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Abstract 

This paper presents a new model of the the transient temperature at a point situated at a 

distance �  of the heating wire, in a parallel hot wire measurement device. A preliminary 

theoretical study shows the limits of the estimation method proposed by the standard 

ISO8894-2. First, we proposed an optimal processing method, based on the model used in the 

standard, to improve the estimation of the thermal conductivity. Then, a new model based on 

the quadrupolar formalism is developed, it takes into account: the mass and the radius of the 

heating wire, the thermal contact resistance between the heating wire and the sample and the 

mass of the thermocouple. A theoretical study shows that this model enables a precise 

estimation of the thermal conductivity of a large range of materials and that it makes also 

possible to obtain an estimation of the volume heat capacity. An experimental study has been 

realized using a very low density material (polystyrene with � = 15 kg m
� ) at ambient 

temperature and a reference material (Silcal 1100) at temperatures varying from 200°C to 
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1000°C to validate the results of the theoretical study. Compared to known thermal properties 

of these two materials, the thermal conductivity was estimated with a deviation lower than 3.4 

% and the volume heat capacity was estimated with a deviation lower than 10%. 

1. Introduction 

A variant of the hot wire method consists in placing in the medium to characterize a 

thermocouple parallel to the heating wire and to record its temperature. The measurement of 

this temperature makes it possible to estimate the thermal conductivity and the thermal 

diffusivity of the medium. This transient method called the parallel hot wire method was the 

object of the standard ISO 8894-2 [1] concerning the determination of the thermal 

conductivity of refractory materials. 

The device of the parallel hot wire associated with the estimation method defined by the 

standard was used to characterize various types of materials among them: refractories [2-3], 

polymers [4], soils [5] and insulating materials [6]. 

The model used by the standard is based on the simplifying hypothesis that the radius of the 

heating wire is null. Hakansson et al [7] took into account the variation of the supply power 

that may be negligible if the temperature coefficient of the electrical resistance is low. 

Pettersson [8] studied the influence of the thermal conductivity of the wire and concluded that 

it has no influence on the estimation of the thermal conductivity. Grazzini et al [9] proposed a 

model taking into account the heating wire radius and the thermal contact resistance, leading 

to an analytical expression of Laplace transform �
��� of the temperature rise �
��� of the 

thermocouple. Nevertheless, some approximations are necessary to obtain an analytical 

expression of �
���  and these authors conclude that their model does not provide better 

estimation of the thermal conductivity than the simplified model (heating wire with a null 

radius). 
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Furthermore, one can notice that the thermal capacity of the thermocouple was never taken 

into account in all the previously cited models.  

Some studies based on numerical simulations have also been realized to estimate the time 

limit for the validity of the semi-infinite medium hypothesis (always considered in the hot 

wire methods) [10], [11], [12].  

The aim of this paper is to propose a more complete quadrupolar analytical model and to 

estimate the error caused by the simplified model used in the standard, for various types of 

materials. The presented model takes into account the radius and the thermal capacity of the 

heating wire, the thermal contact resistances between the heating wire and the sample on one 

hand and between the thermocouple and the sample on the other hand, as well as the thermal 

capacity of the thermocouple. It will be shown that the analysis of the residues of estimation 

makes it possible to determine easily the time limit of validity of the hypothesis of the semi-

infinite medium. An experimental study realized on two reference materials will validate the 

results of the theoretical study 

2. Models 

The schematic diagram of the method is presented in figure 1.  

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the parallel hot wire method   
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A resistive wire with a radius �� is inserted in a groove realized on the surface of the bottom 

sample. A thermocouple is inserted in another groove realized at the surface of the same 

sample at distance � of the heating wire. A second sample with the same dimensions as the 

bottom sample is then placed on it.  

Quadrupolar model 

A quadrupolar model M1 will now be developed considering the following hypotheses:  

- The samples are semi-infinite  

- The heating wire and the thermal contact resistance between the wire and the samples are 

taken into account 

- The thermocouple is not taken into account: the thermal properties of the sample and of the 

thermocouple are the same and the thermal contact resistances between the thermocouple 

and the samples are negligible. 

- The sample is optically thick 

One can write the following quadrupolar relation [13] between the heating wire and a point in 

the solid at a distance � from the wire: 

�����
�

� = ��� ���� ���  1 !"0 1 $ ��% �%�% �%� ��&'(
)

� =  � �� �$ ��&'(
)

� (1) 

With: 

�� = 1  

�� = *
+,-�./�0�

12�/�0��
13�/�0�� − *

5�"�,0�6.�  

�� = ��7�8��+9�  

�� = /�0�
+

12�/�0��
13�/�0��  

�% = :%�;<*�:%��=>�:%��� + <>�:%���=*�:%��@ 



5 

 

�% = 1
28B%9 ;<>�:%���=>�:%�� − <>�:%��=>�:%���@ 

�% = 289�%7%����;<*�:%���=*�:%�� − <*�:%��=*�:%���@ 
�% = :%��;<*�:%���=>�:%�� + <>�:%��=*�:%���@ 
*
) = 28B%9:%� C3�/D&�

C2�/D&� ; :� = E �
F� ; :% = E �

FD 

Where: 

�� Laplace transform of the temperature rise of the wire 

�& Laplace transform of the temperature rise at a distance � in the solid  

=>, =*, <>, <* modified Bessel function of the first and second kind 

B� thermal conductivity of the heating wire 

��7� volume heat capacity of the heating wire 

H� thermal diffusivity of the heating wire 

9 length of the heating wire 

�� radius of the heating wire 

� distance between the heating wire and the thermocouple 

B% thermal conductivity of the sample 

�%7% volume heat capacity of the sample 

H% thermal diffusivity of the sample 

!"  thermal contact resistance between the heating wire and the sample 

� Laplace parameter 

I� Heat flow rate in the heating wire  
Then: 

��
� = J� + K

)L �&     (2) 
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And finally: �&��� =   
M�N

OPQ
R

 (3) 

with: 

� = �%�� + �%���!" + ��� (4) 

� = �%�� + �%���!" + ��� (5) 

If the thermal resistance of the heating wire can be neglected, relation (3) becomes: 

�&��� =   
M�N S  C2�/D&�

 5�"�,0�6� C2�/D0��P+,-/D0�;*P5�"�,0�6�TU.@C3�/D0�� (6) 

Relation (6) is identical to the one given by Grazzini et al [9]. 

Case where the thermocouple properties are very different from those of the samples  

In this case, one can no longer consider that the thermocouple’s properties are identical to 

those of the material to characterize. If we also consider the simplifying hypothesis that the 

temperature field in the sample close to the thermocouple is not modified by the 

thermocouple, the Laplace transform �
��� of the temperature rise �
��� at a distance � from 

the heating wire can always be calculated using relation (3).  

Since the thermocouple does not produce any heat, if �
��� is the Laplace transform of the 

mean temperature of the thermocouple, one can write [12]:  

 �
0 $ = ��
 �
�
 �
�  1 !
0 1 $ � �&ΦW�  (7) 

Where: 

��
 �
�
 �
� is the quadrupolar matrix of the thermocouple  

ΦW is the Laplace transform of the heat flow rate at a distance � from the heating wire. 
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!
 is the thermal contact resistance between the thermocouple and the sample.  

Neglecting the thermal resistance of the thermocouple material compared to the thermal 

contact resistance between the thermocouple and the sample (hypothesis of uniform 

temperature), one can write:  

�
 = 1 ;  �
 = 0 ;  �
 = �
7
8�
+9 � ; �
 = 1  (8) 

Where �
 is the radius of the thermocouple, 9 is its length,  �
 is its density and 7
 its specific 

heat. 

Then, the relation (7) leads to the model that we will call M2:  

�
��� = '(���
*POY�  (9)  

Where  �
 = �
7
8�
+9 !
 can be considered as a time constant (s).  

Model used in the standard ISO 8894-2  

The model used in the standard ISO 8894-2 (that we will call M0) is an approximation 

calculated for a heating wire having a null radius ( �� = 0 ). One can use the limited 

developments of the Bessel functions in the vicinity of zero:  

<>�Z� ≈ −\]�Z� ; <*�Z� ≈ *
^ ; =>�Z� ≈ 1 ; =*�Z� ≈ ^

+ (10) 

Hence:  

�� ≈ 1 

�� ≈ 0 

�� ≈ 0 

�� ≈ 1 
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Considering these approximations: 

� = �%�� + �%���!" + ��� = �% �11� 
and:  
� = �%�� + �%���!" + ��� = �% �12� 
Thus: 

�% = 289�%7%����;<*�:%���=*�:%�� − <*�:%��=*�:%���@ ≈ 289_B%�%7%�_�=*�:%�� (13) 

�% = :%��;<*�:%���=>�:%�� + <>�:%��=*�:%���@ = =>�:%�� �14� 
So that: 

� + K
) = 289_B%�%7%�_�=*�:%�� + 28B9:� C3�/D&�

C2�/D&� =>�:%��  (15) 

� + K
) = 289_B%�%7%�_�  13�/D&�C2�/D&�PC3�/D&� 12�/D&�

C2�/D&� $ = +,-.
C2�/D&�  (16) 

We have: �
��� = ��
�  C2�/D&�

+,-D.  (17) 

According to Carslaw and Jaeger [14]: 

9
*  *
�  <>aZ_�b$ = *

+  c def
g

∞

h6
iY

 �j (18) 

with: − kl�m� = c def
g

∞

n  �j (19 

Thus: �
��� = − ��
o,-D.  kl J &6

oFD
L (20) 

Where kl is the exponential integral 

This solution was given by Carslaw and Jaeger [14], it was deducted from the temperature 

field in a semi-infinite medium in which a heat flow rate step is applied on a line.  
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Figure 2 shows the temperature simulated using the relations (3) and (20).  The value of the 

temperature calculated by the relation (20) (standard) is always lower than the value 

calculated by the quadrupolar model. The two models converge for long times. Table 1 gives 

the parameters values used for the simulation 

Table 1: Values of the parameters used for the simulations in figure 2   

 ��  B� ��7� � B% �%7% !" 

 mm W m-1 K-1 J m-3 K-1 mm W m-1 K-1 J m-3 K-1 K W-1 

Figure 2a) 0.25 11.3 3.78 t 10u 5 0.1 5 t 10v 3.5 

Figure 2b) 0.25 11.3 3.78 t 10u 5 0.2 5 t 10v 3.5 

  

Figure 2: Temperature of the thermocouple simulated with the model of the standard and with 

the quadrupolar model: 2a) B% = 0.1 W m
* K
* ; 2b) B% = 0.2 W m
* K
* 

3. Parameters estimation  

 Quadrupolar models (M1 and M2) 

The thermal properties of the resistive heating wire are supposed to be known so that the 

unknowns are the thermal conductivity B% and volume capacity �%7% of the samples and the 

thermal contact resistance !" between the heating wire and the samples. The time constant �
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can be added as an unknown parameter if the sample thermal properties are very different 

from those of the thermocouple. 

The temperature rise �
��� can be calculated by an inverse Laplace transform applied to �
��� 

realized by using the De Hoog algorithm [15]. The Levenberg-Marquart algorithm [16] is 

used to find the values of the unknown parameters that minimize the sum of the quadratic 

errors:  

y = ∑  �
d^���� − �
{|&���$+}~�*   (21) 

The parameters B%, �%7% and !" must be estimated in the model M1 and the parameters B%, 

�%7%, !" and �
 must be estimated  in the model M2.  

Standard ISO 8894-2 (Model M0) 

We have: �
�2�� = − ��
o,-D.  kl J &6

�FD
L (22) 

Thus: � = �Y�+
�
�Y�
� = ��� (6

��DY�
��� (6

i�DY� = ��Jf
6L

���g�   (23) 

Where: j = &6
oFD
 

For each value of j  one can calculate kl�j�  and � = ��Jf
6L

���g� . Thus the function kl�j� =

� �� = ��Jf
6L

���g��  can be plotted and modelled. We have identified the following polynomial 

function which enables its calculation with a precision better than 1%:  

kl�j� = H> + H*� + H+�+ + H��� + Ho�o + Hv�v + Hu�u + H��� (24) 

H> = 474.926168472597  
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H* = −1574.223079517534  

H+ = 2262.705889755608  

H� = −1816.820318813171  

Ho = 877.286213344994  

Hv = −254.261946376719  

Hu = 40.904415135482  

H� = −2.815400284900  

The principle of the method is the following:  

- The temperature rise �
 is recorded during a time 2�� 
- The ratio � = �Y�+
�

�Y�
�  is calculated for each time value comprised in the interval [0 ��]   

- One can deduce kl Jj = &6
oFD
L from relation (24) then B%  is obtained using the 

relation: 

 B% = − ��
o,. �Y�
�  kl J &6

oFD
L  (25)  

The calculation must be done on a time interval where the hypotheses (negligible mass of the 

heating wire and semi-infinite medium) are valid, we will see further how this time interval 

can be determined.   

When applying the standard ISO 8894-2, kl�j� is deduced from � = �Y�+
�
�Y�
�  by interpolation in 

a table of numerical values. The use of relation (24) is more convenient.   

Comparison of the models 

To evaluate the precision of the estimations based on the two models we have realized 2D 

numerical simulations of the system represented in figure 1 with COMSOL. The following 

boundary conditions have been considered: 
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- The temperature on the unheated face of the samples is uniform and constant  

- The heat losses coefficient on the lateral faces of the samples is ℎ = 20 W m
+K
*. 

The following properties have also been considered: 

- The heating wire with a 0.5 mm diameter is made of Nickel Chromium 80/20.  

- The thermocouple with a 0.5 mm diameter has the same thermal properties as the 

heating wire 

- The heating wire and the thermocouple are placed in grooves with a 0.5 × 0.5 mm2 

square section filled with still air.  

The simulations have been realized with the thermal properties given in the table 2: 

Table 2: Thermal properties used for the COMSOL simulations  

Material λ ρc 

 W m-1 K-1 J kg-1 m-3 

Air [17] 0.026 1.30×103 

NiCr 80/20 [18] 11.3 3.78×106 

Quartzel felts [19] 0.035 2.04×104 

Silcal 1100 [20] 0.12 2.50×105 

LUX500 [21] 0.22 7.70×105 

NorFoam [22] 0.75 7.00×105 

 

The COMSOL simulations have been realized using the dimensions defined by the standard: 

the sample dimensions are  200 x 100 x 50 mm and the distance between the heating wire and 

the thermocouple is � = 15 mm. The standard recommends considering the values of the 
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thermal conductivity calculated for the values of the ratio 
�Y�+
�
�Y�
�  between 1.5 and 2.4, provided 

that the maximum deviation from the mean value is lower than 5%. 

The simulated curves have been considered as numerical experiments and processed using the 

three estimation methods to estimate:  

- The values of  B%, �%7% and !" with the quadrupolar model M1. 

- The values of  B%, �%7%, !" and �
 with the quadrupolar model M2. 

- A curve B% = ���� with the model M0 (standard) enabling the estimation of a mean value.  

The estimation time interval for the quadrupolar models M1 and M2 has been adjusted so that 

the mean value of the estimation residues is null and that the residues are centered on zero. 

The results are presented in table 3.  

The limit of validity of the semi-infinite medium hypothesis appears very clearly on curve of 

residues even for the lightest material (Quartzel) when the estimation is realized by using the 

model M2 (cf. figure 3b). This limit cannot be defined with the same accuracy when we use 

the model M1 for Quartzel since the residues are oscillating around the null value (cf. figure 

3a). Compared to reference values, the values of the thermal conductivity estimated with the 

model M2 present a maximum deviation of 2.3% for Quartzel while it reaches 12.2% with the 

model M1. This deviation compared with the reference values is lower than 1 % with models 

M1 and M2 for the 3 other materials, and residues obtained with both models are identical as 

shown in figure 3c) and 3d). 

Table 3: Estimated values of the parameters from COMSOL numerical experiments with 

samples dimensions 200 × 100 × 50 mm3 and � =  15 mm.  

   Quartzel Silcal 1100 LUX 500 Norfoam 
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 �d%
l{F
l|~ s 150 500 400 200 

M0 (Standard) 

B% W m-1 K-1 0.027 0.116 0.219 0.74 

JB% − B%0d�L B⁄  % -22.8 -3.3 -0.9 -1.2 

M1 

B% W m-1 K-1 0.0307 0.119 0.22 0.75 

�%7% kJ m-3 K-1 22.2 253 775 704 

JB% − B%0d�L B⁄  % -12.2 0.8 0 0 

M2 

B% W m-1 K-1 0.0358 0.119 0.221 0.75 

�%7% kJ m-3 K-1 20.7 253 770 704 

JB% − B%0d�L B⁄  % 2.3 0.8 0.5 0 

Reference values 

B%0d� W m-1 K-1 0.035 0.12 0.22 0.75 

��%7%�0d� kJ m-3 K-1 20.4 250 770 700 
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 Figure 3: COMSOL simulations (--), quadrupolar model (─) and residues×10 for two 

materials   

The application of the method of the standard leads to less precise results and always to  

underestimated values. The value obtained before that the hypothesis of the semi-infinite 

medium is no longer valid (situated in the rectangle in dotted lines on the figure 4) is more 

precise than the average value calculated between the values 1.5 and 2.4 of the ratio  
�Y�+
�
�Y�
�  

(estimation method recommended by the standard). This remark is justified by the fact that 

the approximation of the standard neglects the heating wire mass and radius, it is thus more 

precise for long times (cf. figure 2). Furthermore, figure 4 shows that the change of slope of 

the curve B = �  �Y�+
�
�Y�
� $ occurs in every case for 

�Y�+
�
�Y�
� ≈ 1.6. 
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Figure 4: Thermal conductivity of the four materials estimated with the method of the 

standard ISO 8894-2 with sample dimensions  200 × 100 × 50 mm3 and � = 15 mm. 

The standard method does not enable an accurate estimation of the thermal conductivity of 

low density materials such as Quartzel. The estimation error can reach 20 % for these 

materials. 

The standard lays down a distance � = 15 ��  between the heating wire and the 

thermocouple. To test the influence of this distance on the precision of the estimation we have 

realized the same study but with a distance reduced to � = 5 �� enabling to use thinner 

samples; we chose a sample thickness of 30 mm. 

Figure 5 presents the values of the thermal conductivity estimated with the standard method 

and table 4 presents the values obtained with the three methods.  
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