19 −7.67 12.44 C T 0.22 Cam12W 3

GY 65 3 141,621,777 140,505,559 144,210,207 0.12 0.42 8.13 A C 0.27 Gai12W 5

85 3 187,028,970 186,994,852 187057,772 0.12 −0.48 8.49 A C 0.28 Kar12W 1

120 6 5,155,708 5,131,927 5,177,694 0.12 −0.58 8.24 C T 0.42 Cam12W 2

122 6 5,638,516 5,623,945 5,659,803 0.12 −0.57 8.11 T G 0.23 Cam12W 2

124 6 5,871,000 5,855,407 5,887,383 0.12 −0.56 8.4 T G 0.42 Cam12W 2

127 6 6,612,654 6,593,785 6,636,807 0.16 −0.65 10.44 C A 0.32 Cam12W 2

128 6 6,807,462 6,793,841 6,837,747 0.12 −0.54 8.41 A C 0.26 Cam12W 2

129 6 6,890,199 6,878,877 6,930,838 0.12 0.63 8.06 T A 0.48 Cam12W 3

130 6 7,046,773 7,027,497 7,088,575 0.13 0.62 8.71 A G 0.4 Cam12W 3

131 6 7,159,714 7,113,662 7,200,479 0.12 0.59 8.24 T C 0.39 Cam12W 3

135 6 18,528,943 12,258,527 29,438,316 0.28 −0.78 18.7 G C 0.31 Cam12W 6

147 6 101,482,646 101,463,249 101,501,936 0.22 −0.65 15.04 T A 0.17 Cam12W 5

173 8 12,782,777 12,767,198 12,798,330 0.17 −0.61 11.8 C T 0.22 Cam12W 4

“Pos” indicates the physical position in base pair of the SNP with the strongest association on the V2 of reference genome. LowerLimit and UpperLimit indicate
the lower and upper physical limits estimated by LD windows (LD_win) for each QTL. The proportion of the variance explained (R2), the effect of the major allele
(Effect) as outputted by FastLMM, −log10(Pval) (Log), the minor and major alleles (Minor All and Major All) and the minor allele frequency (MAF) of the most
significant SNP within the QTL are shown. The following columns represent environment for which the most associated QTL was observed (EnvMax) and the
number of different environments in which QTL are detected (NbDiffEnv) are shown. Note that QTLs 71–72 for the plant height and QTLs 129–130 for the grain
yield are genetically close (< 1 cM) and display high mean LD (r2K > 0.5). Hence, QTLs 71–72 and 129–130 can potentially be merged
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environments since it was detected in 19 environments
(Additional file 10: Table S1). Moreover, this QTL
showed a colocalization with QTL74 for grain yield in 5
environments and QTL30 for plant height in 1 environ-
ment suggesting a pleiotropic effect. More globally, 472
QTLs appeared trait-specific whereas 70 QTLs over-
lapped between at least two traits (6,3, 5.2 and 3.0% for
GY and plantHT, GY and DTA, and DTA and plantHT,
respectively) suggesting that some QTLs may be pleio-
tropic (Additional file 14: Figure S13). This was not sur-
prising since average corresponding correlations within
environments for these traits were moderate (0.47, 0.54
and 0.45, respectively). Only 0.7% overlapped between
the three traits (Additional file 14: Figure S13). Twenty
percent of QTLs were detected in at least two environments
and 9% in at least three environments (Additional file 15:
Table S2). We observed no significant differences of stability
between the three traits (p-value = 0.2). However, 6 out 7
most stable QTLs (Number of environments > 5) were
found for flowering time. This was consistent with higher
average correlations between environments observed for
flowering time than for plant height and grain yield (0.76,
0.43, 0.48, respectively). We observed that QTLs that dis-
played a significant effect in more than one environment had
larger effects and -log(p-value) values than those significant
in a single environment. This difference in -log(p-value)
values was stronger for grain yield and plant height than
flowering time.
The distribution of QTLs was not homogeneous along

the genome since 82, 77 and 79% of flowering time,
plant height and grain yield QTLs, respectively, were
located in the high recombinogenic regions, whereas
they represented 46% of the physical genome (Additional
file 16: Table S3). The QTLs were more stable (≥ 2 envi-
ronments) in low than in high recombinogenic regions
(12.8% vs 5.8%, p-value = 0.03).

Discussion
GBS required massive imputation but displayed similar
global trends than DNA arrays for genetic diversity
organization
In order to reduce genotyping cost, GBS is most often
performed at low depth leading to a high proportion of
missing data, thereby requiring imputation in order to
perform GWAS. Imputation can produce genotyping er-
rors that can cause false associations and introduce bias
in diversity analysis [33]. We evaluated the quality of
genotyping and imputation obtained by different ap-
proaches, taking the 50 K or 600 K as references. The
best imputation method that yielded a fully genotyped
matrix with the lowest error rate for the prediction of
both heterozygotes and homozygotes was the approach
merging the homozygous genotypes from TASSEL and
the imputation of Beagle for the other data (GBS5 Table 1).

The quality of imputation was high with 96% of allelic
values consistent with those of the 50 K and 600 K.
This level of concordance is identical to a study of
USA national maize inbred seed bank by Romay et al.
[32]. It is higher than in a diversity study of European
flint maize collection (93%) by Gouesnard et al. [33],
which was more distant from the reference All-
ZeaGBSv2.7 database than for the panel presented
here. For further studies, integrating genotyping data
from the three technologies may reduce imputation
errors for missing data of GBS [35].
The ascertainment bias of SNP-arrays due to the lim-

ited number of lines used for SNP discovery was rein-
forced by counter-selection of rare alleles during the
design process of DNA arrays [3, 4]. For GBS, the poly-
morphism database to call polymorphisms included
thousands of diverse lines [38]. In our study, we used
AllZeaGBSv2.7 database. After a first step of GBS imput-
ation (GBS2), missing data dropped to 11.9% i.e. only
slightly more than in Romay et al. (10%) [32]. This con-
firms that the polymorphism database (AllZeaGBSv2.7)
covered adequately the genetic diversity of our genetic
material.
Although, we observed differences of allelic frequency

spectrum between GBS and DNA arrays, these technolo-
gies revealed similar trends in the organization of popula-
tion structure and relatedness (Fig. 2, Additional file 4:
Figure S4) suggesting no strong ascertainment bias for
deciphering global genetic structure trends in the
panel. However, although highly correlated, level of
relatedness differed between GBS and DNA arrays,
especially when the lines were less related as showed
by the deviation (to the left) of the linear regression
from the bisector (Additional file 5: Figure S5).

The extent of linkage disequilibrium strongly varied
along and between chromosomes
Linkage disequilibrium extent in high recombinogenic
regions varied to a large extent among chromosomes,
ranging from 0.012 to 0.062 cM. Similar variation of
genetic LD extent between maize chromosomes has
been previously observed by Rincent et al. [14], but their
classification of chromosomes was different from ours.
This difference could be explained by the fact that we
analyzed specifically high and low recombination re-
gions. According to Hill and Weir Model [39], the phys-
ical LD extent in a genomic region increased when the
local recombination rate decreased. As a consequence,
chromosome 1 and 9 had the lowest and highest phys-
ical LD extent and displayed the highest and one of the
lowest recombination rate in pericentromeric regions,
respectively (0.26 vs 0.11 cM/Mbp, Table 2 and
Additional file 16: Table S3). Unexpectedly, the genetic
LD extent also correlated negatively with the
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recombination rate. It suggested that chromosomes with
a low recombination rate also display a low effective
population size. Background selection against deleteri-
ous alleles could explain this pattern since it reduces
the genetic diversity in low recombinogenic regions
[40, 41]. Finally, we observed a strong variation of the
LD extent along each chromosome. As we used a
consensus genetic map [42] that represents well the
recombination within our population, it suggested, ac-
cording to Hill and Weir’s model, that the number of
ancestors contributing to genetic diversity varied
strongly along the chromosomes. This likely reflects
the selection of genomic regions for adaptation to en-
vironment or agronomic traits [40], that leads to a
differential contribution of ancestors according to
their allelic effects. Ancestors with strong favorable
allele(s) in a genomic region may lead ultimately to
large identical by descent genomic segments [43].

SNPs were clustered into QTL highlighting interesting
genomic regions
In previous GWAS studies, the closest associated SNPs
were grouped into QTLs according to either a fixed
physical distance [1] or a fixed genetic distance [29, 44].
These approaches suffer of two drawbacks. First, the
physical LD extent can vary strongly along chromosomes
according to the variation of recombination rate (Fig. 1
and Additional file 3: Figure S3). Second, the genetic LD
extent depends both on panel composition and the pos-
ition along the genome (Table 2). These approaches may
therefore strongly overestimate or underestimate the
number of QTLs. To address both issues Cormier et al.
[45] proposed to group associated SNPs by using a gen-
etic window based on the genetic LD extent estimated
by Hill and Weir model in the genomic regions around
the associated peaks [39]. In our study, we improved this
last approach (LD_win):

– First, we used r2K that corrected r2 for kinship
rather than the classical r2 since r2K reflected the
LD addressed in our GWAS mixed models to map
QTL [17].

– Second, we took advantage of the availability of both
physical and genetic maps of maize to project the
genetic LD extent on the physical map. This
physical window was useful to retrieve the
annotation from B73 reference genome, decipher
local haplotype diversity (Fig. 5) and estimate
physical genome coverage (Table 2, Additional file 3:
Figure S3).

– Third, we considered an average LD extent
estimated separately in the high and low
recombinogenic genomic regions. This average was
estimated by using several large random sets of pairs

of loci in these regions rather than the local LD
extent in the genomic regions around each
associated peaks.

We preferred this approach rather than using local LD
extent in order to limit the effect of (i) the strong vari-
ation of marker density along the chromosome (Add-
itional file 3: Figure S3), (ii) the local ascertainment bias
due to the markers sampling (iii) the poor estimation of
the local recombination rate using a genetic map, not-
ably for low recombination regions [3, 43], and (iv) er-
rors in locus order due to assembly errors or
chromosomal rearrangements.
We compared LD_win with LD_adj, another approach

based on LD to group the SNPs associated to trait vari-
ation into QTLs. The discrepancies between the two ap-
proaches can be explained by the local recombination rate
and LD pattern. Since LD_adj approach was based on the
grouping of contiguous SNPs according to their LD, this
approach was highly sensitive to (i) errors in marker order
or position due to genome assembly errors or structural
variations, which are important in maize [46] (ii) genotyp-
ing or imputation errors, which we estimated at ca. 1%
and ca. 4%, respectively, for GBS (Table 1), (iii) presence
of allelic series with contrasted effects in different experi-
ments which are currently observed in maize [42], (iv) LD
threshold used. On the other hand, LD_win lead either to
inflate the number of QTLs in high recombinogenic re-
gions in which SNPs were too distant genetically to be
grouped, or deflated their number by grouping associated
SNPs in low recombinogenic regions. Since LD_win
considered the average LD extent, this method could con-
duct either to separate or group abusively SNPs when
local LD extent was different than the global LD extent.
Simulations will be carried out in further research to bet-
ter understand the properties of LD_win and LD_adj
approaches.
Note that LD windows should not be considered as

confidence intervals since the relationship between LD
and recombination is complex due to demography, drift
and selection in association panels, contrary to linkage
based QTL mapping [17]. The magnitude of the effect of
causal polymorphism in the estimation of these intervals,
which is well established for linkage mapping [47],
should be explored further. Other approaches have been
proposed to cluster SNPs according to LD [48, 49].
These approaches aim at segmenting the genome in dif-
ferent haplotype blocks separating by high recombin-
ation regions. These methods are difficult to use for
estimating putative windows inside which the causal
polymorphisms are located because such approaches are
not centered on the associated SNP.
Several QTLs identified by LD_win in our study cor-

respond to regions previously identified: in particular, six
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regions associated with female flowering time [26] and
30 regions associated with different traits in the
Cornfed dent panel [11]. Conversely, we did not iden-
tify in our study any QTL associated to the florigen
ZCN8, which showed significant effect in these two
previous studies. One of the explanation is that we
narrowed the flowering time range in our study, in
particular by eliminating early lines. This reduced the
representation of the early allele at the Zcn8 locus,
leading to a MAF of 0.27 in our study vs 0.35 in
Rincent et al. [11], which can slightly diminish the
power of the tests [14]. Also, this effect may have
strengthened by frequency evolution at loci involved
in epistatic interactions with Zcn8 (see [50] for a re-
cent demonstration of such effects).

Complementarity of 600 K and GBS for QTL detection
resulted mostly from the tagging of different haplotypes
rather than the coverage of different genomic regions
Number of significant SNPs and QTLs increased with
the increase in marker number (Table 4, Additional
file 9: Figure S9). This could be explained partly by a
better coverage of some genomic regions by SNPs,
notably in high recombinogenic regions which showed
a very short LD extent and were enriched in QTLs
(Additional file 16: Table S3). Numerous new QTLs
identified by the 600 K and GBS as compared with
those identified by the 50 K were detected in high
recombinogenic regions that were considerably less
covered by the 50 K than the 600 K or GBS (Fig. 1
and Additional file 3: Figure S3).
The high complementarity for QTL detection between

GBS and 600 K was only explained to a limited extent by
the difference of the SNP distribution and density along
the genome, since these two technologies targeted simi-
lar regions as showed by the coverage analysis (Fig. 1
and Additional file 3: Figure S3). However, at a finer
scale, SNPs from the 600 K and GBS could tag close, but
different genomic regions around genes. SNPs from the
600 K were mostly selected within coding regions of
genes [4], whereas SNPs from GBS targeted more largely
low copy regions, which included coding but also regula-
tory regions of genes [31, 37]. To further analyse the
complementarity of the technologies, we analysed local
haplotypes and the effect of genome coverage differences
between technologies on QTL detection. We showed
that both technologies captured different haplotypes
when similar genomic regions were targeted (Fig. 5). In
this figure, two QTLs were specifically detected by
markers from either 600 K or GBS, although there are
several markers from the other technology very close
from the most associated marker, considering the size of
LD windows around it. Additionally, we did not observe
an enrichment of QTLs specifically detected by one

technology in 20 kbp-intervals with high genomic cover-
age difference between 600 K and GBS. Hence, we pin-
pointed that GBS and DNA arrays are highly
complementary for QTL detection because they tagged
different haplotypes rather than different regions (Fig.
5). Based on the L-shaped MAF distribution, which
suggests no ascertainment bias, and the high number
of sequenced lines used for the GBS, we expect a
closer representation of the variation present in our
panel by this technology compared to the 600 K, but
this comes to the cost of an enrichment in rare al-
leles. Both factors tend to counterbalance each other
in terms of GWAS power (Additional file 13: Figure
S12).
Our results suggest that we did not reach saturation

with our c. 800,000 SNPs because (i) some haplotypes
certainly remain not tagged (ii) the genome coverage
was not complete, and (iii) the number of significant
SNPs and QTLs continued to increase with marker
density (Additional file 9: Figure S9). Considering LD
and marker density, the genotypic data presently avail-
able were most likely enough to well represent polymor-
phisms in the centromeric regions, whereas using more
markers would be beneficial for telomeric regions. New
approaches based on resequencing of representative
lines and imputation are currently developed to achieve
this goal.

Methods
Plant material and phenotypic data
The panel involves 247 maize inbred lines, further re-
ferred to as DROPS panel (Additional file 17: Table S4).
They include 164 lines from a wider panel of lines from
Europe and America [11] and 83 additional lines derived
from public breeding programs in Hungary, Italy and
Spain and recent lines free of patent from the USA. All
lines belong to the dent genetic group, which can be
subdivided in different sub-groups (see [11, 29]). Lines
were selected within a restricted flowering time window
(10 days) in order to limit the effect of drought escape
due to flowering time variation in the identification of
genomic regions involved in drought tolerance [29].
Candidate lines with poor sample quality, i.e. high level
of heterozygosity, or high relatedness with other lines
were discarded in this selection. The lines selection was
also guided by pedigree to avoid as far as possible over-
representation of some ancestral materials.
The 247 inbred lines were all crossed with a com-

mon line (UH007) from the Flint genetic groups to
obtain 247 hybrids (hybrid panel). Dent and Flint
genetic groups are known to be complementary to
produce hybrids [51]. Further, as UH007 is unrelated
to any line in the panel, no hybrid is affected by in-
breeding depression. This guarantees that hybrids
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have a level of performance and an overall physiology
comparable to that of varieties used in agriculture.
Conversely, field evaluation of inbred lines per se
would have diminished yield by more than 50%.
Experimental design and model used for obtaining ad-

justed means for male flowering time (Day To Anthesis,
DTA), plant height (plantHT), and grain yield (GY) were
previously described [29]. While DTA and GY were pre-
viously analyzed in [29], PlantHT was not. Briefly, the
hybrid panel were evaluated for these three traits in 22
experiments (combination year x site x water regime),
i.e. at seven sites in Europe, during two years (2012 and
2013), and for two water treatments (watered and
rainfed) [29]. Experiments were designed as alpha-lattice
designs with two and three replicates for watered and
rain-fed regimes, respectively. Grain yield (t ha− 1) was
adjusted to 15% moisture. The adjusted mean (Best Lin-
ear Unbiased Estimation, BLUEs, https://doi.org/1
0.15454/IASSTN) of the three traits were estimated per
environment (site × year × water regime) using a mixed
model based on fixed hybrid and replicate effects,
random spatial effects (rows and columns), and
spatially correlated errors in order to take into ac-
count spatial variation of micro-environment in each
field trial (see [29] for more details). The same model,
but with random hybrids effects, was used to estimate
variance components. Models were fitted with
ASReml-R [52]. Narrow-sense heritability of each trait
in each environment were also estimated as in [29]
(Additional file 18: Table S5). As all hybrids share a
common parent (UH007), adjusted means (BLUEs) of
hybrids were combined with genotyping data of the
corresponding dent inbred lines of the panel to per-
form GWAS, following a usual practice in maize gen-
etics [11].

Genotyping and genotyping-by-sequencing data
The 247 inbred lines were genotyped using three tech-
nologies: a maize Illumina Infinium HD 50 K array [3], a
maize Affymetrix Axiom 600 K array [4], and
Genotyping-By-Sequencing [2, 37]. In the arrays, DNA
fragments are hybridized with probes attached to the
array (Additional file 19: Notes S1 for the description of
the data from the two SNP-arrays). Genotyping-by-
sequencing technology is based on multiplex resequen-
cing of tagged DNA using restriction enzyme (Keygene
N.V. owns patents and patent applications protecting its
Sequence Based Genotyping technologies) [2]. Cornell
Institute (NY, USA) processed raw sequence data using
a multi-step Discovery and a one-step Production pipe-
line (TASSEL-GBS) in order to obtain genotypes (Add-
itional file 19: Notes S1). An imputation step of missing
genotypes was carried out by Cornell Institute [38],
which utilized an algorithm that searches for the closest

neighbour in small SNP windows across the haplotype
library [37].
We applied different filters (heterozygosity rate, miss-

ing data rate, minor allele frequency) for a quality con-
trol of the genetic data before performing the diversity
and association genetic analyses. For GBS data, the fil-
ters were applied after imputation using the method
“Compilation of Cornell homozygous genotypes and
Beagle genotypes” (GBS5 in Additional file 1: Figure S1;
See section “Evaluating Genotyping and Imputation
Quality”). We eliminated markers that had an average
heterozygosity and missing data rate higher than 0.15
and 0.20, respectively, and a Minor Allele Frequency
(MAF) lower than 0.01 for the diversity analyses and
0.05 for the GWAS (Additional file 20: Table S6). Indi-
viduals which had heterozygosity and/or missing data
rate higher than 0.06 and 0.10, respectively, were elimi-
nated. Filtered imputed genotyping data for 50 K, 600 K
and GBS were available at https://doi.org/10.15454/
AEC4BN.

Evaluating genotyping and imputation quality
Estimation of genotyping and imputation quality was
performed using the entire panel except two inbred lines
that had different seedlots between technologies. The 50
K and the 600 K were taken as reference to compare the
concordance of genotyping (genotype matches) with the
imputation of GBS based on their position. While SNP
positions and orientation from GBS were called on the
reference maize genome B73 AGP_v2 (release 5a) [53],
flanking sequences of SNPs in the 50 K were primary
aligned on the first maize genome reference assembly
B73 AGP_v1 (release 4a.53) [54]. Both position and
orientation scaffold carrying SNPs from the 50 K can be
different in the AGP_v2, which could impair correct
comparison of genotype between the 50 K and GBS.
Hence, we aligned flanking sequences of SNPs from the
50 K on maize B73 AGP_v2 using the Basic Local Align-
ment Search Tool (BLAST) to retrieve both positions
and genotype in the same and correct strand orientation
(forward) to compare genotyping. The number of com-
mon markers between the 50 K/600 K, 50 K/GBS, GBS/
600 K and 50 K/600 K/GBS was 36,395, 7,018, 25,572
and 5,947 SNPs, respectively. The comparison of the
genotyping and imputation quality between the 50 K/
GBS, 50 K/600 K and 600 K/GBS was done on 5,336 and
24,286 and 26,154 common markers, respectively. The
comparison for the 50 K involved PANZEA markers,
prefixed as “PZE” [55]. In order to achieve these com-
parisons, we considered the direct reads from GBS
(GBS1) and four approaches for imputation (GBS2 to
GBS5, Additional file 1: Figure S1). GBS2 approach con-
sisted of one imputation step from the direct read by
Cornell University, using TASSEL software, but missing
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data was still present. GBS3 approach consisted of im-
putation by Beagle v3 [56] of the missing data of GBS1.
To compare data from GBS3 and GBS2 to those of the
50 K and 600 K, missing data in GBS2 were excluded
from GBS3. In GBS4, genotype imputation by Beagle was
performed on Cornell imputed data after replacing the
heterozygous genotypes with missing data. GBS5, con-
sisted of homozygous genotypes of GBS2 completed by
values imputed in GBS3, no missing data remained
(Additional file 1: Figure S1).

Diversity analyses
After excluding the unplaced SNPs and applying the
filtering criteria for the diversity analyses (MAF >
0.01), we obtained the final genotyping data of the
247 lines with 44,729 SNPs from the 50 K, 506,662
SNPs from the 600 K array, and 395,024 SNPs from
the GBS (Additional file 20: Table S6). All markers of
the 600 K and GBS5 that passed the quality control
were used to perform the diversity analyses (estima-
tion of Q genetic groups and K kinships). For the 50
K, we used only the PANZEA markers (29,257 SNPs)
[55] in order to reduce the ascertainment bias noted
by Ganal et al. [3] when estimating Nei’s index of di-
versity [57] and relationship coefficients. Genotypic
data generated by the three technologies were orga-
nized as G matrices with N rows and L columns, N
and L being the panel size and number of markers,
respectively. Genotype of individual i at marker l
(Gi,l) was coded as 0 (the homozygote for an arbitrar-
ily chosen allele), 0.5 (heterozygote), or 1 (the other
homozygote). Identity-By-Descent (IBD) was estimated
according to Astle and Balding [19]:

K Freqi; j ¼
1
L

XL

l¼1

Gi;l−pl
� �

Gj;l−pl
� �

pl 1−plð Þ ;

where pl is the frequency of the allele coded 1 of marker
l in the panel of interest, i and j indicate the inbred lines
for which the kinship was estimated. We also esti-
mated the Identity-By-State (IBS) by estimating the
proportion of shared alleles. For GWAS, we used K_
Chr [13] that are computed using similar formula as
K_Freq, but with the genotype data of all the chromo-
somes except the chromosome of the SNP tested.
This formula provides an unbiased estimate of the
kinship coefficient and weights by allelic frequency
assuming Hardy-Weinberg equilibrium. Hence, re-
latedness is higher if two individuals share rare alleles
than common alleles.
Genetic structure was analysed using the sofware AD-

MIXTURE v1.22 [17] with a number of groups varying
from 2 to 10 for the three technologies. We compared
assignation by ADMIXTURE of inbred lines between the

three technologies by estimating the proportion of in-
bred lines consistently assigned between technologies
two by two (50 K vs GBS5, 50 K vs 600 K, 600 K vs GBS5)
using a threshold of 0.5 for admixture.
Expected heterozygosity (He) [57] was estimated at

each marker as 2pl(1 − pl) and was averaged on all the
markers for a global characterization of the panel for the
three technologies. Principal Coordinate Analyses
(PCoA) were performed on the genetic distance matrices
[58], estimated as 1N,N − K_Freq, where 1N,N is a matrix
of ones of the same size as K_Freq.

Linkage disequilibrium analyses
We first analyzed the effect of the genetic structure and
kinship on linkage disequilibrium (LD) extent within
and between chromosomes by estimating genome-wide
linkage disequilibrium using the 29,257 PANZEA SNPs
from the 50 K. Four estimates of LD were used: the
squared correlation (r2) between allelic dose at two
markers [59], the squared correlation taking into ac-
count global kinship with K_Freq estimator (r2K), the
squared correlation taking into account population
structure (r2S), and the squared correlation taking into
account both (r2KS) [16].
To explore the variation of LD decay and the stability

of LD extent along the chromosomes, we estimated LD
between a non-redundant set of 810,580 loci from the
GBS, the 50 K and 600 K. To save computation time, we
calculated LD between loci within a sliding window of 1
cM. Genetic position was obtained by projecting the
physical position of each locus using a smooth.spline
function R calibrated on the genetic consensus map of
the Cornfed Dent Nested Association Mapping (NAM)
design [42]. We used the estimator r2 and r2K using 10
different kinships K_Chr. This last estimator was calcu-
lated because it corresponds exactly to the LD used to
map QTL in our GWAS model. It determines the power
of GWAS to detect QTL considering that causal poly-
morphisms were in LD with some polymorphisms geno-
typed in our panel [16]. To study LD extent variation,
we estimated LD extent by adjusting Hill and Weir’s
model [39] using non-linear regression (nls function in
R-package nlme) against both physical and genetic pos-
ition within each chromosome. Since recombination rate
(cM/Mbp) varied strongly along the genome (Fig. 1 and
Additional file 3: Figure S3), we defined high (> 0.5 cM/
Mbp) and low (< 0.5 cM/Mbp) recombinogenic genomic
regions within each chromosome. We adjusted Hill and
Weir’s model [39] separately in low and high recombino-
genic regions (Additional file 16: Table S3) by randomly
sampling 100 sets of 500,000 pairs of loci distant from
less than 1 cM. This random sampling avoided over-
representation of pairs of loci from low recombinogenic
regions due to the sliding-window approach (Fig. 3).

Negro et al. BMC Plant Biology          (2019) 19:318 Page 17 of 22



500,000 pairs of loci represented 0.36% (Chromosome 3
/High rec) to 1.20% of all pairs of loci (Chromosome 8/
High rec).
For all analyses, we estimated LD extent by calculating

the genetic and physical distance for the fitted curve of
Hill and Weir’s Model that reached r2K = 0.1, r2K = 0.2
and r2K = 0.4.

Genome coverage estimation
In order to estimate the genomic regions in which the ef-
fect of an underlying causal polymorphisms could be cap-
tured by GWAS using LD with SNP from three
technologies, we developed an approach to define LD win-
dows around each SNP with MAF ≥ 5% based on LD extent
(Fig. 3). To set the LD window around each SNP, we used
LD extent with r2K = 0.1 (negligible LD), r2K = 0.2 (inter-
mediate LD) and r2K = 0.4 (high LD) estimated in low and
high recombinogenic regions for each chromosome. We
used the global LD decay estimated for these large chromo-
somal regions rather than local LD extent (i) to avoid bias
due to SNP sampling within small genomic regions, (ii) to
reduce computational time, and (iii) to limit the impact of
possible local error in genome assembly. In low recombino-
genic regions, we used the physical LD extent, hypothesiz-
ing that recombination rate is constant along physical
distance in these regions. In high recombinogenic re-
gions, we used the genetic LD extent since there is a
strong variation of recombination rate by base pair
along the physical position (Fig. 1 and Additional file
3: Figure S3). We then converted genetic LD windows
into physical windows by projecting the genetic posi-
tions on the physical map using the smooth.spline
function implemented in R, calibrated on the NAM
dent consensus map [42]. Reciprocally, we obtained
the genetic positions of LD windows in low recombi-
nogenic regions by projecting the physical boundaries
of LD windows on the genetic map.
To estimate coverage of the three technologies to detect

QTLs based on their SNP distribution and density, we cal-
culated cumulative genetic and physical lengths that are
covered by LD windows around the markers, considering
different LD extents for each chromosome (r2K = 0.1,
r2K = 0.2, r2K = 0.4). In order to explore variation of gen-
ome coverage along the chromosome, we estimated the
proportion of genome covered using a sliding-windows
approach based on variable physical distances (20, 100,
500, 2000 kbp) considering LD extent for a r2K = 0.1.

Statistical models for association mapping
We used four models to determine the statistical models
that control best the confounding factors (i.e. population
structure and relatedness) in GWAS (Additional file 21:
Notes S2). We tested different software implementing ei-
ther approximate (EMMAX) [8] or exact computation of

standard test statistics (ASReml and FaST-LMM) [6, 52]
for computational time and GWAS results differences.
Single-trait, single-environment GWAS was performed
for each marker for each environment and all traits
using FaST-LMM. We selected the mixed model using
K_Chr, estimated from PANZEA markers of the 50 K to
perform GWAS on 66 situations (environment × trait)
(Additional file 21: Notes S2). We developed a GWAS
pipeline in R v3.2.1 [60] calling FaST-LMM software and
implementing [13] approaches to conduct single trait
and single environment association tests.
To take into account multiple tests in GWAS and

their dependence, we applied the methods of Moskvina
and Schmidt [61] and Gao et al. [62, 63] to infer the
number of independent tests to be considered in the
Bonferroni formula. Using the Gao et al. [62, 63] ap-
proaches, we estimated the number of independent tests
for GWAS at 15,780 for the 50 K, 92,752 for the 600 K,
109,117 for the GBS5 and 191,026 for the combined gen-
etic data (i.e. merging of 50 K, 600 K, GBS), leading to
different -log10(p-value) thresholds: 5.49, 6.27, 6.34 and
6.58, respectively. Because of these differences, we used
two thresholds of -log10(p-value) = 5 (less stringent) and
8 (hightly conservative and slightly above Bonferroni) for
comparing GWAS to avoid the differences of identifica-
tion of significant SNPs between the technologies due to
the choice of the threshold.

Methods for grouping associated SNPs into QTLs
We used two approaches based on LD for grouping sig-
nificant SNPs. The first approach (LD_win) used LD
windows, previously described, to group significant SNPs
into QTLs considering that all significant SNPs with
overlapping LD windows of r2K = 0.1 belong to the same
QTL (Fig. 3). We hypothesized that significant SNPs
with overlapping LD windows at r2K = 0.1 captured the
same causal polymorphism and were therefore a single
and unique QTL. For the second approach (LD_adj),
significant SNPs were grouped into a same QTL if they
were connected in terms of LD (r2K between adjacent
significant SNPs superior to 0.5). We used LD heatmaps
for comparing the SNP grouping produced by the two
approaches on the three different traits across all envi-
ronments (Additional file 7: Figure S7-LD-Adjacent and
Additional file 8: Figure S8-LD-Windows). All scripts
are implemented in R software [60]. Scripts to group as-
sociated SNPs into QTLs based on two LD approaches
(LD_win and LD_adj) are available on request.

Resampling approach to analyse the effects of MAF
distribution, SNP distribution along the genome and SNP
density on QTL detection
To study the effects of SNP density, MAF distribution
and SNP distribution along the genome on association
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and QTL detection, we used a resampling approach of
several sets of SNPs displaying different MAF distribu-
tion and SNP distribution along the chromosome. We
compared these modalities with different SNP densities
(50,000, 100,000, 150,000, 200,000, 250,000 markers). In
this resampling approach, we considered all markers to-
gether and that both associations and QTLs detected by
the whole SNP sets are true. We selected only markers
having MAF above 5%. To study the effect of MAF dis-
tribution on QTL detection, SNPs were classified in 5
MAF classes (0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4 and 0.4–
0.5) and SNPs were randomly selected in each classes
according to the MAF distributions: 1) similar to GBS
(GBS_MAF), 2) similar to 600 K (600 K_MAF), 3) with
equal frequency for the five MAF classes (Flat_MAF), 4)
skewed towards high MAF (High_MAF) with SNP fre-
quency of 0, 0, 0.2, 0.4, 0.4 in (0–0.1], (0.1–0.2], (0.2–
0.3], (0.3–0.4], (0.4–0.5] MAF classes, respectively, and
5) skewed towards low MAF (Low_MAF) with SNP fre-
quency of 0, 0, 0.2, 0.4, 0.4 in (0–0.1], (0.1–0.2], (0.2–
0.3], (0.3–0.4], (0.4–0.5] MAF classes, respectively.
To study the effect of SNP distribution along the gen-

ome on QTL detection, we compared five different SNP
distributions along the chromosome: 1) evenly distrib-
uted according to the physical distance (Dens_Phys), 2)
evenly distributed according to the genetic distance
(Dens_Gen), 3) distributed like GBS (Dens_GBS), 4) dis-
tributed similarly to 600 K (Dens_600 K), and 5) distrib-
uted like 50 K (Dens_50 K). SNPs were sampled
randomly according to the different densities in contigu-
ous windows of 10 Mbp.

Additional files

Additional file 1: Figure S1. Different approaches used to impute
missing data of the GBS. We considered the direct reads from GBS (GBS1)
and four approaches for imputation (GBS2 to GBS5). GBS2 approach
consisted in one imputation step from the direct read by Cornell
University, using TASSEL software, but missing data was still present. GBS3
approach consisted in a genotype imputation of the whole missing data
of the direct read by Beagle v3. In GBS4, genotype imputation by Beagle
was performed on Cornell imputed data after replacing the heterozygous
genotypes into missing data. GBS5, consisted in homozygous genotypes
of GBS2 completed by values imputed in GBS3. (DOCX 14 kb)

Additional file 2: Figure S2. Comparison of genotyping data between
50K and 600K arrays, and GBS. (a) Distribution of minor allele frequency
per SNP before filtering (monomorphic SNPs removed). (b) Distribution of
SNP missing data proportion for the 50K array, 600K array, GBS direct
reads (GBS1) and GBS after imputation by Cornell Institute (GBS2, note
that the scale of the x-axes is different). (c) Relatedness distribution (Iden-
tity-By-State, IBS) after QC filtering with MAF≥1% (IBS using GBS1 was not
estimated because of the low calling rate). (DOCX 71 kb)

Additional file 3: Figure S3. Variation of the markers density, the
recombination rate and the genome coverage in non-overlapping 2 Mbp
windows along each chromosome except chromosome 3 (presented in
Fig. 1). Markers have MAF above 5%. Top panel shows the variation of
SNP number. In the bottom panel, dotted line represents the variation of
recombination rate (cM / Mbp) and solid lines the proportion of genome
covered by the SNPs using the cumulated length of physical LD windows

around each SNP in each 2Mbp-windows. In these two panel, green,
blue, red and black lines represent variation for GBS, 600K, 50K and com-
bined technologies, respectively. Vertical dotted gray lines indicate limits
of centromeric regions. Vertical lines between the two panels indicate
the position of QTLs for flowering time (DTA), grain yield (GY) and Plant
Height (PHT). Green, blue, red vertical lines indicate QTLs detected only
by GBS, 600K and 50K technologies, respectively. Grey vertical lines
indicate QTL detected by at least two technologies. Only QTL including a
marker associated with -log10(pval) above 6 were shown. (PDF 152 kb)

Additional file 4: Figure S4. Contribution of four ancestral populations
to 247 inbred lines after ADMIXTURE analysis. Markers from the 50K (top),
600K (middle) and GBS (bottom) were used. One vertical bar corresponds
to one individual. Lines were ordered according to contributions
observed for the 50K. From left to right, we have Stiff Stalk lines type B73
and B14a (blue), Iodent lines type PH207 (red), Lancaster lines type Mo17
and Oh43 (turquoise), a group of lines assembling W117, F7057 type lines
(green). (DOCX 239 kb)

Additional file 5: Figure S5. Correlation between kinship matrix
estimated by different technologies. Correlation (r) between the IBS and
IBD (K_Freq) for each technology (A). Correlation of IBD (B) and IBS (D)
between the three technologies (after imputation). (C) Correlation of IBD
between the three technologies after removing the excess of rare alleles
in the GBS to have the same distribution of MAF as in the 50K and the
600K. The red line is the bisector. (DOCX 255 kb)

Additional file 6: Figure S6. Heatmaps of genome-wide linkage disequi-
librium (LD) between all markers within and between chromosomes using
PANZEA SNPs from the 50K. All SNPs were ordered according to their pos-
ition on the genome. “Unpl” after chromosome 10 refers to unplaced SNPs,
in an arbitrary order. Dots represented LD between two loci and were col-
ored according to their strength. Classical LD measurement r2 between loci
were represented within triangle below the diagonal. Linkage disequilibrium
corrected for structure (r2S, A), relatedness (r2K, B) or both (r2KS, C) were rep-
resented within triangle above the diagonal. (DOCX 442 kb)

Additional file 7: Figure S7. QTL limits obtained by the LD_adj approach
projected on heatmaps representing the level of LD between associated
SNPs for each trait (DTA: male flowering time, plantHT: plant height and GY:
grain yield) and each chromosome. Upper and lower triangles on the
heatmaps represent the r2 and r2K values between associated SNPs,
respectively. Linkage disequilibrium between loci was colored according to
values from weak LD (yellow) to high LD (red). The significant markers were
ordered according to their physical positions on the chromosome and were
represented by ticks on the four sides of the heatmaps. Limits of QTLs were
displayed by gray dotted lines. QTL numbers were indicated in gray on the
top and the right of each heatmap. (PDF 7373 kb)

Additional file 8: Figure S8. QTL limits obtained by the LD_win
approach projected on heatmaps representing the level of LD between
associated SNPs for each trait (DTA: male flowering time, plantHT: plant
height and GY: grain yield) and each chromosome. Upper and lower
triangles on the heatmaps represented the r2 and r2K values between
associated SNPs, respectively. Linkage disequilibrium between loci was
colored according to values from weak LD (yellow) to high LD (red). The
significant markers were ordered according to their physical positions on
the chromosome and were represented by ticks on the four sides of the
heatmaps. Limits of QTLs were displayed by gray dotted lines. QTL
numbers were indicated in gray on the top and the right of each
heatmap. (PDF 7360 kb)

Additional file 9: Figure S9. Number of significant SNPs (blue line) and
QTLs (red line) identified as a function of SNP density (x-axis) for the male
flowering time (DTA), plant height (PlantHT) and grain yield (GY). (DOCX 125 kb)

Additional file 10: Table S1. Summary of all the QTLs identified for the
male flowering time (DTA), plant height (plantHT) and grain yield (GY).
“LowerLimit” and “UpperLimit” columns are the lower and upper physical
limits for each QTL. The “Rec” column indicates if the QTL is located in a
high or low region of recombination. “NbSNP50”, “LogPvaMax50”,
“NbSNP600”, “LogPvaMax600”, “NbSNPGBS”, “LogPvaMaxGBS” are the
number of significant SNPs and the most significant –log10(Pval) within
the QTL for each technology across all environments. The physical
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position (“PosMax”), the proportion of the variance explained
(“R2_LDMax”) and the effect (“EffectMax”) of the most significant SNP
within the QTL is shown. “NbDiffEnv” gives the number of different
situations that detected the QTL. (CSV 50 kb)

Additional file 11: Figure S10. Examples of QTL detection on
Chromosome 3, 6 and 8 for the different traits. The top panel represents the
distribution of the QTLs along the chromosome of interest, for the different
technologies. The vertical red line in this panel localizes the SNP chosen as
reference for the QTL (marker with the strongest association). The middle panel
is a zoom in the vicinity of the reference SNP, showing the Local distribution of
the -log10(p-value). The bottom panel is the same zoom as the middle panel and
shows the local linkage disequilibrium corrected by the kinship (r2k) of all SNPs,
within this region, within the reference SNP. Ticks on different x-axes show the
marker density of the three technologies (red for the 50K, blue for the 600K and
green for the GBS, black for all markers). (DOCX 1632 kb)

Additional File 12: Figure S11. Effect of minor allelic frequency
distribution, SNP distributions along the genome and SNP densities on
the number of associated SNP and QTL detected. Boxplot were drawn on
100 sets of 50 000 to 250 000 markers sampled according to different
MAF distributions (A, B) and different SNP distributions along the
genome (C, D). A, C: number of SNP associated; B, D: Number of QTL
detected. In A and B, 600K_MAF (yellow), GBS_MAF (green), Low_MAF
(cyan), Flat_MAF (blue), High_MAF (pink) on x axis indicate boxplots
corresponding to MAF distribution similar to 600K, similar to GBS, skewed
towards low MAF, flat MAF and skewed toward high MAF, respectively. In
C and D, Dens_50K (red), Dens_600K (yellow), Dens_GBS (cyan),
Dens_Gen (blue), Dens_Phys (pink) on x axis indicate distribution of SNPs
along the genome corresponding to 50K, GBS, 600K, even genetic and
physical distances, respectively. For A, B, C and D, modalities indicated as
“Random” in x axis correspond to random sample of SNP. Number of
markers for each boxplot are indicated after the point. (PDF 281 kb)

Additional file 13: Figure S12. Distribution of markers, associations and
QTLs according to the MAF classes for 50K, 600K GBS, and ALL
technologies. A) Number of markers, B) Proportion of markers, C)
Proportion of Association, D) Proportion of QTLs. (PDF 32 kb)

Additional file 14: Figure S13. Colocalization of QTLs between the
traits. Number of QTLs specific and shared by the three traits across all
environments. Note that several QTLs from one trait were sometimes
included in a single QTL of another trait. (DOCX 48 kb)

Additional file 15: Table S2. Stability of QTLs across environments for
the male flowering time (DTA), Plant Height (PlantHT), Grain Yield (GY)
and all traits. “Env. Nb” indicates the number of environment in which a
QTL was detected. Next four columns indicate the number of QTL
corresponding to each category. (DOCX 14 kb)

Additional file 16: Table S3. Proportion of low and high
recombination regions, recombination rate and percentage of QTLs
located in these regions for the three traits. “Chr” indicates the
chromosome. Physical and genetic size columns indicated the size of
each chromosome in bp and cM, respectively. Average recombination
rate (“RecRate”) and proportion of the physical (“Phys”) and genetic
(“Genetic) map in high recombination regions (“HighRec”, >0.5 cM / Mbp)
for each chromosome are shown. Percentage of QTL in high
recombination regions were displayed for three traits (DTA: male
flowering, PlantHT: Plant Height, GY: Grain Yield). (DOCX 16 kb)

Additional file 17: Table S4. Description of inbred lines. Variety and
accession along with the breeders, seeds providers and genetic groups
obtained using ADMIXTURE for K=4 (Stiff Stalk, Iodent, Lancaster, Other).
(CSV 260 kb)

Additional file 18: Table S5. Narrow sense heritability (h2) and variance
components (Vg, genetic variance; Ve, residual variance). The heritability
and variance components were estimated for all traits (grain yield, male
flowering time and plant height) using the R package Heritability [1].
(DOCX 18 kb)

Additional file 19: Notes S1. Differences between SNP-arrays and GBS
discrovery / pipelines. (DOCX 15 kb)

Additional file 20: Table S6. Number of SNPs called, after QC filtering
(MAF>1%) and useful for GWAS (MAF≥5%). Note that GBS1 have SNPs with

100% missing genotypes which were removed while GBS2 used external
haplotype library which allow to impute loci with 100% missing data. It
conducted to a smaller number of SNPs for GBS1 than GBS2. (XLS 33 kb)

Additional file 21: Notes S2. GWAS statistical models and effects of
confounding factors on GWAS. (DOCX 14 kb)
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