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Abstract: The use of mass spectrometry-based metabolomics to study human, plant and microbial
biochemistry and their interactions with the environment largely depends on the ability to
annotate metabolite structures by matching mass spectral features of the measured metabolites
to curated spectra of reference standards. While reference databases for metabolomics now provide
information for hundreds of thousands of compounds, barely 5% of these known small molecules
have experimental data from pure standards. Remarkably, it is still unknown how well existing
mass spectral libraries cover the biochemical landscape of prokaryotic and eukaryotic organisms.
To address this issue, we have investigated the coverage of 38 genome-scale metabolic networks by
public and commercial mass spectral databases, and found that on average only 40% of nodes
in metabolic networks could be mapped by mass spectral information from standards. Next,
we deciphered computationally which parts of the human metabolic network are poorly covered by
mass spectral libraries, revealing gaps in the eicosanoids, vitamins and bile acid metabolism. Finally,
our network topology analysis based on the betweenness centrality of metabolites revealed the top
20 most important metabolites that, if added to MS databases, may facilitate human metabolome
characterization in the future.

Keywords: metabolic networks; mass spectral libraries; metabolite annotation; metabolomics
data mapping
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1. Introduction

Metabolomics, or the comprehensive characterization and quantification of metabolites,
complements upstream biochemical information obtained from genes, transcripts, and proteins,
widening current genomic reconstructions of metabolism and improving our understanding of
biological and environmental processes [1]. Metabolomics is thus finding applications that span almost
the full width of natural sciences, ranging from human [2,3], plant [4] and microbial biochemistry [5–7]
to organism-environment interactions [8,9]. Despite the high research interest, identifying and
characterizing the structure of metabolites has become a major obstacle for converting raw mass
spectrometry (MS) data into biological knowledge. In this regard, open and commercial MS-based
databases play an important role in identifying and characterizing the structure of metabolites
by matching mass spectral features of the measured metabolites to curated spectra of reference
standards [10]. Despite attempts to increase and improve the content of mass spectral databases
in recent years, these are still far from containing experimental data of the known compounds.
For instance, the widely used METLIN database [11] and the Human Metabolome Database (HMDB
version 4.0) [12] now provide links and information for >900,000 and >110,000 compounds, respectively.
However, barely 5% of these known small molecules have experimental spectral data from pure
standards [13]. Equally important, the biochemical roles and metabolic activity of such small
percentage of known and chemically well characterized metabolites is still lacking. Many compounds
in mass spectral databases are exogenous drugs or chemical structures that are mainly laboratory
based. Hence, it is important to elucidate how many and which compounds in mass spectral databases
are involved in metabolic transformations encoded by the genome of prokaryotic and eukaryotic
cells. Answering this question is central to investigate and improve the biochemical landscape of
metabolomics databases, and assess their usability for reconstructing comprehensive mechanistic
scenarios in cell metabolism.

Here, we use genome-based reconstructions of metabolism, also called genome-scale metabolic
networks [14,15], to investigate their coverage by existing mass spectral libraries. Genome-scale
metabolic networks are manually curated models that best describe our understanding of the metabolic
processes occurring in an organism, acting as an indispensable tool to gain biological insight from
metabolomic data. Genome-scale metabolic networks enable in-depth mechanistic interpretation
through metabolic flux simulation and network analysis.

By analysing the coverage of metabolic networks, we have computationally deciphered which
parts of the human metabolic network are poorly covered by mass spectral libraries and have identified
metabolite gaps that, if added to MS databases, may enhance human metabolome characterization in
the future, and consequently, provide a better understanding of cell metabolism.

2. Material and Methods

2.1. Chemical Library

Only compounds with measured mass spectra were used. In silico predicted MS/MS spectra
available in certain public databases [12] were not considered in our study. A merged list of InChIKeys
was initially created from public and commercial datasets published by Vinaixa et al. 2016 [13].
This list was further updated with new entries and resources [16,17] yielding: 9419 InChIKeys of
compounds from the METLIN database [18] provided by Agilent Technologies; 399 InChIKeys from
ReSpect [19]; 1171 InChIKeys from the Wiley MS for ID database provided by Herbert Oberacher;
3401 InChIKeys from the GNPS [20]; 11,009 InChIKeys from MassBank [21]; 3480 InChIKeys from
mzCloud provided by Robert Mistrik (21 June 2016); 1034 InChIKeys from the HMDB [12] (downloaded
on 21 June 2016); and 242,463 InChIKeys from NIST 14 provided by Stephen Stein and Dmitrii
Tchekhovskoi. These InChIKey lists (which often contained duplicated entries) were merged for
a total of 261,330 non-redundant InChIKey, containing 253,927 non-redundant InChIKey first-block.
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The InChIKey mapping was performed using the first block of the string, thus not taking into account
charge or stereochemistry.

2.2. Human Metabolic Network and Graph Construction

Recon2 [22] was used to map our chemical library of 253,927 non-redundant first block
InChIKeys [23]. The original Recon 2 network provided 968 InChIKeys, which was supplemented with
additional InChIKeys from other compound identifiers in Recon2, using a combination of web services
from PubChem [24], HMDB [25] and ChEBI [26] and home-made parsers (Supplementary File 1).
We removed generic compounds (e.g., substrates denoting a set of possible compounds, often by using
R-groups, such as an alcohol or sugar) with no proper structure or InChI, and peptides or other macro
molecules that are too big to have their structure represented by a single string. We also discarded
compounds without any external database reference, as the lack thereof prevents the retrieval of
molecular descriptors through the aforementioned web services. Redundancy caused by compounds
present in several compartments was avoided by merging all compartments into one single cell-scale
model. We created a metabolite network (Compound graph, see Figure 1) where two metabolites
are connected if there is at least one reaction producing one and consuming the other, with at least
one carbon atom shared between the two metabolites. This allows not taking into account spurious
connections involving side compounds like water. Inorganic carbonated compounds, such as CO2,
were manually removed to complete this task. Some small sub-networks were disconnected from the
rest of the network due to missing InChIs or incomplete annotations in Recon2 (network is provided
in GML (Graph Modelling Language) format in Supplementary file 2).
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is applied to a network where the direction of metabolic reactions is not considered. In a biochemical 
context, this means that if a mapped metabolite is mostly surrounded by unmapped metabolites, the 
LPA will switch this metabolite from a ‘well covered’ to a ‘poorly covered’ community. The reasons 
for it being that measuring such metabolite will likely provide little biochemical information. In 
contrast, if one unmapped metabolite is mostly surrounded by mapped metabolites, the LPA will 
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from mass spectral databases may be counterbalanced by the identification of its neighbouring 
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Figure 1. Graph reconstruction process. (a) Hexokinase reaction as described in the Recon2 database.
Colored circles provide information on shared substructures between substrates and products.
(b) Compound graph: each substrate is connected to each product of the reaction. Edges are weighted
by the number of carbon atoms shared between each substrate to each product. (c) Final graph:
transitions that do not involve the preservation of at least one carbon atom between the source and the
target were removed.

2.3. Network Topology Analysis

After the creation of the undirected compound graph, we identified parts of the network that were
less covered by mass spectral libraries. For this, we used the Label Propagation Algorithm (LPA) [27],
which aims at finding communities within a network. The nodes in the network initially carry a
label that denotes the two communities they belong to: the “well covered” (mapped metabolites
in the chemical library) or the “poorly covered” (unmapped metabolites in the chemical library).
The algorithm then diffuses the labels throughout the network by changing membership in both
communities based on the labels that the neighbouring nodes (i.e., metabolites) possess. This process
is applied to a network where the direction of metabolic reactions is not considered. In a biochemical
context, this means that if a mapped metabolite is mostly surrounded by unmapped metabolites,
the LPA will switch this metabolite from a ‘well covered’ to a ‘poorly covered’ community. The reasons
for it being that measuring such metabolite will likely provide little biochemical information.
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In contrast, if one unmapped metabolite is mostly surrounded by mapped metabolites, the LPA will
switch it from a ‘poorly covered’ to a ‘well covered’ community, so that the absence of this metabolite
from mass spectral databases may be counterbalanced by the identification of its neighbouring
metabolites. Consequently, densely connected groups of nodes reach a common community label
quickly. Such steps were conducted iteratively until all label assignments were stable. We ran the
analysis 1000 times and aggregated the results to obtain a final assignment taking into account different
ties resolutions scenario (R code is provided in Supplementary File 3).

To identify key missing nodes (i.e., metabolites) in mass spectral libraries, we used a network
topology measure called centrality. Centrality is a very well-studied field in network science which
aims at identifying important actors in a network. Among the numerous centrality indices, we chose
the betweenness as the criterion for metabolite prioritisation. The betweenness centrality quantifies
the number of times a node acts as a bridge along the shortest path between two other nodes in the
network [28]. The betweenness, therefore, provides a solution to identify metabolites with the greatest
potential for bridging the gap between other metabolites, leading to a more cohesive view of the
metabolism through metabolomics data.

2.4. Publication Mapping

Beside topological measure, we also characterised metabolites through their prominency in
scientific literature. We used the PubChem REST API [29] to obtain PubChem identifiers (CID) from
our InChIKey list. We then used the API to retrieve PubMed article identifiers (PMID) referenced
from an entry accessed through its CID. We compared the number of associated articles between
mapped and non-mapped metabolites using Wilcoxon rank sum test with continuity correction and
a significance level of α = 0.001. We evaluated the association for a metabolite of having at least one
associated article and being mapped using Fisher’s Exact Test, with a significance level of α = 0.001.

3. Results

3.1. Coverage of Genome-Scale Metabolic Networks by Mass Spectral Libraries

We mapped the chemical library containing 253,927 non-redundant first block InChIKeys onto
38 different genome-scale metabolic networks, including relevant organisms such as Escherichia coli,
Arabidopsis thaliana, Saccharomyces cerevisiae (yeast), Mus musculus (mouse) or Homo sapiens (human).
Figure 2 shows the coverage of all the metabolic networks investigated (see Supplementary Files 4
and 5).

Two significant findings can be drawn from a closer analysis of Figure 2. First, the coverage
of mapped metabolites in genome-scale metabolic models by mass spectral libraries is relatively
low, and coverage varies from 20–60% depending on the species. In the case of model organisms,
with extensively characterized genomes and annotated metabolic networks, such as Mus musculus,
Escherichia coli and Arabidopsis thaliana, only 52–60% of their metabolomes could be potentially
characterized by confronting MS data with all existing mass spectral information from pure standards
(which are not currently accessible from a single resource). For human (Homo sapiens), this number
drops to 42.2% and 30.5% in the case of the KEGG and Recon2 metabolic models, respectively. Second,
the annotation level, i.e., specification of chemical identifiers, in genome-scale metabolic models is still
very limited. Models such as Homo sapiens (Recon2 and HumanCyc) and different plants (PlantCyc)
contain a large number of compounds with no compound identifier other than its name, resulting in
fewer compounds than expected with associated InChIKey (an unambiguous identifier of chemical
substances): 48.7% for Recon2, 48.6% for PlantCyc, and 35.7% for HumanCyc. On average, 63.2%
of compounds in our metabolic models have InChIKey, which constitutes an obstacle for reliably
mapping experimental metabolomics data onto metabolic models.
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Figure 2. Coverage of prokaryotic and eukaryotic metabolic networks by mass spectral libraries.
The genome-scale metabolic models are listed according to an increasing percentage of metabolites
covered by mass spectral libraries. The percentage from 60.4 down to 23.6 is displayed to the left of
each bar. “Found in mass spectral databases” refers to metabolites that can be mapped in at least one
mass spectral database. “Not found in mass spectral databases” refers to compounds with an InChI
from metabolic models that could not be matched with any compound in any mass spectral databases.
“Ambiguous denomination” refers to compounds with undefined structures or insufficient information
to retrieve the unambiguous InChIKey identifier; these compounds were not mapped.

Additional to the above analysis, we have also assessed the coverage of individual mass spectral
databases in metabolic models (see Supplementary Files 6 and 7). Figure 3 shows, for each spectral
library, the percentage of compounds that could be mapped in each network. Overall, databases
with the largest number of compounds (by InChIKey), such as NIST and MassBank, showed the best
coverage, however these databases also include many exogenous compounds or chemical structures
that could not be matched in the genome-scale metabolic models. GNPS covers the smallest percentage
of metabolic networks since, at the date of the analysis, the database was mainly focused on secondary
metabolites that are not well covered and annotated by genome-scale metabolic networks. The small
coverage of MS for ID was also explained by its specificity towards forensic and toxicology related
small molecules.
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Figure 3. Coverage of prokaryotic and eukaryotic metabolic networks by individual mass spectral
databases. HMDB and NIST include MS2 and electron ionization (EI)-MS spectral information.
Box plots show the distribution of the percentages of coverage in 38 different genome-scale
metabolic networks.

3.2. Deciphering Poorly Covered Parts of the Human Metabolic Network

As a priority, coverage of the human metabolic network by existing MS databases was investigated.
Figure 4 shows the graph built based on Recon 2.03 human genome-scale metabolic network
(see methods section), where the mapped and unmapped metabolites are represented as blue and white
nodes, respectively. The number of nodes in the graph has been reduced by eliminating compounds
without InChIs, compounds without carbons, and duplicated compounds in different cellular
compartments. Inorganic compounds such as CO2 were manually removed. Out of 1597 resulting
nodes in the metabolic network, 890 metabolites (55.7%) were mapped (see Supplementary File 8).

Next, we analysed which parts of the human network are poorly covered by experimental data
present in MS databases. To do so, we used the LPA for community detection [27] (see Methods for
details) and neighbourhood coverage analysis. The results reveal that 61% of connected metabolites in
our network have at least half of their neighbours mapped in MS databases, and 80% have at least one
mapped neighbour (Figure 5), which indicates that, despite the low coverage of genome-scale metabolic
networks by MS databases, they can still broadly cover the human network without leaving large areas
with uncovered metabolites. However, some poorly covered regions were evident in the network.
About 293 compounds, of which 216 are not covered, have 90–100% of their neighbours not covered by
MS databases either. This may be linked to the existence of metabolic gaps that represents around 18%
of the overall network (considering only compounds annotated with InChIKeys). These poorly covered
parts of the network identified by LPA are composed of small-size components (Figure 6), supporting
the idea that most parts of the known human metabolism are covered in a broad sense. Some metabolic
pathways nevertheless appear especially poorly covered, including eicosanoids, vitamins, heme and
bile acid metabolism.
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Figure 6. The ‘dark side’ of Human metabolism. The least covered subgraph of Recon 2.03 obtained
from LPA using mapping status as the initial state. White circles: Non-mapped metabolites. Blue
circles: mapped metabolites. Edges: Substrate-product relationships. Metabolites with ambiguous
identifier have been removed. Colored Hulls: Pathways overrepresented in the poorly mapped area
of the human metabolic network Recon 2.03. Right-tailed Fisher exact test with Benjamini-Hochberg
correction, α = 0.05.

We also explored the topological characteristics of poorly covered parts in the human metabolic
network. The most relevant aspect is a lower average clustering coefficient (i.e., nodes often have
their neighbours poorly connected, as an indicator of low local density) in the poorly covered areas
relative to metabolites from the well-covered areas (Figure 7A). The few links shared between the two
parts (Figure 7B) also suggest that the poorly covered areas are virtually disconnected from the rest
of the network. Overall, our results indicate that poorly covered areas tend to be located in sparsely
connected spaces of the metabolic network. The sparsity of metabolic reactions in the poorly covered
areas could describe few and very specific linear pathways, or it may also reveal missing metabolic
reactions due to a lack of biochemical knowledge or sporadic activities in scientific investigation
in those regions. We have attempted to tackle this issue by analysing the number of publications
associated with each metabolite. We have linked metabolites in the networks to publications by
retrieving the cross-referenced PubMed articles in their PubChem entry. The non-mapped metabolites
(and the sparse regions in the network analysis) tend to have fewer publications than the mapped
compounds (Figure 8a). The distribution of publications is heavily skewed, and as a result, we were
not able to retrieve any article using PubMed CID query for 588 metabolites, while 53 metabolites
exceeded 10,000 articles. The metabolites without associated publications are significantly enriched
in non-mapped areas (Figure 8b). Note that 7% of the metabolites were excluded from our query
in PubMed because no entry was found for them in PubChem. These missing compounds are also
significantly enriched in poorly covered areas of the human network. Overall, this analysis suggests
that metabolites not covered by spectral databases are less prominent in the scientific literature.
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covered and poorly covered parts of human metabolism. Only the main component of the whole
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to the well-covered one. Also, there are few connections (i.e., biochemical transformation with some
carbon backbone conservation) between the two groups.
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Figure 8. Relationship between the coverage status of Recon2 metabolites and the scientific literature.
(a) Violin plots showing the distribution of the number of articles associated with mapped and
non-mapped metabolites in Recon2. Y axis shows the number of articles (logarithmic scale) obtained
from PubMed references in PubChem entries. Only metabolites with at least one associated article are
considered. (b) Mosaic plot showing the proportion of Recon2 metabolites with PubMed references.
Only metabolites with PubChem CID annotation were considered. The area of the tiles is proportional
to the number of metabolites within each category. The color and shade of the tiles correspond to
the sign and magnitude of the Pearson residuals. The Pearson residuals represent the contribution
of the tile to the chi-squared statistics, assessing whether the two variables are independent or not.
Red tiles indicate the proportion of under-represented metabolites, namely, metabolites with a smaller
number of PubMed references than expected if the two variables (i.e., an entry in spectral libraries and a
PubMed article in PubChem) were independent, while blue tiles indicate over-represented metabolites,
namely, metabolites with a greater number of PubMed references than expected.

3.3. Filling Gaps in Poorly Covered Areas of Human Metabolism

Recently, Aguilar-Mogas et al., systematically demonstrated that neighbouring metabolites in a
metabolic network share structural similarities and have similar MS/MS spectra [30]. On this basis,
our network topology analysis provides an opportunity to identify the most important reference mass
spectra to acquire in order to cover the largest number of structurally similar unmapped metabolites in
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the human metabolic network. Both machine learning algorithms for mass spectra prediction [31,32]
and the biochemical interpretation of metabolomics results would benefit from filling these gaps.

In order to identify the most important metabolites currently missing in the MS databases,
we performed a centrality analysis. Table 1 shows the top 20 metabolites with the highest betweenness
centrality (see the Methods section) from the poorly mapped areas of human metabolism. These high
betweenness metabolites are key chemical structures [33], hence adding their mass spectra to reference
libraries, as training data for machine learning algorithms and other identification approaches,
will greatly improve prediction of the mass spectra of their unmapped neighbour metabolites. In turn,
these metabolites are more likely biochemically affected by the propagation of metabolic perturbations
due to their crossroad status, and therefore a must-have in metabolism monitoring.

Table 1. Top 20 metabolites with the highest overall betweenness centrality from the poorly mapped
area of human network. PubChem CIDs were obtained using the Chemical Translation Service
(http://cts.fiehnlab.ucdavis.edu/) with the name as presented in the first column.

Name (from Network) PubChem CID InChIKey

(25R)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oyl-CoA(4-) 15942889 MNYDLIUNNOCPHG-FJWDCHQMSA-N

12-oxo-c-LTB3 122164853 ZFHPYBQKHVEFHO-LECUDPRGSA-N

3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestanoate 440460 CNWPIIOQKZNXBB-SQZFNYHNSA-N

3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-al 193321 XJZGNVBLVFOSKJ-XZULNKEGSA-N

12-oxo-leukotriene B4 5280876 SJVWVCVZWMJXOK-NOJHDUNKSA-N

20-CoA-20-oxo-leukotriene B4 53481505 WLWKYZHFLKRKEU-WCOJVGLOSA-J

5beta-cholestane-3alpha,7alpha,12alpha,26-tetrol 439479 USFJGINJGUIFSY-XZULNKEGSA-N

(4R,5S)-4,5,6-trihydroxy-2,3-dioxohexanoate 440390 GJQWCDSAOUMKSE-STHAYSLISA-N

20-carboxy-leukotriene-B4 5280877 SXWGPVJGNOLNHT-VFLUTPEKSA-N

5beta-cholestane-3alpha,7alpha,12alpha-triol 160520 RIVQQZVHIVNQFH-XJZYBRFWSA-N

3-oxo-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA 131769900 HPMVBGKWFWCZAY-JDTXFHFDSA-N

6-pyruvoyl-5,6,7,8-tetrahydropterin 128973 WBJZXBUVECZHCE-UHFFFAOYSA-N

Hydroxymethylbilane 788 WDFJYRZCZIUBPR-UHFFFAOYSA-N

5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 160520 RIVQQZVHIVNQFH-XJZYBRFWSA-N

3(S)-hydroxy-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA 53477712 NTIXPPFPXLYJCT-OWOWEXKPSA-N

Uroporphyrinogen III 1179 HUHWZXWWOFSFKF-UHFFFAOYSA-N

12-oxo-20-hydroxy-leukotriene B4 53481459 CZWPUWRHQBAXJS-PABROBRYSA-N

3-oxo-all-cis-6,9,12,15,18-tetracosapentaenoyl-CoA 131769894 UQPANOGFYCZRAV-UWOIJHEUSA-N

all-cis-10,13,16,19-docosatetraenoyl-CoA 71627222 BEEQBBPNTYBGDP-BUSXXEPMSA-J

kinetensin 53481569 PANUJGMSOSQAAY-HAGIGRARSA-N

4. Discussion

Here we have combined cheminformatics and network analysis methods to investigate the
coverage of public and commercial mass spectral databases in the metabolism of prokaryotic and
eukaryotic organisms, particularly taking a closer look at human metabolism. For this, we have used
genome-scale metabolic reconstructions, which are considered the most comprehensive and annotated
models of metabolism in multiple organisms. Genome-scale metabolic networks contain information
both on metabolites and their reactions with corresponding genes and proteins. However, most
genome-scale metabolic networks are reconstructed from genomic sequences and literature, and rarely
incorporate new and rapidly evolving metabolomic data. This has resulted in some of the constraints
and mismatches encountered in our study.

Our computational approach has revealed that many metabolites are missing from mass spectral
libraries. For example, 44% of compounds with an InChIKey in Recon2 could not be matched in any
mass spectral database. Our results, therefore, provide an essential resource to improve the biochemical
landscape of mass spectral databases, and highlights the pressing need for standards to prioritise on to
fill these gaps. However, the apparent “low metabolic content” of mass spectral libraries may also be a
consequence of insufficient annotation of genome-scale metabolic models. These models (available

http://cts.fiehnlab.ucdavis.edu/
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in SBML format) were initially built for constraint-based computational studies (e.g., Flux Balance
Analysis), where the chemical structure of small molecules is not necessarily required for computation.
Therefore, most of these models contain a substantial number of metabolites with only short and
ambiguous names but no other standard identifiers, which represent a serious obstacle for mapping
metabolomics data onto genome-scale metabolic models. Metabolites without proper identifiers can
result from the lack of cross-references during their annotation by the scientific community, making
computational tools unable to reach the information needed to make correspondences between mass
spectral libraries and metabolic networks. One common and useful identifier in this regard is the
InChI, which is directly built from the chemical structure of compounds and the hash of the structure,
the InChIKey, enabling both the computational analysis performed here, as well as much broader
searching of other resources. Unfortunately, we have noticed that most metabolic models often refer to
classes of compounds (instead of single chemical species with accurate structures) in order to represent
the enzymatic promiscuity of substrates or to describe generic biochemical reactions. Consequently,
when the metabolic networks are generated, nodes without chemical structures cannot be mapped on
to the mass spectral libraries. Automated approaches to enumerate potentially matching structures
to generic representations are required to capture these substances in future studies [34]. Metabolic
models may also include some macromolecules that cannot be encoded into all resources due to
its string length, although these are likely to be out of the mass range of mass spectrometry in a
typical metabolomics experiment. Finally, metabolic models also often contain some entries that do not
describe metabolites and therefore cannot be labelled with an InChIKey. For example, most prokaryotic
models contain an entry named “biomass”, which provide a convenient way of defining an objective
function for constraint-based modelling. The common lack of proper System Biology Ontology (SBO)
term annotations and the rare usage of SBML packages allowing different entry types prevent the
specific selection of metabolites in models.

The difficulty of mapping metabolomics data onto metabolic networks can also stem from the
different scale between models and measures: different stereoisomers may be encoded in the network
but are often indistinguishable in a MS experiment (see Figure 1 in Schymanski & Williams 2017 [34]).
Furthermore, when no distinction is made between stereoisomers, or between the acid and base
form of a compound, one of them can be arbitrarily chosen for setting the name and the annotations
of the entry in the model. This could lead to false negatives in the coverage results. To overcome
this issue, we used the first InChIKey block, which reduces the structures from the libraries and the
networks to a “stereochemistry neutral” or a simplified version of the “MS-ready” form. This can lead
to mismatches resulting from tautomers and other substances where different InChIKey first blocks
can occur (e.g., monosaccharide compounds in networks, which can be labelled with both the cyclic
(PubChem CID:5793) or the linear form (PubChem CID:10954115)). There is thus a strong need to
coordinate cheminformaticians with the field of systems biology in order to improve the annotation of
metabolic models and develop InChIs and InChIKeys for less defined structures. This would greatly
facilitate data exchange and the integration of metabolomics data in the context of metabolic networks.

Eventually, comparing coverages between organisms can be misleading due to differences in size,
quality, and completeness of metabolic models. Plant models, for instance, contain the largest number
of metabolites among eukaryote organisms, yet they seem to have the poorest coverage by spectral
data. While our work focused on human metabolism, the same workflow could be implemented
by experts in plant metabolism to reveal metabolite gaps. On the other hand, incomplete and small
metabolic models with a relatively good coverage may hide a ‘streetlight effect’, since these models are
mainly annotated with well-known reactions and compounds, which are more likely to be present in
mass spectral libraries. Since spectral databases and metabolic models are so dynamic, we present the
data “as calculated” to describe the first use of LPA to detect dense blind spots in the coverage of a
metabolic network.

Also significant is the striking number of compounds in the spectral databases that did not
match with any of our 38 genome-scale networks, namely 251.763 compounds, that is, ~99% in the
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merged database. Possible causes may include a very large number of exogenous compounds and
secondary metabolites in spectral databases, synthetic compounds not found in nature, the annotation
in other organisms that were not included in our list of genome-scale networks, and non-enzymatically
produced compounds.

Finally, it should be emphasized the continuous growth of mass spectral databases with the
addition of new spectra. Since performing this analysis, the latest NIST2017 has been released with
spectra from 15,243 compounds, while mzCloud has grown to contain spectra from 7249 compounds
(just to name two examples). The methods proposed in this article are sufficiently generic to be
applied to updated datasets and/or in-house spectral libraries. It will also be possible to apply this
approach to updated versions of metabolic networks. As a matter of fact, a new version of the human
metabolic network Recon has been released concurrently to our work [35]. Our preliminary analysis
indicates that Recon3D has considerably more annotated compounds with associated InChI than
Recon2, however, the coverage of mapped metabolites remains roughly the same. We think, however,
that further analyses and improvements of metabolic networks should be considered on the basis
of Recon3D.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/3/51/
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File 6: Supp6-model_vs_lib.csv. Supplementary File 7: Supp7-model_vs_lib_boxplot.r. Supplementary File 8:
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