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Integrative analysis of blood and 
gut microbiota data suggests a 
non-alcoholic fatty liver disease 
(NAFLD)-related disorder in French 
SLAdd minipigs
Marco Moroldo1*, Peris Mumbi Munyaka2, Jérôme Lecardonnel1, Gaëtan Lemonnier1, 
Eric Venturi3, Claire Chevaleyre4, Isabelle P. Oswald5, Jordi Estellé1 & Claire Rogel-Gaillard1

Minipigs are a group of small-sized swine lines, which show a broad range of phenotype variation 
and which often tend to be obese. The SLAdd (DD) minipig line was created by the NIH and selected 
as homozygous at the SLA locus. It was brought to France more than 30 years ago and maintained 
inbred ever since. In this report, we characterized the physiological status of a herd of French DD pigs 
by measuring intermediate phenotypes from blood and faeces and by using Large White (LW) pigs as 
controls. Three datasets were produced, i.e. complete blood counts (CBCs), microarray-based blood 
transcriptome, and faecal microbiota obtained by 16S rRNA sequencing. CBCs and expression profiles 
suggested a non-alcoholic fatty liver disease (NAFLD)-related pathology associated to comorbid cardiac 
diseases. The characterization of 16S sequencing data was less straightforward, suggesting only a 
potential weak link to obesity. The integration of the datasets identified several fine-scale associations 
between CBCs, gene expression, and faecal microbiota composition. NAFLD is a common cause of 
chronic liver disease in Western countries and is linked to obesity, type 2 diabetes mellitus and cardiac 
pathologies. Here we show that the French DD herd is potentially affected by this syndrome.

Minipigs are a group of small-sized swine lines, which started to be developed in the 1940s for biomedical 
research. They present many advantages over conventional pigs, like size, ease of handling and decreased feed 
requirements1. Today, a large variety of breeds is available for very different applications. Minipig lines are main-
tained using specific breeding strategies, which minimize inbreeding while keeping the genetic integrity of the 
population2. Examples of minipigs include the MeLiM line, a model to study an inheritable form of melanoma 
undergoing spontaneous regression3 and the Yucatan strain, used for research on cardiovascular pathologies 
and diabetes1. Minipig lines homozygous at the major histocompatibility locus (MHC, also known as Swine 
Leukocyte Antigen or SLA in pigs) were also produced by the NIH, mostly for immunology studies and trans-
plantation programs4.

Non-alcoholic fatty liver disease is the most common cause of chronic liver disease in developed countries5,6. 
It spans a spectrum of pathologies ranging from hepatic steatosis to non-alcoholic steatohepatitis (NASH) and 
cirrhosis6–8. While NAFLD was traditionally seen as a pathology affecting mainly the liver, it has recently been 
shown that its burden is not limited to this organ. There is increasing evidence that NAFLD is multisystemic, 
involving extra-hepatic organs and pathways. It is associated with obesity9, type 2 diabetes mellitus, insulin resist-
ance, metabolic syndrome and cardiovascular diseases5–7,10–12. Despite the complexity of this pathology, many 
NAFLD-related molecular pathways are known13–15, and its development is usually modelled using the “two-hit 
hypothesis”12,13. The “first hit” corresponds to insulin resistance-mediated fat accumulation in hepatocytes. 
The “second hit” leads to hepatocyte injury, inflammation and fibrosis and is triggered by oxidative stress and 
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proinflammatory cytokines12. Subsequently, cytokines interact with their receptors to initiate various signalling 
cascades14–16. Since NAFLD is linked to cardiac diseases, other processes such as platelet activation are involved10.

To date, rodents have been the pillar for research on obesity, NAFLD and NASH, but physiological differences 
with humans slow their use15,17. Alternative models are being pursued, and the pig is acknowledged as a relevant 
one because of its anatomical, physiological, and metabolic similarities with humans15,17–19. Minipigs show a 
distinct tendency towards obesity and related pathologies20, and several lines are used for their study, such as 
Ossabaw, Göttingen, and Bama15,17,21. In the aforementioned papers, the animals were fed specific high-calorie 
diets, but most minipigs develop obesity even when receiving ad libitum standard chow1,20,22. Indeed, the recom-
mended feed intake for minipigs corresponds to 40% ad libitum intake23.

The inbred DD line was created and maintained homozygous at the SLA locus, harbouring the Hp-4.4 hap-
lotype (IPD-MHC database, https://www.ebi.ac.uk/ipd/mhc/)24. DD pigs were brought to France more than 30 
years ago and maintained inbred thereafter. They do not seem especially susceptible to obesity as the DD pigs 
imported to Great Britain (Mick Bailey, personal communication), but they have not been characterized for any 
metabolic disease yet.

Our aim was to study the physiological status of the French herd of DD pigs by comparison to commercial 
Large White (LW) pigs. We measured three sets of intermediate phenotypes25, i.e. complete blood counts (CBCs), 
whole blood transcriptome profiles and faecal DNA microbiota characterized by 16S rRNA gene sequencing. 
Integrative analysis suggested that the DD pigs were potentially affected by a disease of the NAFLD spectrum.

Results
We studied 12 DD and 12 LW contemporary pigs, measuring CBCs, blood transcriptome and faecal microbiota 
at 60 days of age. CBCs were also measured at four other time-points to provide a time-course that was used to 
confirm the data obtained at 60 days. The total number of animals used for the analyses ranged from 17 to 24 
according to the measures and the time-points (Supplementary Table 1).

The LW and DD pigs differ by CBC parameters.  CBCs were measured from blood sampled at 8, 20, 40, 
60 and 100 days of age. Because some data were missing, the datasets comprised 23, 16, 24, 20 and 17 samples, 
respectively (Supplementary Table 1). Eighteen parameters were measured at each time-point (Supplementary 
Table 2, Supplementary Fig. 1).

Twelve parameters were differentially abundant between DD and LW pigs at least at one time-point. After 
quality control, five parameters were discarded as non-reliable. The other seven were split in two groups display-
ing opposite patterns (Supplementary Table 3A). The metrics of the first group showed higher values in DD pigs 
(Supplementary Table 3A). They were related to viscosity and platelet activation, and included hematocrit (hct), 
mean corpuscular volume (mcv), mean corpuscular hemoglobin (mch), hemoglobin (hgb), and platelet distri-
bution width (pwd).

The hct and the derived metric mcv were significantly higher in DD pigs over the whole time-course of the 
experiment. In the case of mch, hgb and pwd, the minipigs also presented higher values during all the period, but 
some time-points lacked statistical support (Supplementary Table 3A).

The second group of differentially abundant CBC parameters was linked to inflammation and included met-
rics related to white blood cells. These parameters tended to be lower in DD pigs (Supplementary Table 3A). 
Monocyte absolute number (monum) and monocyte percentage (mopro) were decreased in DD pigs, but with 
some inconsistencies and low statistical support.

A principal component analysis (PCA) separated the two breeds, with the first component accounting for 
47.9% of the total variability (Fig. 1A). Hierarchical clustering, instead, did not found a clear split (Supplementary 
Fig. 2A).

Blood transcriptomes of DD and LW pigs revealed a potential NAFLD syndrome in DD 
pigs.  Blood transcriptome profiles were obtained from 60-day-old animals. After quality assessment, 21 sam-
ples were retained (Supplementary Table 1). A total number of 3,046 differentially expressed (DE) genes were 
identified (Supplementary Table 4), of which 1,405 were upregulated and 1,641 downregulated in DD pigs. The 
values of log2 fold change (FC) ranged from 4.1 to −10.7, but were generally low. In fact, only 38 genes presented 
a log2 FC higher than 1.5 or lower than −1.5. The 20 most upregulated and downregulated genes in DD pigs 
compared to LW pigs are listed in Table 1.

Several exploratory approaches were used to gather information about the structure of the dataset. A PCA 
was carried out using the expression values of all the genes. The first component accounted for 30.2% of the total 
variability and separated the two breeds (Fig. 1B). A clustering analysis confirmed this split, but three samples 
were misplaced (Supplementary Fig. 2B).

The functional analysis of the expression profiles was performed using several methods. First, the DE genes 
were processed using Ingenuity Pathway Analysis (IPA). Forty-six enriched pathways were found, 22 of which 
(or 47.8%) were related to NAFLD (Supplementary Table 5), like for example “adipogenesis”, “sirtuin signalling”, 
“mTOR signalling”, “PI3K/Akt signalling”, “B Cell receptor signalling”, and “hepatic fibrosis”13,14,26,27.

A second analysis was performed with ClueGO 2.3.428. Fifty connected terms were found, 48 of which pre-
sented a group adjusted p-value < 10−10 (Fig. 2), and 13 of which (or 27.1%) fitted into the NAFLD spectrum, 
like “non-alcoholic fatty liver disease”, “actin cystoskeleton”, “PI3K/AKT signalling”, “natural killer cell-mediated 
cytotoxicity”, and “leukocyte transendothelial migration” (Supplementary Table 6).

As a third step, a Gene Set Enrichment Analysis (GSEA)29 was carried out. Eleven MSigDB gene sets30 were 
enriched at a FDR q-value < 0.05, 4 of which (or 36.4%) were related to NAFLD (Supplementary Table 7). The 
results were globally consistent with those of IPA and ClueGO, as in the case of the signatures “insulin resistance 
(pancreas β cells)” and “mTOR signalling”.

https://doi.org/10.1038/s41598-019-57127-x
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The pathways related to NAFLD were evenly distributed across all the steps of the two-hit model and were 
often confirmed by two or more methods of analysis.

Processes such as those related to insulin resistance (ClueGO, GSEA) corresponded to the first hit, while 
pathways such as “oxidative phosphorylation” (IPA, ClueGO, GSEA) and “cytokine-cytokine receptor interaction” 
(ClueGO) represented the mechanisms leading to the second hit12. As found by others13,14,26, a significant propor-
tion of processes (i.e. 43.5% on average) was related to signalling mechanisms, such as “mTOR signalling” (IPA, 
GSEA) and “ERK/MAPK signalling” (IPA, ClueGO).

Figure 1.  (A) Plot of the first two components of the PCA based on the CBC data. (B) Plot of the first two 
components of the PCA based on the expression values of all the genes expressed in the blood. (C) Plot of the 
first two components of the PCA based on the faecal microbiota data. (D) Plot of the first two components of 
the IFM obtained from the MFA analysis performed on CBCs, genes, and the microbiota data.

https://doi.org/10.1038/s41598-019-57127-x
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The second hit was represented by pathways such as “hepatic fibrosis” (IPA) and “integrin signalling” (IPA), 
while the ontologies related to inflammation and to the immune response in obesity, like “leukocyte migration” 
(IPA, ClueGO), “phagocytosis” (IPA, ClueGO), and “cell adhesion” (IPA, ClueGO) were particularly abundant.

Because these three steps of analysis suggested the potential presence of an NAFLD-related pathology, 
we decided to explore the genes directly related to this disorder in more detail. For this, a literature-based 
meta-analytic approach was chosen. First, a non-redundant consensus list of 2,551 NAFLD-related genes was cre-
ated (see methods). Among them, 1,679 were represented on the microarray and 386 were differentially expressed 
(Supplementary Table 4). The enrichment within the DE genes list was assessed using a Fisher’s exact test and a 
hypergeometric test, both of which were significant (respectively 0.0195 and 0.0104).

DD and LW pigs differ by their faecal microbiota.  The V3-V4 16S rRNA region was sequenced on 24 
60-day-old animals. After quality checks, one low quality sample with less than 300 reads was discarded. Thus, 
23 samples were retained for the analysis (Supplementary Table 1), with an average number of 2,180 reads per 

Gene Gene description log2(FC) BH adjusted p-value

IFITM1 Interferon induced transmembrane protein 1 4.11 0.001878

REXO2 RNA exonuclease 2 homolog 3.96 0.000044

COL16A1 Collagen type 16 alpha 1 chain 2.87 0.000001

PCP4 Purkinje cell protein 4 2.58 0.000191

GSG1 Germ cell associated 1 2.57 0.000303

TOR3A Torsin family 3 member A 2.45 0.000165

LGALS7 Lectin galactoside-binding soluble 7 2.29 0.000616

SPINK4 Serine peptidase inhibitor Kazal type 4 2.25 0.000001

LY6D Lymphocyte antigen 6 family member D 2.15 0.000229

SYT9 Synaptotagmin 9 2.11 0.000314

HEATR4 HEAT repeat containing 4 2.11 0.000473

KAZALD1 Kazal-type serine peptidase inhibitor domain 1 2.07 0.000025

OAS1 2′-5′-oligoadenylate synthetase 1 1.87 0.013548

CXCL10 Chemokine (C-X-C motif) ligand 10 1.86 0.017611

BCL2L15 BCL2 like 15 1.76 0.001981

RSPH9 Radial spoke head 9 homolog 1.68 0.000935

CREB3L3 CAMP responsive element binding protein 3 like 3 1.56 0.000325

DNAH9 Dynein axonemal heavy chain 9 1.51 0.000094

SRPK3 SRSF protein kinase 3 1.50 0.000033

LOC106505804 Uncharacterized protein 1.48 0.000128

LOC100515340 Uncharacterized protein −1.51 0.030272

VPREB1 V-set pre-B cell surrogate light chain 1 −1.52 0.000723

LOC100510923 Uncharacterized protein −1.59 0.000180

HPGD 15-hydroxyprostaglandin dehydrogenase −1.66 0.000153

RGS18 Regulator of G protein signaling 18 −1.68 0.000723

CRISPLD2 Cysteine rich secretory protein LCCL domain 
containing 2 −1.69 0.000002

F2R Coagulation factor II thrombin receptor −1.76 0.000036

ATOX1 Antioxidant 1 copper chaperone −1.85 0.006059

FAM151B Family with sequence similarity 151 member B −1.89 0.000000

ZSCAN25 Zinc finger and SCAN domain containing 25 −1.91 0.000000

KCNQ3 Potassium voltage-gated channel subfamily Q 
member 3 −1.95 0.000005

OAZ3 Ornithine decarboxylase antizyme 3 −1.98 0.001265

MRPL42 Mitochondrial ribosomal protein L42 −2.09 0.000000

TAGLN Transgelin −2.11 0.008512

LAMB3 Laminin subunit beta 3 −2.15 0.000010

TMEM98 Transmembrane protein 98 −2.27 0.000263

TRDV3 T cell receptor delta variable 3 −2.32 0.000000

TCRA T cell receptor alpha locus −2.34 0.000000

ECHDC1 Ethylmalonyl-CoA decarboxylase 1 −3.46 0.000000

IFITM3 Interferon induced transmembrane protein 3 −10.69 0.000000

Table 1.  Table listing the 20 highest and the 20 lowest differentially expressed genes in whole blood in DD pigs 
respect to LW pigs. The second column shows gene descriptions, the third one the log2 FC values and the fourth 
one the Benjamini-Hochberg-adjusted p-values.

https://doi.org/10.1038/s41598-019-57127-x
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sample and a range of variation from 1,359 to 3,088 reads per sample. The sequences retained after pre-processing 
were used for the open reference-based operational taxonomic units (OTUs) picking using the Greengenes data-
base (v. 13.8). A total of 1,224 OTUs and 49 genera were identified.

The values of α-diversity (OTU richness and Shannon diversity) did not differ between the two breeds, 
while β-diversity analyses suggested that taxonomic abundance profiles were significantly different between the 
groups, with p-values of 0.001 for both the PERMANOVA and the ANOSIM analyses (Supplementary Fig. 3). 
In agreement with the literature22,31, more than 95% of the sequences in both breeds were represented by the 
phyla Firmicutes and Bacteroidetes (Fig. 3A), followed by Proteobacteria, Actinobacteria and Spirochaetes. 
Firmicutes were significantly more abundant in DD minipigs, while Bacteroidetes and Proteobacteria were sig-
nificantly less abundant (Supplementary Table 8). The two most abundant genera in both breeds were Prevotella 
and Lactobacillus (Fig. 3B). Peptococcus, Lactobacillus and Ruminococcus were significantly more abundant in 
DD pigs, while Anaerovibrio, Prevotella, Succinivibrio, Mitsuokella and Roseburia were significantly less abundant 
(Supplementary Table 9).

To further characterize the composition of DD pigs microbiota, we compared our results to three availa-
ble datasets, the first one obtained on NASH-affected Ossabaw minipigs32 and the other two obtained on obese 
Göttingen and obese Ossabaw minipigs, respectively22.

In the first comparison (i.e. the contrast between DD and LW pigs versus the contrast between NASH-affected 
Ossabaw and lean Ossabaw pigs), 14 taxa were common to the two studies, seven of which were significantly 
differentially abundant in both cases, and three of which showed the same direction of variation (Supplementary 
Information 2). This was the case with Firmicutes, which were more abundant in both the contrasts, and with 
Bacteroidetes and Roseburia, which were less abundant. In the second comparison (i.e. the contrast between DD 
and LW pigs versus the contrast between obese Göttingen and lean Göttingen pigs), seven taxa were shared by 
both studies. Only Firmicutes and Bacteroidetes showed statistically different abundances in the two studies, but 
with opposite directions of variation. The other five taxa were not significantly different in our study, and only 
three of them showed the same direction of variation. In the third comparison (i.e. the contrast between DD and 
LW pigs versus the contrast between obese Ossabaw and lean Ossabaw pigs) we found eight taxa common to 
both studies, six of which with the same direction of variation, i.e. Actinobacteria, Prevotellaceae, Clostridium, 
Streptococcus, Bacteroides and Prevotella. Of note, none of these contrasts was however statistically supported 
(Supplementary Information 2).

Figure 2.  Representation of the functionally connected networks obtained using ClueGO 2.3.428. Each node 
corresponds to an enriched GO term, and each colour corresponds to a GO group. The same term can be 
included in several groups, and its size reflects its statistical significance (refer to Supplementary Table 6). The 13 
nodes at the bottom left of the picture are not connected to the network. Line width is proportional to k-score 
values.

https://doi.org/10.1038/s41598-019-57127-x


6Scientific Reports |          (2020) 10:234  | https://doi.org/10.1038/s41598-019-57127-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Both the PCA and the clustering analyses separated the two breeds, but several samples were misplaced 
(Fig. 1C, Supplementary Fig. 2C).

Integration of the different layers of phenotype information.  First, a multiple factor analysis 
(MFA) was performed using CBCs, blood transcriptome, and faecal microbiota data. The individual factor map 
(IFM) revealed a split between the breeds, with the first component accounting for 20.3% of the total variability 
(Fig. 1D). The variable group plot (Supplementary Fig. 4) showed that CBCs gave the highest contribution to 
the first dimension of variability and the lowest contribution to the second dimension, while transcriptome data 
showed the opposite pattern. Microbiota data presented intermediate values.

Subsequently, the links between the different data layers were studied in a pairwise fashion with sPLS33 and 
using the data obtained at 60 days. In the case of CBCs and transcriptome, 17 individuals were used. The results 

Figure 3.  (A) Histogram representing the relative abundance (%) of phyla in DD (on the right) and LW (on the 
left) pigs. (B) Histogram representing the relative abundance (%) of microbial taxa in DD (on the right) and LW 
(on the left) pigs.

https://doi.org/10.1038/s41598-019-57127-x
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were visualized producing a clustered image map (CIM)34, showing that CBCs were split in two main groups, cor-
responding to the metrics which had already been found more abundant and less abundant in DD pigs (Fig. 4A).

The most relevant associations were represented by 20 genes and 12 CBCs. Some CBC metrics, which were not 
differentially abundant between DD and LW pigs, did show association with DE genes (Supplementary Table 3B). 
Indeed, eonum, eopro, grnum and wbc grouped with the parameters showing lower abundance in minipigs. The 
metric eopro was discarded as not reliable (See methods).

In the case of transcriptome and faecal microbiota, sPLS was performed on 20 individuals. A CIM (Fig. 4B) 
revealed that the most important associations concerned 20 genes and 18 taxa. The genes were split into three 
groups. The first included four genes with strong positive association with Firmicutes such as Peptococcus and 
Ruminococcus and strong negative association with Prevotella and Roseburia, while the second included six genes 
showing the opposite pattern. The third group showed weaker association with the taxa.

For CBCs and faecal microbiota, the sPLS was based on 20 individuals, but no significant association between 
the variables was found.

Discussion
The DD minipig herd maintained inbred in France does not seem especially prone to obesity, but to date there 
have been no attempts to characterize it in terms of metabolic diseases. Usually, these disorders are studied by 
feeding the animals with high-fat and high-sucrose diets. However, by a general point of view, minipigs can 
develop obesity even when they receive ad libitum standard chow22. This has been observed, for instance, in the 
DD minipig herd maintained in the United Kingdom (Mick Bailey, personal communication). In our study, the 
animals were fed ad libitum with classical pig diet and their physiological status was studied at 60 days by compar-
ison to LW pigs. This latter commercial breed was chosen because of its lean meat percentage20,35. We combined 
the results from three data layers, i.e. CBCs, transcriptome profiles, and 16S rDNA sequencing, and our findings 
suggested that DD pigs were potentially affected by a disease belonging to the NAFLD spectrum.

First, we studied the overall data structure. The MFA showed a clear split between DD and LW pigs, which 
was globally confirmed by the PCA analyses individually performed on each dataset. In the case of hierarchical 
clustering, the split between the breeds was clearly supported by the transcriptome data alone. The transcriptome 
was also the most informative dataset in terms of contribution to the total variation. The microbiota contributed 
to a similar, but slightly lower extent, while the role of CBCs was more limited. These findings were in agreement 
with those obtained by Mach and co-workers31 and was possibly related to the number of variables of each data-
set, which was highest in the case of transcriptome and lowest in the case of CBCs.

Then, we studied each single dataset independently to understand the molecular mechanisms underlying our 
biological systems, and we used pairwise sPLS analyses to better characterize their interactions. Two important 
hematorheological parameters, i.e. hematocrit and hemoglobin, were significantly higher in DD pigs over almost 
the whole time-course, making the finding more robust. High levels of hematocrit and hemoglobin are associated 
with obesity and metabolic syndrome36,37, respectively, and both metrics are related to insulin resistance, NAFLD 
and NASH in humans38–40. Mean corpuscular volume was also higher in DD pigs; however, even though this 
parameter is increased in some liver pathologies, it does not seem to be linked to NAFLD41. The values of platelet 
distribution width and mean platelet volume were also consistently higher in DD pigs, indicating platelet acti-
vation. This process is linked to obesity and NAFLD in both pigs and humans23,42–44. Platelets participate in the 
process of liver inflammation45 and their activation is specifically predictive of cardiovascular diseases46, which 
are strongly associated with NAFLD5,10. Because these processes are deeply intertwined, it is difficult to state 
whether augmented values of pwd and mpv point to a NAFLD-related disorder, a cardiovascular disease, or a 
combination of both. However, in a multisystemic perspective, they might suggest the presence of cardiac diseases 
associated to NAFLD as comorbidities. In contrast, monocyte absolute number and monocyte percentage showed 
a trend towards decreased values in minipigs. Low levels of monocytes have been correlated to septic processes 
in patients affected by chronic liver diseases, possibly representing a response to an extensive and acute inflam-
matory process47. In any case, the low levels of statistical support did not allow us to draw strong conclusions in 
this regard.

Transcriptome profiling also suggested a disorder belonging to the spectrum of NAFLD in DD pigs. This result 
was especially interesting because the enriched processes were found across each step of the two-hit model12,13 
and because they were often confirmed by more than one analysis method. Furthermore, the pathways identified 
as enriched showed high levels of agreement with the literature available for humans13,14,48 and for Bama pigs15. 
These findings indicated a global shift in gene expression and suggested an impact of the disease on the physio-
logical state of the minipigs. The pathways detected using traditional functional analysis corresponded to different 
molecular processes involved in NAFLD, but almost none of them represented an NAFLD-centered gene set. 
Indeed, a specific enrichment was obtained only with ClueGO, because both the IPA and the GSEA databases 
lacked appropriate ontologies. Since we wanted to study the potential presence of NAFLD in a more targeted way, 
we followed a meta-analytic approach based on the literature and then we obtained a significant enrichment of 
our DE genes list. This supported our characterization of the transcriptome in terms of NAFLD, with particular 
relevance because it was based on experimental expression studies (See methods). Moreover, looking at the 20 
highest and the 20 lowest expressed genes, we found a strong overrepresentation of NAFLD-related genes, which 
added up to 25% (i.e. 5 out of 20 genes). Indeed, the same value calculated on the whole list was just 12.7% (i.e. 
386 out of 3,042 genes). The genes belonging to the pathways used for the other methods of enrichment analysis, 
instead, accounted for only 5% of the total. This indicated that the deepest changes in the transcriptome affected 
genes that were directly involved in NAFLD. It was the case, for instance, with IFITM1 (log2 FC = 4.1), COL16A1 
(log2 FC = 2.9), TOR3A (log2 FC = 2.4), LY6D (log2 FC = 2.2), CXCL10 (log2 FC = 1.9), F2R (log2 FC = −1,8) and 
TAGLN (log2 FC = −2.1), which have key roles in many studies performed in pigs15, mice6,49,50 and humans14,51.

https://doi.org/10.1038/s41598-019-57127-x
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Figure 4.  (A) A clustered image map (CIM) based on the association values obtained from the first two 
dimensions of the sPLS analysis integrating CBCs and DE genes. The CBCs parameters are plotted on the 
X-axis, and the genes are plotted on the Y-axis. The red and the blue coloured blocks indicate a positive or a 
negative association respectively, while the yellow colour indicates weak levels of association. (B) A clustered 
image map (CIM) based on the association values obtained from the first two dimensions of the sPLS analysis 
integrating DE genes in the blood and faecal microbial taxa. The DE genes are plotted on the X-axis, and the 
microbial taxa are plotted on the Y-axis. The red and the blue coloured blocks indicate a positive or a negative 
association respectively, while the yellow colour indicates weak levels of association.
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In agreement with CBC data, a specific enrichment of pathways related to cardiac disorders was also found, 
like in the cases of “heme metabolism” (GSEA), “platelet activation” and “cardiomyopathies” (ClueGO). This 
finding is meaningful in a multisystemic perspective, which stresses the link between NAFLD and cardiovascular 
diseases5.

The sPLS provided further hints about the connections between the first two data layers (i.e. CBCs and blood 
transcriptome). On the one hand, it confirmed the importance of the differentially abundant CBCs in the defini-
tion of the NAFLD phenotype, showing strong association with some DE genes. Interestingly, the large majority 
of genes (18 out of 20) was not known to be related to NAFLD and could therefore represent new candidates. This 
was the case, for instance, with CFAP126 and HIST2HBE, which showed strong positive association with hema-
torheological parameters and strong negative association with monocytes, and which grouped with the well char-
acterized SLC11A149 and TBXAS6 genes. On the other hand, the sPLS also indicated that some non-differentially 
abundant CBC parameters were strongly associated with DE genes, even though their biological meaning was not 
easy to interpret. This happened, for instance, with the metric eonum. A loss of eosinophils was reported in the 
adipose tissue of patients affected by NASH52, but it is not straightforward to compare these results to ours. Also, 
NAFLD is usually associated with high wbc53 and mpv44 values, which contrasts with our findings.

The characterization of microbiota was less clear-cut. On the one hand, the comparison of our data to those 
obtained in NASH-affected Ossabaw pigs32 and in obese Göttingen pigs22 highlighted only limited similarities. 
On the other hand, the microbiota of our DD pigs shared some characteristics with that of the Ossabaw breed 
which, according to the authors, displayed the features associated with obesity22. However, the lack of statistical 
support did not allow us to draw robust conclusions on this point. The Firmicutes to Bacteroidetes ratio was 
higher in DD (2.7) than in Large White pigs (1.6), which was also consistent with the pattern observed in obese 
Ossabaw minipigs22 and could provide some support to the presence of obesity32,54. However, these pieces of evi-
dence were not sufficient to make robust inferences about microbiota data.

The sPLS analysis provided more details about the relationship existing between microbiota and DE genes. 
The genus Prevotella, for instance, was negatively associated with obesity in Ossabaw minipigs22 and was similarly 
underrepresented in DD pigs. According to our results, the genus Prevotella exhibited negative association with 
the genes FUT1, LTB4R2, STX12 and DIRAS2, which could be therefore related to this pathology. Except for 
LTB4R2, these genes have never been associated with obesity or NAFLD and could be therefore new candidates 
for these disorders. The genera Roseburia and Anaerovibrio grouped with Prevotella, pointing to a potential link 
to the NAFLD spectrum; however, no evidence for the involvement of these bacteria in obesity was found in 
Ossabaw pigs22.

Taken together, our results suggest that the DD minipigs could potentially present symptoms of a pathology 
belonging to the NAFLD spectrum. It is important to refer to NAFLD spectrum, and not to NAFLD stricto sensu, 
because of the inherent complexity of this disorder and because we could not produce additional physiological 
data to allow a specific diagnosis. In any case, NAFLD is increasingly being regarded as a multisystem disease5, 
which implies that it its constitutively linked to a large array of comorbidities.

Even if all the data layers supported our hypothesis, each one highlighted a slightly different combination 
of pathologies. In the case of CBCs, the results pointed to the presence of cardiac diseases and NAFLD, with a 
stronger representation of the former. In the case of transcriptome, NAFLD seemed to be the primary disorder, 
while cardiac diseases appeared as comorbidities. Microbiota data, instead, suggested the potential presence of 
obesity, but this evidence was not strong.

Transcriptome was the most informative data layer, and its integration with CBCs and microbiota produced 
consistent results. Therefore, we can speculate that our tentative characterization of the datasets in terms of 
NAFLD could potentially be the most accurate.

It must be considered that some limitations affect our results. Our data were obtained on young individuals, 
while NAFLD-related disorders are typically studied on 4- to 30-month-old animals. Therefore, many symptoms 
were likely not completely apparent. Moreover, transcriptome and microbiota data were only obtained at 60 days, 
while more time-points could provide a better characterization. Nevertheless, our work adds useful information 
to characterize NAFLD-related disorders in pigs, providing a robust workflow for the analysis of intermediate 
phenotypes.

Materials and Methods
Animals and diet.  Twelve LW (i.e. 6 pairs of siblings) and twelve DD pigs (i.e. 6 pairs of siblings) of the same 
age were used (Supplementary Table 1). The suckling piglets had access to a pre-starter feed from day 3 (18% 
crude protein DM, 7.5% crude fat DM, 1.55% lysine DM) and were weaned at day 28. They were fed a starter diet 
from day 29 to day 40 (19% crude protein DM, 7% crude fat DM, 1.45% lysine DM) and were fed a grower diet ad 
libitum (16.5% crude protein DM, 2.4% crude fat DM, 1.17% lysine DM) from day 41 to day 150.

All the animals were raised and sampled at the INRA experimental farm of Nouzilly (France) in 2012 (farm 
agreement E 37-175-2). All the experiments were compliant to the French regulation for use of animals in 
research (articles R214-87 to R214-137 of the French rural code before the legal update enacted in 2013). No 
ethics approval was required for the collection of blood samples under the then current regulation.

Blood and stool sampling.  The blood samples for CBCs were collected at 8, 20, 40, 60 and 100 days of age 
using BD Vacutainer EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA). The blood samples for RNA 
extraction were collected from 60-day-old animals using PAXgene Blood RNA tubes (Qiagen, Hilden, Germany). 
Faecal aliquots (200 mg) were collected from the rectum of the animals at 60 days of age, snap-frozen in liquid 
nitrogen and stored at −80 °C.
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Complete blood counts: data production and analysis.  CBCs were obtained using a scil Vet abc counter 
(scil animal care company, Altorf, France). Eighteen parameters were measured for each time-point: white blood cell 
count (wbc); red blood cell count (rbc); platelet count (plt); hemoglobin (hgb); hematocrit (hct); mean corpuscular 
volume (mcv); mean corpuscular hemoglobin (mch); mean corpuscular hemoglobin concentration (mchc); platelet 
distribution width (pwd); mean platelet volume (mpv); lymphocytes absolute number (lynum); monocytes absolute 
number (monum); granulocytes absolute number (grnum); eosinophils absolute number (eonum); lymphocytes per-
centage (lypro); monocytes percentage (mopro); granulocytes percentage (grpro); eosinophils percentage (eopro).

A linear-mixed model was fitted to each parameter using the lme4 R package55. The breed was set as a fixed 
effect and the sow as a random effect. Data of each day were separately analysed.

The results obtained on 60-day-old individuals were used for the subsequent analyses, while the values 
obtained at the other time-points (i.e. 8, 20, 40 and 100 days) were used only as a means of validation. A metric 
was retained only if the direction of the change in the differential abundance at 60 days (i.e. positive or negative) 
was consistent with at least two out of five points.

The metrics retained were rescaled using the ‘rescale’ function of the scales R package (https://CRAN.R-project.
org/package = scales) and analysed through a PCA and a hierarchical clustering using the FactoMineR R package 
and selecting the Pearson’s correlation coefficient and the Ward method56.

RNA extraction and microarray processing.  Total RNA from blood of 60-day-old individuals was isolated 
using the PAXgene Blood RNA Kit (Qiagen). RNA quality and integrity were determined using a NanoDrop 1000 
(Thermo Scientific, Waltham, MA, USA) and a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).

Transcriptional profiling was performed using an Agilent 8 × 60K pig custom microarray (Agilent 
Technologies, AMADID 037880). Twenty-four samples were processed (i.e. three chips). All steps were per-
formed by the @BRIDGe facility (INRA Jouy-en-Josas, France, http://abridge.inra.fr/), as described previously57. 
Microarray data were submitted to GEO (accession number GSE111953).

Microarray data analysis.  The annotation of the pig array was updated using the Sscrofa 11.1 version of the 
pig genome (see Supplementary Information 1).

Probe intensities were background corrected using the “normexp” method, log2 scaled and quantile normal-
ized using the Limma R package58. The probes of the lowest quartile were filtered out, controls were discarded and 
the probes corresponding to genes were summarized.

The obtained expression matrix (“E1”) was processed with the arrayQualityMetrics R package59 for quality 
assessment. Three outliers and a technical bias concerning the third chip were detected. After outlier removal, the 
raw data were pre-processed again to obtain the “E2” expression matrix.

The differential analysis was performed using the Limma R package. A linear model was fitted for each gene, 
setting the breed and the chip as fixed effects, and comparing DD to LW pigs. The sow was included as a random 
effect using the “duplicateCorrelation” function. The p-values were Benjamini-Hochsberg corrected setting a 
threshold of 0.05.

An alternative linear model was tested, including also monocyte count as a fixed effect, but the small sample 
size (i.e. 17 individuals) determined a sharp decrease in the statistical power of detection.

The E2 expression matrix was further modified. In fact, this matrix was not corrected for the chip-related bias, 
which was treated as an effect by the Limma linear model. To perform other downstream analyses, this bias was 
corrected using the Limma “removeBatchEffect” function. The “E3” corrected matrix was used to perform a PCA 
and a clustering with FactoMineR56.

Functional analysis of blood transcriptome.  Transcriptome functional analyses were performed using 
four approaches. First, the DE genes were analysed with Ingenuity Pathways Analysis 01.08 (September 2017 
Release, IPA, www.ingenuity.com) to identify canonical pathways. Only those with a -log(p-value) > 1.75 and 
including at least 10 genes were considered.

The second analysis was realized using ClueGO 2.3.428. A two-sided test was used to highlight enriched 
GO terms. Significance was set at an adjusted p-value of 0.05, the “GO fusion” option was used, the 
k-score was fixed at 0.2 and the global/local parameter at the sixth level. Three ontologies were selected: 
“Sus scrofa ontologies KEGG_06.07.2015”, “GO_ImmuneSystemProcess_03.07.2015_09h08” and 
“GO_BiologicalProcess_03.07.2015_09h08”.

A third analysis was performed using GSEA29 as implemented by the Broad Institute (http://software.broadin-
stitute.org/gsea/index.jsp). The E3 matrix was analysed using the “h.all.v6.1” MsigDB29, choosing the “gene_set” 
option for the permutations.

In all these three cases, the percentage of pathways putatively related to the NAFLD spectrum was estimated 
by performing a comparison with a pathway consensus list obtained using 19 papers describing transcriptional 
profiling6,8,14–16,49,50,60–69 or data meta-analysis7,51. A further review paper was also added27. More details are found 
in Supplementary Information 2.

The fourth approach involved a meta-analytical screening of the literature relative to NAFLD and other related 
diseases. The same already listed 19 papers were used, and the available DE gene lists were retrieved and merged 
to obtain a non-redundant set, which was intersected with our DE gene list. The enrichment was assessed using a 
Fisher’s exact test and a hypergeometric test.

Production and analysis of 16S data.  DNA was extracted from frozen faecal samples as described by70. 
Subsequently, the V3–V4 region of the 16S rRNA gene was sequenced using the 454 GS FLX Titanium platform 
(Roche, Pleasanton, CA, USA) as described by71. FastQC was used to perform quality checks on the raw data and 
the sequences were analysed with QIIME 1.9.172 as described previously71.
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Species richness estimates (Chao1, observed OTUs, and abundance-based coverage estimators or ACE) and 
evenness indexes (Shannon and Simpson), were calculated using the phyloseq R package after the reads were 
rarefied73. For β-diversity, weighted UniFrac distances were first calculated on the OTUs table. Then, nonmetric 
multidimensional scaling (nMDS) and distances to centroid were calculated using the “betadisper” function of 
the vegan R package. Breed comparisons were assessed with PERMANOVA using the “adonis” function in the 
vegan R package74, and p-values were obtained using Monte Carlo random draws. Also, an ANOSIM was per-
formed using the vegan R package to test the significance of the difference between the breeds.

A linear-mixed model was fitted on the OTUs table using the lme4 R package and setting the breed as a fixed 
effect and the sow as a random effect. Relative abundance (%) differences at phylum and lower taxonomic levels 
between DD and LW pigs were assessed using MetagenomeSeq 1.20.175. A Kruskal-Wallis test was performed, 
and q-values were Benjamini-Hochberg adjusted. The differentially abundant taxa were compared to the results 
published in two recent papers22,32 by following the procedure described in Supplementary Information 3. A PCA 
and a clustering were also performed. 16S data were submitted to SRA (accession number SRP144235).

Data integration.  An MFA76 was used to integrate CBCs, blood transcriptome, and 16S data using the 
FactoMineR R package56. The results were visualized using an individual factor map (IFM) and a variable groups plot.

The datasets were then studied in a pairwise fashion with sPLS33 using the mixOmics R package (https://
cran.r-project.org/web/packages/mixOmics/)77. For each dataset pair, the analysis was performed using only the 
60-day-old individuals for which the data belonging to both datasets were available. For CBCs and transcriptome 
and for transcriptome and 16S, the statistical models were optimized using the “perf ” function and setting the 
“ncomp” parameter to two, and a CIM was used to visualize the data. No valid model was obtained for CBCs and 
16S data.
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