A. L. Andrady and M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc. B Biol. Sci, vol.364, 1977.

R. Scalenghe, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, 2018.

, PlasticsEurope: Plastics-The Facts, p.16, 2018.

S. Upasen and P. Wattanachai, Packaging to prolong shelf life of preservative-free white bread. Heliyon 2018, 4, e00802

P. G. Ryan, C. J. Moore, J. A. Van-franeker, and C. L. Moloney, Monitoring the abundance of plastic debris in the marine environment, Philos. Trans. R. Soc. B Biol. Sci, vol.364, 1999.

D. K. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, Accumulation and fragmentation of plastic debris in global environments, Philos. Trans. R. Soc. B Biol. Sci, vol.364, 1985.

J. G. Derraik, The pollution of the marine environment by plastic debris: A review, Mar. Pollut. Bull, vol.44, pp.842-852, 2002.

S. Kubowicz and A. M. Booth, Biodegradability of plastics: Challenges and misconceptions, Environ. Sci. Technol, vol.51, pp.12058-12060, 2017.

C. G. Alimba and C. Faggio, Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile, Environ. Toxicol. Pharmacol, vol.68, pp.61-74, 2019.

R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv, 2017.

N. Wierckx, M. A. Prieto, P. Pomposiello, V. De-lorenzo, K. O'connor et al., Plastic waste as a novel substrate for industrial biotechnology, Microb. Biotechnol, vol.8, pp.900-903, 2015.

N. Wierckx, T. Narancic, C. Eberlein, R. Wei, O. Drzyzga et al., Plastic biodegradation: Challenges and opportunities, Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation, pp.1-29, 2018.

T. Narancic and K. E. O'connor, Microbial biotechnology addressing the plastic waste disaster, Microb. Biotechnol, vol.10, pp.1232-1235, 2017.

R. Koshti, L. Mehta, and N. Samarth, Biological recycling of polyethylene terephthalate: A mini-review, J. Polym. Environ, vol.26, pp.3520-3529, 2018.

M. Arroyo, O. Olabisi, . Ed, and . Dekker, Thermoplastic polyesters, Handbook of Thermoplastics, pp.417-448, 1997.

L. N. Ji, Study on preparation process and properties of polyethylene terephthalate (PET), Appl. Mech. Mater, vol.312, pp.406-410, 2013.

, NAPCOR. Report on Postconsumer PET Container Recycling Activity in 2017, p.16, 2019.

D. E. Nikles and M. Farahat, New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: A review, Macromol. Mater. Eng, vol.290, pp.13-30, 2005.

A. M. Al-sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie, and A. E. Elmetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet, vol.25, pp.53-64, 2016.

V. Sinha, M. Patel, and J. Patel, Pet Waste Management by Chemical Recycling: A Review, J. Polym. Environ, vol.18, pp.8-25, 2010.

P. Furtwengler and L. Avérous, Renewable polyols for advanced polyurethane foams from diverse biomass resources, Polym. Chem, vol.9, pp.4258-4287, 2018.

H. K. Webb, J. Arnott, R. J. Crawford, and E. P. Ivanova, Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate), Polymers, vol.5, pp.1-18, 2013.

C. Roth, R. Wei, T. Oeser, J. Then, C. Föllner et al., Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca, Appl. Microbiol. Biotechnol, vol.98, pp.7815-7823, 2014.

S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji et al., A bacterium that degrades and assimilates poly(ethylene terephthalate), Science, vol.351, pp.1196-1199, 2016.

R. Wei, T. Oeser, and W. Zimmermann, Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes, Adv. Appl. Microbiol, vol.89, pp.267-305, 2014.

R. Wei and W. Zimmermann, Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate, Microb. Biotechnol, vol.10, pp.1302-1307, 2017.

D. Kasai, T. Fujinami, T. Abe, K. Mase, Y. Katayama et al., Uncovering the protocatechuate 2,3-cleavage pathway genes, J. Bacteriol, vol.191, pp.6758-6768, 2009.

K. Maruyama, T. Shibayama, A. Ichikawa, Y. Sakou, S. Yamada et al., Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1, Biosci. Biotechnol. Biochem, vol.68, pp.1434-1441, 2004.

R. W. Frazee, D. M. Livingston, D. C. Laporte, and J. D. Lipscomb, Cloning, sequencing, and expression of the Pseudomonas putida protocatechuate 3,4-dioxygenase genes, J. Bacteriol, vol.175, pp.6194-6202, 1993.

C. S. Harwood and R. E. Parales, The ?-ketoadipate pathway and the biology of self-identity, Annu. Rev. Microbiol, vol.50, pp.553-590, 1996.

D. Trifunovi?, K. Schuchmann, and V. Müller, Ethylene glycol metabolism in the acetogen Acetobacterium woodii, J. Bacteriol, vol.198, pp.1058-1065, 2016.

B. Mückschel, O. Simon, J. Klebensberger, N. Graf, B. Rosche et al., Ethylene glycol metabolism by Pseudomonas putida, Appl. Environ. Microbiol, vol.78, pp.8531-8539, 2012.

W. Zimmermann, S. Billig, G. S. Nyanhongo, and W. Steiner, Enzymes for the biofunctionalization of poly(ethylene terephthalate), In Biofunctionalization of Polymers and Their Applications, pp.97-120, 2011.

E. Herrero-acero, D. Ribitsch, G. Steinkellner, K. Gruber, K. Greimel et al., Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida, Macromolecules, vol.44, pp.4632-4640, 2011.

D. Danso, C. Schmeisser, J. Chow, W. Zimmermann, R. Wei et al., New insights into the function and global distribution of polyethylene terephthalate (PET)-Degrading bacteria and enzymes in marine and terrestrial metagenomes, Appl. Environ. Microbiol, vol.84, pp.2773-2790, 2018.

Z. Wang, Z. Ma, and L. Li, Flow-induced crystallization of polymers: Molecular and thermodynamic considerations, Macromolecules, vol.49, pp.1505-1517, 2016.

Å. M. Ronkvist, W. Xie, W. Lu, and R. A. Gross, Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate), Macromolecules, vol.42, pp.5128-5138, 2009.

E. Marten, R. Müller, and W. Deckwer, Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters, Polym. Degrad. Stab, vol.88, pp.371-381, 2005.

A. N. Shirke, C. White, J. A. Englaender, A. Zwarycz, G. L. Butterfoss et al., Stabilizing Leaf and branch Compost Cutinase (LCC) with glycosylation: Mechanism and effect on PET hydrolysis, Biochemistry, vol.57, pp.1190-1200, 2018.

S. Guyot, L. Pottier, A. Hartmann, M. Ragon, J. Hauck-tiburski et al., Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming, vol.3, pp.52-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02290963

B. Rudolph, K. M. Gebendorfer, J. Buchner, and J. Winter, Evolution of Escherichia coli for growth at high temperatures, J. Biol. Chem, vol.285, pp.19029-19034, 2010.

H. P. Austin, M. D. Allen, B. S. Donohoe, N. A. Rorrer, F. L. Kearns et al., Characterization and engineering of a plastic-degrading aromatic polyesterase, Proc. Natl. Acad. Sci, vol.115, pp.4350-4357, 2018.

R. Wei and W. Zimmermann, Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we?, Microb. Biotechnol, vol.10, pp.1308-1322, 2017.

M. Barth, T. Oeser, R. Wei, J. Then, J. Schmidt et al., Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca, Biochem. Eng. J, vol.93, pp.222-228, 2015.

M. Barth, R. Wei, T. Oeser, J. Then, J. Schmidt et al., Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor, J. Membr. Sci, vol.494, pp.182-187, 2015.

A. Carniel, É. Valoni, J. Nicomedes, A. D. Gomes, and A. M. Castro, Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid, Process Biochem, vol.59, pp.84-90, 2017.

R. Wei, T. Oeser, J. Schmidt, R. Meier, M. Barth et al., Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition, Biotechnol. Bioeng, vol.113, pp.1658-1665, 2016.

K. Y. Choi, W. J. Sul, Y. M. Kim, E. Kim, D. Kim et al., Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17, FEMS Microbiol. Lett, vol.252, pp.207-213, 2005.

Y. Z. Wang, Y. Zhou, and G. J. Zylstra, Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ. Health Perspect, vol.103, pp.9-12, 1995.

M. Sasoh, E. Masai, S. Ishibashi, H. Hara, N. Kamimura et al., Characterization of the terephthalate degradation genes of Comamonas sp. strain E6, Appl. Environ. Microbiol, vol.72, pp.1825-1832, 2006.

D. Kasai, M. Kitajima, M. Fukuda, and E. Masai, Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6, Appl. Environ. Microbiol, vol.76, pp.6047-6055, 2010.

M. Hosaka, N. Kamimura, S. Toribami, K. Mori, D. Kasai et al., Novel tripartite Aromatic Acid Transporter Essential for Terephthalate Uptake in Comamonas sp, Strain E6. Appl. Environ. Microbiol, vol.79, pp.6148-6155, 2013.

N. N. Nichols and C. S. Harwood, PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida, J. Bacteriol, vol.179, pp.5056-5061, 1997.

Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima et al., Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis, J. Bacteriol, vol.172, pp.2704-2709, 1990.

J. Oberto, SyntTax: A web server linking synteny to prokaryotic taxonomy
URL : https://hal.archives-ouvertes.fr/hal-00779628

T. Wells and A. J. Ragauskas, Biotechnological opportunities with the b-ketoadipate pathway, Trends Biotechnol, vol.30, pp.627-637, 2012.

C. W. Johnson, D. Salvachúa, P. Khanna, H. Smith, D. J. Peterson et al., Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity, Metab. Eng. Commun, vol.3, pp.111-119, 2016.

D. R. Vardon, M. A. Franden, C. W. Johnson, E. M. Karp, M. T. Guarnieri et al., Adipic acid production from lignin, Energy Environ. Sci, vol.8, pp.617-628, 2015.

J. Child and A. Willetts, Microbial metabolism of aliphatic glycols bacterial metabolism of ethylene glycol, Biochim. Biophys. Acta Gen. Subj, vol.538, pp.316-327, 1978.

M. Kataoka, M. Sasaki, A. G. Hidalgo, M. Nakano, and S. Shimizu, Glycolic acid production using ethylene glycol-oxidizing microorganisms, Biosci. Biotechnol. Biochem, vol.65, pp.2265-2270, 2001.

A. Boronat and J. Aguilar, Rhamnose-induced propanediol oxidoreductase in Escherichia coli: Purification, properties, and comparison with the fucose-induced enzyme, J. Bacteriol, vol.140, pp.320-326, 1979.

M. Wehrmann, P. Billard, A. Martin-meriadec, A. Zegeye, and J. Klebensberger, Functional role of lanthanides in enzymatic activity and transcriptional regulation of pyrroloquinoline quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440, vol.8, pp.570-587, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02130409

A. Boronat, E. Caballero, and J. Aguilar, Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli, J. Bacteriol, vol.153, pp.134-139, 1983.

M. A. Franden, L. N. Jayakody, W. Li, N. J. Wagner, N. S. Cleveland et al., Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization, Metab. Eng, vol.48, pp.197-207, 2018.

E. Cusa, N. Obradors, L. Baldomà, J. Badía, and J. Aguilar, Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli, J. Bacteriol, vol.181, pp.7479-7484, 1999.

A. Grostern, C. M. Sales, W. Zhuang, O. Erbilgin, and L. Alvarez-cohen, Glyoxylate metabolism Is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190, Appl. Environ. Microbiol, vol.78, pp.3298-3308, 2012.

B. L. Wanner, D. Wishart, F. R. Blattner, G. H. Thomas, I. I. Plunkett-guy et al., A cooperatively developed annotation snapshot-2005, vol.12, pp.1-9, 2006.

D. Huccetogullari, Z. W. Luo, and S. Y. Lee, Metabolic engineering of microorganisms for production of aromatic compounds, Microb. Cell Fact, vol.18, p.41, 2019.

R. E. Osterhout, A. P. Burgard, P. Pharkya, and P. Burk, Microorganisms and Methods for the Biosynthesis of Aromatics, 2,4-Pentadienoate and 1,3-Butadiene, 2011.

B. Delépine, T. Duigou, P. Carbonell, J. Faulon, and . Retropath2, 0: A retrosynthesis workflow for metabolic engineers, Metab. Eng, vol.45, pp.158-170, 2018.

B. S. Moore, C. Hertweck, J. N. Hopke, M. Izumikawa, J. A. Kalaitzis et al., Plant-like biosynthetic pathways in bacteria: From benzoic acid to chalcone, J. Nat. Prod, vol.65, pp.1956-1962, 2002.

W. Lind and R. Campbell, Preparation of Potassium Terephthalate, 1971.

R. Bernhard, Production of Terephthalic Acid, 1956.

M. Graglia, N. Kanna, and D. Esposito, Lignin refinery: Towards the preparation of renewable aromatic building blocks. ChemBioEng Rev, vol.2, pp.377-392, 2015.

Z. W. Luo and S. Y. Lee, Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli, Nat. Commun, 2017.

F. C. Franklin, M. Bagdasarian, M. M. Bagdasarian, and K. N. Timmis, Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway, Proc. Natl. Acad. Sci, vol.78, pp.7458-7462, 1981.

S. Harayama, M. Rekik, M. Wubbolts, K. Rose, R. A. Leppik et al., Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products, J. Bacteriol, vol.171, pp.5048-5055, 1989.

F. Junker, R. Kiewitz, and A. M. Cook, Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2, J. Bacteriol, vol.179, pp.919-927, 1997.

A. G. Dedov, A. S. Loktev, and A. A. Karavaev, Moiseev, I.I. A novel direct catalytic production of p-xylene from isobutanol, Mendeleev Commun, vol.28, pp.352-353, 2018.

M. Peters, J. Taylor, M. Jenni, L. Manzer, and D. Henton, Integrated process to selectively convert renewable isobutanol to p-xylene, 2010.

R. Chang, L. Zhu, F. Jin, M. Fan, J. Liu et al., Production of bio-based p-xylene via catalytic pyrolysis of biomass over metal oxide-modified HZSM-5 zeolites, J. Chem. Technol. Biotechnol, vol.93, pp.3292-3301, 2018.

J. J. Pacheco and M. E. Davis, Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural, Proc. Natl. Acad. Sci, vol.111, pp.8363-8367, 2014.

M. Shiramizu and F. D. Toste, On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): Conversion of 2,5-dimethylfuran and acrolein into p-xylene, Chem. A Eur. J, vol.17, pp.12452-12457, 2011.

A. Maneffa, P. Priecel, and J. A. Lopez-sanchez, Biomass-derived renewable aromatics: Selective routes and outlook for p-xylene commercialisation, ChemSusChem, vol.9, pp.2736-2748, 2016.

C. L. Williams, C. Chang, P. Do, N. Nikbin, S. Caratzoulas et al., Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene, ACS Catal, vol.2, pp.935-939, 2012.

B. Van-de-poel, E. D. Cooper, C. F. Delwiche, and C. Chang, An evolutionary perspective on the plant hormone ethylene, Ethylene in Plants, pp.109-134

F. Digiacomo, G. Girelli, B. Aor, C. Marchioretti, M. Pedrotti et al., Ethylene-producing bacteria that ripen fruit, ACS Synth. Biol, vol.3, pp.935-938, 2014.

A. Steeman, . Pet, -. Pet-petro, -. Bio, and . Online, , 2019.

L. Salusjärvi, S. Havukainen, O. Koivistoinen, and M. Toivari, Biotechnological production of glycolic acid and ethylene glycol: Current state and perspectives, Appl. Microbiol. Biotechnol, vol.103, pp.2525-2535, 2019.

H. Liu, K. R. Ramos, K. N. Valdehuesa, G. M. Nisola, W. Lee et al., Biosynthesis of ethylene glycol in Escherichia coli, Appl. Microbiol. Biotechnol, vol.97, pp.3409-3417, 2013.

C. Alkim, Y. Cam, D. Trichez, C. Auriol, L. Spina et al., Optimization of ethylene glycol production from (d)-xylose via a synthetic pathway implemented in Escherichia coli, Microb. Cell Fact, vol.14, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02634125

Y. Cam, C. Alkim, D. Trichez, V. Trebosc, A. Vax et al., Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals, ACS Synth. Biol, vol.5, pp.607-618, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886404

R. B. Cabulong, K. N. Valdehuesa, K. R. Ramos, G. M. Nisola, W. Lee et al., Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli, Enzyme Microb. Technol, vol.97, pp.11-20, 2017.

B. Uranukul, B. M. Woolston, G. R. Fink, and G. Stephanopoulos, Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes, Metab. Eng, vol.51, pp.20-31, 2019.

B. Pereira, H. Zhang, M. De-mey, C. G. Lim, Z. Li et al., Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol, Biotechnol. Bioeng, vol.113, pp.376-383, 2016.

M. A. Islam, N. Hadadi, M. Ataman, V. Hatzimanikatis, and G. Stephanopoulos, Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas, vol.41, pp.173-181, 2017.

S. H. Desai, I. Koryakina, A. E. Case, M. D. Toney, and S. Atsumi, Biological conversion of gaseous alkenes to liquid chemicals, Metab. Eng, vol.38, pp.98-104, 2016.

N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang et al., Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts, Catal. Today, vol.147, pp.77-85, 2009.

J. Sun and H. Liu, Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts, Green Chem, vol.13, pp.135-142, 2011.

J. Pang, M. Zheng, A. Wang, and T. Zhang, Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol, Ind. Eng. Chem. Res, vol.50, pp.6601-6608, 2011.

T. Song, Y. Xu, Y. Ye, Y. Chen, and S. Shen, Electricity generation from terephthalic acid using a microbial fuel cell, J. Chem. Technol. Biotechnol, vol.84, pp.356-360, 2009.

, The Coca Cola Company Coca-Cola Produces World's First PET Bottle Made Entirely From Plants, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI