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and chemically masculinized female
Coccinia grandis reveals genes associated
with sex expression and modification
Ravi Suresh Devani1, Sangram Sinha2, Jayeeta Banerjee1, Rabindra Kumar Sinha2, Abdelhafid Bendahmane3

and Anjan Kumar Banerjee1*

Abstract

Background: Coccinia grandis (ivy gourd), is a dioecious member of Cucurbitaceae having heteromorphic sex
chromosomes. Chromosome constitution of male and female plants of C. grandis is 22A + XY and 22A + XX respectively.
Earlier we showed that a unique gynomonoecious form of C. grandis (22A + XX) also exists in nature bearing
morphologically hermaphrodite flowers (GyM-H). Additionally, application of silver nitrate (AgNO3) on female
plants induces stamen development leading to the formation of morphologically hermaphrodite flowers (Ag-
H) despite the absence of Y-chromosome. Due to the unavailability of genome sequence and the slow pace
at which sex-linked genes are identified, sex expression and modification in C. grandis are not well understood.

Results: We have carried out a comprehensive RNA-Seq study from early-staged male, female, GyM-H, and Ag-H as well
as middle-staged male and GyM-H flower buds. A de novo transcriptome was assembled using Trinity and annotated by
BLAST2GO and Trinotate pipelines. The assembled transcriptome consisted of 467,233 ‘Trinity Transcripts’ clustering into
378,860 ‘Trinity Genes’. Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, and GyM-H_Middle_vs_Male_Middle
comparisons exhibited 35,694, 3574, and 14,954 differentially expressed transcripts respectively. Further, qRT-PCR analysis
of selected candidate genes validated digital gene expression profiling results. Interestingly, ethylene response-related
genes were found to be upregulated in female buds compared to male buds. Also, we observed that AgNO3 treatment
suppressed ethylene responses in Ag-H flowers by downregulation of ethylene-responsive transcription factors leading
to stamen development. Further, GO terms related to stamen development were enriched in early-staged male, GyM-H,
and Ag-H buds compared to female buds supporting the fact that stamen growth gets arrested in female flowers.

Conclusions: Suppression of ethylene responses in both male and Ag-H compared to female buds suggests a probable
role of ethylene in stamen suppression similar to monoecious cucurbits such as melon and cucumber. Also, pollen
fertility associated GO terms were depleted in middle-staged GyM-H buds compared to male buds indicating
the necessity of Y-chromosome for pollen fertility. Overall, this study would enable identification of new sex-
biased genes for further investigation of stamen arrest, pollen fertility, and AgNO3-mediated sex modification.
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Background
Monoecy, dioecy, and hermaphroditism are the three
major sexual forms observed among the flowering
plants. Ninety (90%) of angiosperms are found to be
hermaphrodite (both male and female organs are in the
same flower), while 5% plant species exhibit monoecy
(male and female flowers are on the same plant) and
remaining 5% show dioecy (male and female flowers are
in separate plant) [1]. Dioecism provides a unique op-
portunity to study the genetic basis of sex determination.
Silene latifolia (Caryophyllaceae), Rumex acetosa (Poly-
gonaceae), Carica papaya (Caricaceae), Spinacia olera-
cea (Chenopodiaceae) and Populus (Salicaceae), have
been well characterized to understand the mechanism of
sex determination [2–5]. However, the molecular mech-
anism and the genes that govern sex determination are
not well understood.
Coccinia grandis (L.) Voigt, a dioecious member of

Cucurbitaceae family having an inferior ovary has re-
ceived comparatively less attention. Members of Cucur-
bitaceae family exhibit variety of sexual forms [6]. Apart
from its rich medicinal value, C. grandis, commonly
known as ivy gourd, is also used as a vegetable. Coccinia
grandis bears male and female unisexual flowers on sep-
arate plants. Similar to Silene latifolia (Caryophyllaceae),
the sex in Coccinia grandis is determined by the pres-
ence of Y-chromosome [7–9]. The chromosome consti-
tution of male and female plants is 22A + XY and 22A +
XX respectively, where Y-chromosome is larger than the
X-chromosome [10–12]. The male flower consists of
three convoluted (bithecous) stamens [13, 14] and lacks
female reproductive organs; however, the female flower
consists of three rudimentary stamens surrounding the
three fused carpels with an inferior ovary [14]. There are
two ways by which unisexual flower development can be
achieved. One of the ways is when both male and female
sex organ primordia are initiated at early stages of flower
development, but at later stages the opposite sex organs
are aborted as in Silene latifolia [15]. Another way is
that organ primordia of the opposite sex organs do not
develop at all as shown in Thalictrum dioicum [16].
Also, there are flowers, wherein the inappropriate sex
organs are retained in rudimentary form (instead of get-
ting aborted) as in Rumex and C. grandis [2, 14]. Add-
itionally, Coccinia grandis shows sex modification upon
application of AgNO3 leading to the development of sta-
mens in female flower (such flower will be referred to as
Ag-H) as described in our previous report [14]. Ag+ has
been long known to be an inhibitor of ethylene response
[17]. It has been suggested that the binding of Ag+ to
the ethylene receptor inhibits the conformational
change, which maintains the receptor in the active con-
formation [18]. Application of silver compounds such as
silver nitrate (AgNO3) or silver thiosulphate (Ag2S2O3)

masculinizes monoecious plants such as Cucumis sativus
as well as female plants of dioecious species such as
Silene latifolia and Cannabis sativa [19–21]. However,
the mechanism of action by which Ag+ induces stamen
development is not known till date [21].
Despite the interesting discovery of sex chromosomes in

dioecious plants more than 50 years ago, the mechanism
of sex determination remains poorly understood [22, 23].
This is primarily because of the slow pace at which sex-
linked genes were identified from dioecious species (one
to two genes/year) [24]. However, the improvement in
NGS technology has already started changing the situation
by accelerating the rate of sex-linked gene identification.
The NGS-based approach has a big advantage that it does
not require prior knowledge of the gene sequences to be
investigated. Recently, an NGS-based RNA-Seq approach
was applied to Silene latifolia, which was the first report
that demonstrated the phenomenon of dosage compensa-
tion in plants [24]. A comparative transcriptomics ap-
proach was applied to papaya, a trioecious species, to
identify the candidate genes for sex determination. This
study led to the identification of 312 unique tags that were
specifically mapped to the primitive sex chromosome (X
or Yh) sequences in papaya [5]. A genome-wide transcrip-
tional profiling of apical tissue of a gynoecious mutant
(Csg-G) and the monoecious wild-type (Csg-M) of cu-
cumber was also performed to isolate genes involved in
sex determination. This study revealed that genes involved
in plant hormone signaling pathways, such as ACS, Asr1,
CsIAA2, CS-AUX1, and TLP, and their crosstalk might
play a critical role in the sex determination. Authors have
also predicted the regulation of some transcription factors,
including EREBP-9, in sex determination [25]. In another
study, transcriptome sequencing was carried out from cu-
cumber flower buds of two near-isogenic lines, WI1983G,
a gynoecious plant which bears only pistillate flowers and
WI1983H, a hermaphroditic plant which bears only bisex-
ual flowers [26]. This study identified differentially
expressed genes as well as putative SSR and SNP markers
between flowers of two different sexes. T Akagi, IM
Henry, R Tao and L Comai [27] sequenced genomic DNA,
mRNA as well as small RNA from flower buds of persim-
mon and identified a Y-chromosome–encoded small
RNA, OGI, that targets a homeodomain transcription fac-
tor MeGI regulating pollen fertility in a dosage-dependent
manner. A recent de novo transcriptomics study in garden
Asparagus identified 570 differentially expressed genes,
where genes involved in pollen microspore and tapetum
development were shown to be specifically expressed in
males and supermales in contrast to females [28].
In order to identify sex-biased genes in C. grandis and

to elucidate the mechanism of AgNO3 mediated sex
modification, a comprehensive RNA-Seq study from
early-staged male (M), female (F), GyM-H and Ag-H as
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well as middle-staged male and GyM-H flower buds was
carried out. De novo transcriptome was assembled to
identify C. grandis homologs of various flower develop-
ment genes. Digital expression profiling was undertaken
to identify sex-biased genes which might play a pivotal
role in the arrest of stamen development in female
flowers, genes that promote anther development in fe-
male flowers upon AgNO3 treatment and genes control-
ling pollen fertility in male flowers.

Methods
Flower bud collection and RNA isolation
Clones of wild-type male, female and gynomonoecious
(GyM) forms of C. grandis were grown in the experimen-
tal plot at IISER Pune, India. Gynomonoecious (GyM)
plant bears pistillate flowers (GyM-F) as well as morpho-
logically hermaphrodite flowers (GyM-H) (Herbarium
Voucher: Tripura University Campus, Karmakar, 433). Fo-
liar spray of 35 mM AgNO3 solution to the basal leaves
on some of the female plants led to the development of
morphologically hermaphrodite flowers (Ag-H) as per our
earlier observation [14]. Ag-H flower buds were morpho-
logically similar to GyM-H flowers. Flower buds from
male (M), female (F), GyM-H and Ag-H were harvested
separately in liquid nitrogen and categorized into early
and middle stages based on our previous study [14]
(Fig. 1). In early-staged male flower buds, only stamens
are present with no sign of carpel initials. Whereas, early-
staged female flowers (stages 3–4, Fig. 1) have both carpel
and stamen primordia. Stamen growth in female flowers
gets arrested around stages 4–5. In the hermaphrodite
flowers of gynomonoecious plant, however, both stamens
and carpels develop simultaneously during early as well as

middle stages of development. Our selection of early-
staged flower buds was carried out such that the event of
stamen inhibition in female flowers can be analysed.
Whereas, middle-staged flower buds were chosen such
that meiosis-stage and pollen maturation event can be in-
vestigated. Total RNA was isolated by TRIzol reagent
(Invitrogen) following the manufacturer’s instructions.
RNA quality was assessed using an Agilent Bioanalyzer
RNA nanochip, and RNA samples with RIN > 8.0 were
used for library preparation.

RNA-Seq library preparation and sequencing
Library preparation was performed at Genotypic Tech-
nology’s Genomics facility, Bangalore using Illumina
TruSeq RNA Sample Preparation Kit according to the
manufacturer’s specifications. RNA sequencing libraries
were prepared in duplicate for early-staged male (M), fe-
male (F), GyM-H and Ag-H flower buds, as well as
middle-staged male (M) and GyM-H flower buds. The
quality of all the twelve libraries and insert size distribu-
tion was assessed using an Agilent High Sensitivity Bioa-
nalyzer Chip. Libraries showed a peak in the range of
250–1000 bp. The effective sequencing insert size was
130–880 bp, and the inserts were flanked by adaptors
whose combined size was 120 bp. Libraries were quanti-
fied using Qubit and sequenced on Illumina NextSeq
500 platform, producing 2 X 150-nucleotide paired-end
reads. RNA-Seq data generated in this study has been
deposited in the NCBI SRA study SRP111347.

Pre-processing of Illumina reads and de novo
transcriptome assembly
Raw RNA-Seq reads were processed using Trimmomatic
v0.33 for trimming adapters as well as low-quality bases
from ends of the reads [29]. Poor quality reads with
average Phred quality score < 20 and reads with length <
36 were also filtered out. The resulting set of good qual-
ity reads were then assembled with Trinity v2.1.1 soft-
ware using default parameters [30, 31].
The quality of the resulting assembly was assessed by

various methods. First of all, RNA-Seq read representation
of the assembly was checked using bowtie2 [32]. Ex90N50
transcript contig length (the contig N50 value based on
the set of transcripts representing 90% of the expression
data) was computed using contig_ExN50_statistic.pl script
bundled with Trinity. Then the representation of full-
length reconstructed protein-coding genes was studied.
The assembled transcripts were compared with Swiss-
Prot using BLAST and the hits were analyzed using a perl
script blast_outfmt6_group_segments.tophit_coverage.pl,
provided with the Trinity package. BUSCO (Benchmark-
ing Universal Single-Copy Orthologs) was used to explore
completeness of the transcriptome according to conserved
ortholog content [33]. Finally, TransRate was used to

Fig. 1 Different stages of C. grandis flower buds selected for RNA-
Seq analysis. (a) Male, (b) Female flower buds. GyM-H and Ag-H
buds sized similar to female buds were chosen for RNA seq study as
described in our previous work (Ghadge et al., 2014). Scale bar = 1 cm
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compare the assembly to the publicly available Cucumis
sativus protein-coding primary transcript sequences [34].

Annotation of the de novo-assembled transcripts
The de novo-assembled transcripts were compared with
the viridiplantae sequences from nr and Swiss-Prot data-
base using BLASTX with an e-value threshold of 1e-3
[35]. BLAST output generated from this comparison
was loaded into BLAST2GO for mapping GO terms to
the transcripts and annotation [36]. Enzyme codes and
KEGG pathway mapping were also carried out. ANNEX
(Annotation Expander) was used to enhance the annota-
tions. Finally, GO-Slim mapping was applied to get a
broad overview of the ontology content.
In addition to BLAST2GO facilitated annotation, Trinotate

pipeline was used to carry out comprehensive functional
annotation of the transcripts leveraging various annotation
databases (eggNOG/GO/KEGG databases) [31]. Trinotate
pipeline also included identification of open reading frames,
homology search against Swiss-Prot and TrEMBL. Protein
domain identification was carried out using HMMER/PFAM.
Protein signal peptide and transmembrane domains were
predicted by signalP and tmHMM respectively.

Transcript quantification and differential expression
analysis
align_and_estimate_abundance.pl script from Trinity
package was applied to align cleaned reads from each li-
brary to the de novo transcriptome using bowtie and to
estimate the transcript abundance using RSEM [37].
abundance_estimates_to_matrix.pl script was used to
construct a matrix of counts and a matrix of normalized
expression values. PtR script was used to generate cor-
relation matrix and Principal Component Analysis
(PCA) plot for comparing replicates across all the sam-
ples. Differential expression analysis was carried out with
two biological replicates from the count matrix using
run_DE_analysis.pl with edgeR as the method of choice
[38]. analyze_diff_expr.pl script was used to examine
GO enrichment and to extract all transcripts that had p-
values at most 1e-3 and were at least 2^2 fold differen-
tially expressed. The DE features were partitioned into
clusters with similar expression patterns by define_clus-
ters_by_cutting_tree.pl script with Ptree method.

Validation of differentially expressed genes by qRT-PCR
For expression analysis, qRT-PCR was carried out using
aliquots of the same RNA samples that were used for
RNA sequencing. Two micrograms (2 μg) of total RNA
was used for complementary DNA (cDNA) synthesis by
SuperScript IV reverse transcriptase (Invitrogen) using
an oligo(dT) primer. CgACT2 gene was used as refer-
ence gene for normalization. qRT-PCR was performed
on BIO-RAD CFX96 machine with gene-specific

forward and reverse primers (Additional file 1: Table
S1). The reactions were carried out using Takara SYBR
Premix Ex Taq II (Takara Bio Inc.) and incubated at 95 °
C for 3 min followed by 40 cycles of 95 °C for 15 s, 58 °
C for 15 s and 72 °C for 15 s. PCR specificity was
checked by melting curve analysis, and data were ana-
lysed using the 2–ΔΔCT method [39].

Results
RNA sequencing, Trinity-based de novo transcriptome
assembly and annotation using BLAST2GO and Trinotate
A total of 306,575,536 paired-end reads (150 bp) were ob-
tained after sequencing all the twelve libraries on the Illu-
mina NextSeq 500 platform. Subsequently, 186,399,131
good quality paired-end reads were used for de novo as-
sembly of Coccinia grandis flower bud transcriptome
using Trinity software package with default parameters
(Table 1). The resulting assembly consisted of 467,233
‘Trinity Transcripts’ clustering into 378,860 ‘Trinity
Genes’ with an N50 value of 881 bp (Table 2,
Additional file 2). The transcripts of 200–399 bp size were
found to be most abundant in the length distribution of
assembled transcripts (Fig. 2). However, a higher propor-
tion of transcripts with length around 1000–2000 bp had
a BLAST hit compared to the proportion of smaller
transcripts (Fig. 2). Cleaned reads were mapped back to
the transcriptome using bowtie2 with ~70% or more
reads from each library aligning concordantly (Table 1).
An Ex90N50 statistic calculated using 80,806 tran-
scripts from the assembly (ignoring the rest of the tran-
scripts with poor read coverage) was found to be
1784 bp (Additional file 3: Figure S1).
Altogether, 8916 unique BLAST hits in the Swiss-Prot

database were represented by nearly full-length
transcripts, having more than 70% alignment coverage,
and 12,315 hits showed more than 50% alignment
coverage (Additional file 4: Table S2). BUSCO output
[C:89.8%(S:14.5%,D:75.3%),F:5.0%,M:5.2%,n:1440] showed
that out of 1440 BUSCOs for Plants dataset, 1293 full
length BUSCOs were detected in our de novo-assembled
Coccinia grandis flower bud transcriptome indicating
89.8% completeness. Finally using TransRate, we were able
to detect C. grandis homologs for 84% (18,039) of protein-
coding primary transcripts of C. sativus of which, 13,430
reference sequences had at least 95% of their bases cov-
ered by a CRB-BLAST hit (Additional file 5: Table S3).
Coccinia grandis flower bud transcripts were com-

pared to plant protein sequences of the nr and Swiss-
Prot databases resulting in 259,200 and 136,663 tran-
scripts having at least one hit from the respective data-
base. Species distribution analysis of the BLAST hits
showed that majority of these hits were from Arabidopsis
and rice for Swiss-Prot database whereas for nr database
most top hits were from cucumber and melon (Fig. 3a,b).
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The number of transcripts annotated with various GO
terms of biological process, molecular function, and cellu-
lar component categories are provided in Fig. 3c.
Trinotate v3 pipeline was also used simultaneously for

comprehensive functional annotation of the Coccinia grandis
flower bud transcripts. Details regarding the Swiss-Prot/
TrEMBL BLAST hits, GO, KEGG and eggNOG mappings
can be found in the Additional file 6: Table S4. HMMER/
PFAM predicted protein domains, as well as information
regarding signal peptides and transmembrane domains could
also be found in the Additional file 6: Table S4. Taken
together, we have assembled a good quality transcriptome
for early- and middle-staged flower buds of Coccinia grandis
and comprehensively annotated the transcripts using well-
established BLAST2GO and Trinotate pipelines.

Differential expression analysis reveals probable factors
for pollen fertility and sex modification
Following transcriptome assembly and annotation, dif-
ferential expression analysis was carried out. First of all,
RSEM was used for transcript abundance estimation.

Following which, we checked for the correlation between
the replicates for all the samples using PtR script. PCA
analysis and correlation matrix showed a good correl-
ation between the replicate sets for each of the six sam-
ples (Fig. 4). EdgeR was used to identify the differentially
expressed transcripts for all the pairwise comparisons
between the six samples (Table 3; Fig. 5; Additional file 7:
Figure S2). Differentially expressed transcripts at a mini-
mum fold change of 2^2 with p-values at most 1e-3 were
extracted and GO enrichment analysis was performed
(Additional file 8: Table S5, Additional file 9: Table S6).
Among all the comparisons, few interesting ones such as
Ag_Early_vs_Female_Early, Female_Early_vs_Male_Early,
and GYM-H_Middle_vs_Male_Middle had 3574, 35,694
and 14,954 differentially expressed transcripts respect-
ively (Table 3, Fig. 5). The DE features were parti-
tioned into clusters with similar expression patterns
(Fig. 6; Additional file 10: Figure S3). In the context
of anther development, we identified several GO
terms (GO:0080110, GO:0010208, GO:0010584,
GO:0009555, GO:0055046, GO:0048658, GO:0048653)
differentially enriched in male buds compared to female
buds at an early stage of floral development. qRT-PCR
was done to validate the results of differential expression
analysis for a few interesting Coccinia homologs of AMS
(ABORTED MICROSPORES), CER3 (ECERIFERUM 3),
DEX1 (DEFECTIVE IN EXINE FORMATION 1), DYT1
(DYSFUNCTIONAL TAPETUM 1), EIL1 (ETHYLENE
INSENSITIVE 3-like 1), EMS1 (EXCESS MICROSPORO
CYTES 1), FER (FERONIA), MMD1 (MALE MEIOCYTE
DEATH 1), MS1 (MALE STERILITY 1), SHT (Spermidine
hydroxycinnamoyl transferase), TPD1 (TAPETUM DE-
TERMINANT 1) and ZAT3 (Zinc finger protein ZAT3).
Expression profiles for these genes deduced by qRT-PCR
revealed similar patterns to that seen from the digital DE
analysis results (Fig. 7). Also, we have found GO terms re-
lated to pollen fertility enriched in the male buds
(GO:0080092, GO:0009846, GO:0009860) compared to
GyM-H and Ag-H buds, which had sterile pollens.
Accordingly, expression profile for homologs of a
number of genes involved in pollen tube development
such as CSLD1 (Cellulose synthase-like protein D1;
TRINITY_DN92683_c0_g1_i1), CDPKO (Calcium-dependent
protein kinase 24; TRINITY_DN93671_c0_g1_i3), PME4
(Pectin methylesterase 4; TRINITY_DN14239_c0_g1_i1),
PME37 (Pectin methylesterase 37; TRINITY_DN3663_c0_g1
_i1), PPME1 (POLLEN SPECIFIC Pectin methylesterase 1;
TRINITY_DN66415_c0_g1_i1) and PTR52 (Protein NRT1/
PTR FAMILY 2.8; TRINITY_DN112735_c0_g14_i3) were
analysed and found to be enriched in middle-staged
male buds similar to our digital expression profiles
based on RNA-Seq data (Fig. 8). Downregulation of
ethylene signalling upon AgNO3 treatment was evi-
dent as GO:0009723 (response to ethylene) and

Table 1 RNA sequencing read counts and alignment statistics
for all the samples used for de novo transcriptome assembly

Sample name Raw Reads Cleaned reads % Read pairs mapped
concordantly

Male Early A 21,719,110 13,216,446 76.33%

Male Early B 22,080,977 12,149,633 74.84%

Female Early A 25,607,195 15,634,598 76.34%

Female Early B 25,433,955 15,316,996 75.94%

GyM-H Early A 27,936,206 17,378,706 76.67%

GyM-H Early B 27,617,808 17,107,330 76.69%

Ag-H Early A 26,147,527 15,140,736 71.02%

Ag-H Early B 25,392,540 15,128,539 69.35%

Male Middle A 25,502,209 15,490,027 76.70%

Male Middle B 25,837,400 15,919,727 75.27%

GyM-H Middle A 28,465,770 17,441,923 76.90%

GyM-H Middle B 24,834,839 16,474,470 77.43%

Total 306,575,536 186,399,131

Table 2 Assembly statistics for C. grandis flower bud
transcriptome

Parameter Assembly statistics

Number of ‘Trinity Transcripts’ 467,233

Number of ‘Trinity Genes’ 378,860

Percent GC 38.96

Median contig length (bp) 347

Average contig length (bp) 606.45

N50 (bp) 881

Total assembled bases 283,354,298
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GO:0009873 (ethylene-activated signaling pathway)
were depleted in AgNO3 treated plant (Additional file
9: Table S6). In order to validate this, we studied the
expression profile of Ethylene-responsive transcription
factors, ERF5, ERF17, and EF102. We found that all
three ERFs were downregulated upon AgNO3 treat-
ment (Fig. 9).

Discussion
Genetic basis of sex determination and differentiation is
not well studied in C. grandis. Identification and investi-
gation of sex-linked genes would lead to better under-
standing of dioecy in plants and this can be achieved by
whole genome sequencing approach. However, sex-
determining genes are most likely linked to non-
recombining regions of Y-chromosome, which are diffi-
cult to assemble from sequence data [40]. An alternative
approach is to use comparative transcriptomics to iden-
tify sex-biased genes that could play a role in sex differ-
entiation and determination [24]. Further, the presence
of mutations and SNPs in sex-biased genes can pro-
vide insights regarding the evolution of dioecy. Using
this approach, we have assembled and annotated a de
novo transcriptome from the flower buds of dioe-
cious, gynomonoecious and AgNO3 treated female C.
grandis. We have identified differentially expressed
genes which might be playing a role in stamen arrest
of female flowers. Also, we have analysed the genes
that were differentially expressed upon AgNO3 treat-
ment on female plants promoting stamen develop-
ment. Finally, we have compared middle-staged male
(bearing fertile pollens) and GyM-H buds (bearing
sterile pollens) to study the genes involved in pollen
maturation and fertility.

Differential expression of stamen developmental genes
and arrest of stamen growth in female flowers
At the early stages (stages 3–4) of flower development in
female C. grandis, both carpel and stamen organs are
initiated simultaneously. However, stamen growth gets
arrested during the course of development (stages 4–5)
resulting in a female flower with rudimentary stamens.
In contrast, no sign of carpel primordia was observed
during the histological study of flower development in
male C. grandis as described in our previous report [14].
The molecular players involved in stamen initiation and
development process are well characterized in the herm-
aphrodite plant Arabidopsis. In order to identify the
stage at which stamen growth gets arrested, Coccinia
grandis homologs of Arabidopsis stamen development
genes were identified from the de novo-assembled tran-
scriptome. Among genes involved in stamen initiation,
Pistillata (CgPI, TRINITY_DN71631_c0_g1_i1) was
found to be expressed in a male-biased fashion
(Additional file 8: Table S5). Pistillata has been shown
to specify stamen identity in Arabidopsis [41] (Table 4).
Further, EXCESS MICROSPOROCYTES 1 (EMS1) has
been shown to interact with TAPETUM DETERMIN-
ANT 1 (TPD1) regulating specification of reproductive
as well as somatic cells in Arabidopsis anthers [42].
Differential expression analyses revealed that homo-
logs of both EMS1 (TRINITY_DN106236_c0_g4_i1)
and TPD1 (TRINITY_DN116795_c2_g1_i3) were
enriched in male flowers compared to female flowers
(Table 4; Additional file 8: Table S5; Fig. 7). DYS-
FUNCTIONAL TAPETUM 1 (DYT1) plays an import-
ant role in tapetum development by regulating the
expression of DEFECTIVE IN TAPETAL DEVELOP-
MENT AND FUNCTION 1 (TDF1) in Arabidopsis [43].
Also, DYT1 is known to interact with Basic helix-loop-

Fig. 2 Transcript size distribution for C. grandis flower bud transcriptome
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Fig. 3 BLAST2GO annotation of C. grandis flower bud transcriptome. (a) BLAST Top-Hits species distribution when compared with Swiss-Prot database,
(b) BLAST Top-Hits species distribution when compared with nr database, (c) GO category distribution of C. grandis flower bud transcriptome
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helix protein 89 (bHLH89) which is highly expressed in
anthers and required for normal anther development
and male fertility [44]. TDF1 homolog (TRINI-
TY_DN97604_c1_g7_i1) as well as bHLH89 homolog
(TRINITY_DN85771_c0_g1_i1) showed male-biased
expression in C. grandis (Table 4; Additional file 8:
Table S5). Differential regulation of these genes re-
lated to stamen development explains the possible
cause for early stamen arrest in female flowers of C.
grandis.

According to recent reports from monoecious cucurbits
like melon, cucumber, and watermelon, ethylene plays a
major role in sex determination by inhibiting stamen de-
velopment process [45–48]. We found that compared to
male, GO:0009723 (response to ethylene) was enriched in
female buds indicating a potential role of ethylene in sex
determination of C. grandis (Additional file 9: Table S6).

AgNO3 treatment on female plant releases the stamen
inhibition
Female plants of C. grandis bear flowers with fused car-
pels and rudimentary stamens. Earlier, we have shown
that foliar spray of 35 mM AgNO3 on the female plant
of C. grandis promotes further development of the rudi-
mentary stamens [14]. In the current study, gene expres-
sion profiles for early-staged Ag-H flower buds were
compared with female buds (Table 3; Fig. 5c, g). Ag+

ions are known to inhibit responses to ethylene, a gas-
eous plant hormone [17]. Also, silver compounds have
been shown to induce maleness by promoting stamen
development in many monoecious and dioecious spe-
cies [19–21]. No other inhibitors of ethylene biosyn-
thesis or signaling could induce the stamen
development in Silene latifolia, suggesting that ethyl-
ene signaling might not be the only pathway that gets
affected upon application of silver thiosulphate [21].
In contrast to Silene latifolia, AVG (aminoethoxyvi-
nylglycine), an inhibitor of ethylene-biosynthesis has
been shown to induce male flowers in gynoecious
muskmelon similar to silver compounds [49]. Consid-
ering the role of 1-aminocyclopropane-1-carboxylate
synthase (ACS, an enzyme involved in ethylene bio-
synthesis) in sex determination of many other mem-
bers of Cucurbitaceae, an ethylene-mediated effect of

Fig. 4 Correlation analyses showing the relationship between samples and replicates. (a) Principal component analysis and (b) correlation matrix
showing relationship between all samples as well as replicates

Table 3 Number of differentially expressed transcripts for each
pairwise comparison between the flower types. Transcripts that
had p-values at most 1e-3 and were at least 2^2 fold were
considered as differentially expressed

Flower Buds Comparison Number of DE transcripts

Ag_Early_vs_Female_Early 3574

Ag_Early_vs_GYMH_Early 34,458

Ag_Early_vs_GYMH_Middle 38,849

Ag_Early_vs_Male_Early 33,863

Ag_Early_vs_Male_Middle 36,923

Female_Early_vs_GYMH_Early 31,886

Female_Early_vs_GYMH_Middle 39,885

Female_Early_vs_Male_Early 35,694

Female_Early_vs_Male_Middle 40,477

GYMH_Early_vs_GYMH_Middle 816

GYMH_Early_vs_Male_Early 8659

GYMH_Early_vs_Male_Middle 11,576

GYMH_Middle_vs_Male_Early 12,357

GYMH_Middle_vs_Male_Middle 14,954

Male_Early_vs_Male_Middle 4427
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AgNO3 seems more likely to be involved in the modifica-
tion of sex in C. grandis [50].
In our study, GO:0009723 (response to ethylene)

and GO:0009873 (ethylene-activated signaling path-
way) were enriched in female buds compared to Ag-
H buds (Additional file 9: Table S6). Transcripts for
genes such as Ethylene-responsive transcription factors,
ERF5 (TRINITY_DN102355_c3_g13_i1), ERF17 (TRI-
NITY_DN80749_c0_g6_i1), EF109 (TRINITY_DN8704
9_c0_g1_i1), EF102 (TRINITY_DN90257_c1_g2_i1),
ERF99 (TRINITY_DN93821_c0_g1_i2), ERF60 (TRINI
TY_DN93262_c1_g6_i2) and ERF78 (TRINITY_DN985
03_c3_g1_i1) were downregulated in Ag-H buds indi-
cating impaired ethylene signalling (Additional file 8:
Table S5). Additionally, qRT-PCR based expression
pattern analysis for ERF5, ERF17 and EF102 genes
clearly showed the suppression of ethylene responses
by AgNO3 (Fig. 9).
Downregulation of ethylene signaling in Ag-H buds was

correlated with the promotion of stamen growth.
GO:0048655 (anther wall tapetum morphogenesis),
GO:0048657 (anther wall tapetum cell differentiation),
GO:0048658 (anther wall tapetum development) were
seen to be enriched in early-staged Ag-H buds compared
to female buds (Additional file 9: Table S6). C. grandis ho-
mologs of MS1, MMD1 (TRINITY_DN109512_c4_g3_i1,
TRINITY_DN108927_c0_g6_i1), ZAT3 (TRINITY_DN10

8658_c0_g2_i1) and AMS (TRINITY_DN116105_c0_g2_
i1) genes which play important roles in tapetum and
pollen development of Arabidopsis flowers were upregu-
lated upon AgNO3 treatment indicating promotion of
stamen growth [51–56] (Additional file 8: Table S5;
Fig. 7). MYB35 (TRINITY_DN92649_c0_g7_i1), which
was proposed as a putative sex-determining gene in
Asparagus was also found to be upregulated in Ag-H
buds [57] (Additional file 8: Table S5). Apart from
that, gene ontology terms related to pollen wall as-
sembly (GO:0010208), pollen exine formation
(GO:0010584), sporopollenin biosynthetic process
(GO:0080110), pollen development (GO:0009555) and
pollen sperm cell differentiation (GO:0048235) were also
enriched in Ag-H buds (Additional file 9: Table S6). Fur-
ther, we noticed that Ethylene-responsive transcription fac-
tors (ERFs) were not affected in GyM-H buds as
compared to female buds suggesting that stamen develop-
ment in GyM-H flower buds might be regulated by some
other mechanism evading ethylene signaling inhibition.

Transcripts governing pollen fertility are depleted in
GyM-H and Ag-H flower buds
C. grandis is one of the few species in which the pres-
ence of heteromorphic sex chromosomes is reported.
The large Y-chromosome present in males might play a
major role in sex determination. The GyM form of C.

Fig. 5 Pairwise comparisons of transcript abundance. MA plots showing average log fold change (logFC) vs average log of counts among (a)
female (early-staged) vs. male (early-staged) transcripts, (b) female (early-staged) vs. GyM-H (early-staged) transcripts, (c) Ag-H (early-staged) vs. female
(early-staged) transcripts and (d) GyM-H (middle-staged) vs. male (middle-staged) across replicates. Volcano plots showing differentially
expressed transcripts in relation to FDR (False discovery rate) for (e) female (early-staged) vs. male (early-staged) transcripts, (f) female (early-staged) vs.
GyM-H (early-staged) transcripts, (g) Ag-H (early-staged) vs. female (early-staged) transcripts and (h) GyM-H (middle-staged) vs. male (middle-staged).
Features found DE at FDR <0.05 are colored red. Features with P-values at most 1e-3 and at least 2^2 fold change are differentially expressed
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grandis included in the current study does not have Y-
chromosome [14]. GyM-H flowers still develop full-sized
stamens despite lacking Y-chromosome. Similarly,
AgNO3 treatment induces stamen development in fe-
male plants having XX sex chromosomes. However, the
pollens from GyM-H and Ag-H flowers buds were found
to be sterile unlike the pollens from male buds [14].

Differential expression analysis revealed that gene ontol-
ogy terms for pollen tube (GO:0090406), pollen germin-
ation (GO:0009846), regulation of pollen tube growth
(GO:0080092), pollen tube growth (GO:0009860) and
microsporogenesis (GO:0009556) were enriched in
middle-staged male buds compared to middle-staged
GyM-H buds (Additional file 9: Table S6).

Fig. 6 Hierarchical clustering of differentially expressed transcripts and developmentally staged C. grandis flower bud samples. Heatmap showing
the relative expression levels of each transcript (rows) in each sample (columns). Rows and columns are hierarchically clustered. Expression values
(FPKM) are log2 –transformed and then median-centered by transcript
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GAUTE plays an important role in pollen tube wall biosyn-
thesis in Arabidopsis [58]. TRINITY_DN111340_c1_g1_i6,
which showed similarity with GAUTE was enriched in
male buds compared to GyM-H buds. Unlike most
other plant cell walls, pollen tube wall does not contain
callose or cellulose. Pectin methylesterases (PMEs) have
been shown to play a very important role in the growth
of pollen tubes [59–61]. PME4 (TRINITY_DN14239_c0
_g1_i1), PME37 (TRINITY_DN3663_c0_g1_i1) and
PPME1 (TRINITY_DN66415_c0_g1_i1, TRINITY_DN7
1598_c0_g2_i1) were downregulated in GyM-H buds

compared to male buds (Additional file 8: Table S5).
This could be a possible cause for pollens from GyM-H
not forming pollen tubes. H Zhan, Y Zhong, Z Yang
and H Xia [62] has shown that IPMKB (Inositol poly-
phosphate multikinase beta) is an important factor for
pollen development. We have found that TRINI-
TY_DN96290_c0_g3_i2 transcript matching to Arabi-
dopsis IPMKB (AtIpk2beta) was downregulated in
GyM-H compared to male buds. Earlier, several reports
have demonstrated that MALE STERILITY 1 (MS1)
gene of Arabidopsis expresses in tapetal cells and plays

Fig. 7 Validation of selected DE genes by qRT-PCR with two biological replicates. The relative expression in the sample of middle-staged male-A
(MMA) was set to 1 for plotting the qRT-PCR data. AgEA, Early-staged Ag-H A; AgEB, Early-staged Ag-H B; FEA, Early-staged Female A; FEB, Early-staged
Female B; GEA, Early-staged GyM-H A; GEB, Early-staged GyM-H B; GMA, Middle-staged GyM-H A; GMB, Middle-staged GyM-H B; MEA, Early-staged Male
A; MEB, Early-staged Male B; MMA, Middle-staged Male A; MMB, Middle-staged Male B; AgMA, Middle-staged Ag-H A, AgMB, Middle-staged Ag-H B;
FMA, Middle-staged Female A; FMB, Middle-staged Female B
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an important role in pollen maturation [51, 54, 55].
C. grandis homolog of MS1, TRINITY_DN109512_c4
_g3_i1 was expressed in a male-biased manner
(Additional file 8: Table S5; Fig. 7). Similarly, homo-
logs of genes important for pollen tube growth such
as CSLD1 (TRINITY_DN92683_c0_g1_i1), CDPKO
(TRINITY_DN93671_c0_g1_i3), NRX1 (TRINITY_DN
106708_c1_g2_i3), PTR52 (TRINITY_DN112735_c0_g
14_i3; TRINITY_DN112735_c0_g3_i1), TAF6 (TRINI
TY_DN96231_c1_g1_i2) and CALS5 (TRINITY_DN1
13564_c1_g1_i1) were enriched in male [63–68]
(Fig. 8, Additional file 8: Table S5). Genes involved

in pollen exine formation such as FACR2/MS2 (TRI
NITY_DN74585_c1_g5_i3), EA6 (TRINITY_DN7627
4_c1_g1_i1), C70A2/DEX2 (TRINITY_DN99059_c0_
g1_i1) were also upregulated in male [69–71]. EMS1
(TRINITY_DN89942_c0_g7_i1), SERK1 (TRINITY_D
N108624_c1_g7_i5), JASON (TRINITY_DN83440_c0
_g1_i1), RPK2 (TRINITY_DN113423_c0_g1_i4), which
are essential for microsporogenesis and pollen matur-
ation were observed to be expressed at significantly
higher levels in middle-staged male buds compared to
GyM-H buds. [72–75] (Additional file 8: Table S5;
Fig. 7).

Fig. 8 qRT-PCR based expression analyses of selected genes involved in pollen tube development with two biological replicates. The relative
expression in the sample of middle-staged male-A (MMA) was set to 1 for plotting the qRT-PCR data. AgEA, Early-staged Ag-H A; AgEB, Early-staged
Ag-H B; FEA, Early-staged Female A; FEB, Early-staged Female B; GEA, Early-staged GyM-H A; GEB, Early-staged GyM-H B; GMA, Middle-staged GyM-H A;
GMB, Middle-staged GyM-H B; MEA, Early-staged Male A; MEB, Early-staged Male B; MMA, Middle-staged Male A; MMB, Middle-staged Male B; AgMA,
Middle-staged Ag-H A, AgMB, Middle-staged Ag-H B; FMA, Middle-staged Female A; FMB, Middle-staged Female B

Fig. 9 qRT-PCR based expression analyses of selected Ethylene-responsive transcription factors (ERFs) with two biological replicates. The relative
expression in the sample of middle-staged male-A (MMA) was set to 1 for plotting the qRT-PCR data. AgEA, Early-staged Ag-H A; AgEB, Early-staged
Ag-H B; FEA, Early-staged Female A; FEB, Early-staged Female B; GEA, Early-staged GyM-H A; GEB, Early-staged GyM-H B; GMA, Middle-staged GyM-H A;
GMB, Middle-staged GyM-H B; MEA, Early-staged Male A; MEB, Early-staged Male B; MMA, Middle-staged Male A; MMB, Middle-staged Male B; AgMA,
Middle-staged Ag-H A, AgMB, Middle-staged Ag-H B; FMA, Middle-staged Female A; FMB, Middle-staged Female B
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Expression profiling for homologs of MS1, EMS1,
DYT1, PME4, PME37, PPME1, CSLD1, CDPKO, and
PTR52 was studied by qRT-PCR for all the tissue samples
including middle-staged Ag-H buds (Figs. 7 and 8; Table
4). Transcripts for all these homologs were downregulated
in Ag-H buds and GyM-H buds, suggesting a male-biased
expression pattern implicating the reason for pollen steril-
ity in Ag-H and GyM-H buds.

Conclusions
De novo-assembled transcriptome developed from
RNA-Seq of different sexual phenotypes has enabled
identification of C. grandis homologs of many genes
known to be involved in flower development in spe-
cies such as Arabidopsis, melon, and cucumber. We
found out that many genes involved in stamen initi-
ation, tapetal development, and pollen maturation
were downregulated in female buds compared to male
buds. Interestingly, ethylene response-related genes
were upregulated in female buds compared to male
buds indicating a probable role of ethylene in stamen
suppression similar to monoecious cucurbits such as
melon and cucumber. We speculate that the Y-
chromosome might express genes that inhibit ethylene
signaling or suppress the carpel development, the site

of ethylene production leading to the formation of
stamens in male flowers. This was supported by the
observation that AgNO3 treatment suppressed ethyl-
ene responses and induced stamen development in fe-
male flowers of C. grandis. However, the pollens
produced by Ag-H flowers were sterile indicating a
decisive role of Y-chromosome in determining male-
ness. In accordance with this, the transcripts involved
in pollen maturation, pollen germination, and pollen
tube elongation were depleted in middle-staged GyM-
H buds compared to male buds. This could be be-
cause of the absence of Y-chromosome in GyM plant.
Altogether, differentially expressed genes identified in
this study could shed light on the probable mecha-
nisms of sex determination, differentiation, and modi-
fication in C. grandis.
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Table 4 Digital Expression profile for genes in anther
developmental pathway

Stage of stamen development Genes Expression pattern

Stamen Primordia Initiation AG Unbiased

CLV1/CLV2 Unbiased/male-biased

PI Male-biased

AP3 Unclear homolog

JAG Male-biased

Archesporial initiation BAM1/BAM2 Unclear homolog

SPL/NZZ Unclear homolog

Tapetal Development EMS1 Male-biased

SERK1/2 Male-specific

TPD1 Male-biased

RPK2 Male-specific

TDF Male-biased

DYT1 Unbiased

bHLH89 Male-biased

Mature Pollen Formation AMS Male-biased

MS1 Male-biased

MS2 Male-biased

MIA Unbiased

LAP3 Unbiased

LAP5 Male-biased
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