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Species distribution models (SDMs) have become one of the major predictive tools in 
ecology. However, multiple methodological choices are required during the modelling 
process, some of which may have a large impact on forecasting results. In this context, 
virtual species, i.e. the use of simulations involving a fictitious species for which we 
have perfect knowledge of its occurrence–environment relationships and other rel-
evant characteristics, have become increasingly popular to test SDMs. This approach 
provides for a simple virtual ecologist framework under which to test model properties, 
as well as the effects of the different methodological choices, and allows teasing out the 
effects of targeted factors with great certainty. This simplification is therefore very use-
ful in setting up modelling standards and best practice principles. As a result, numer-
ous virtual species studies have been published over the last decade. The topics covered 
include differences in performance between statistical models, effects of sample size, 
choice of threshold values, methods to generate pseudo-absences for presence-only 
data, among many others. These simulations have therefore already made a great con-
tribution to setting best modelling practices in SDMs. Recent software developments 
have greatly facilitated the simulation of virtual species, with at least three different 
packages published to that effect. However, the simulation procedure has not been 
homogeneous, which introduces some subtleties in the interpretation of results, as well 
as differences across simulation packages. Here we 1) review the main contributions 
of the virtual species approach in the SDM literature; 2) compare the major virtual 
species simulation approaches and software packages; and 3) propose a set of recom-
mendations for best simulation practices in future virtual species studies in the context 
of SDMs.

Keywords: artificial species, environmental niche models, niche, simulations, species 
distribution modelling, virtual ecologist

Introduction

By statistically relating occurrence data to environmental gradients, species distribu-
tion modelling (SDM) allows one to map the potential distribution of a species of 
interest over a specific area of interest (Soberón 2010). SDMs have therefore become 
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a very powerful tool to project current, future and past dis-
tributions of diversity (Calabrese  et  al. 2014, Albouy et  al. 
2015), including scenarios of climate change and biological 
invasions (Guisan and Thuiller 2005, Dawson  et  al. 2011, 
Bellard  et  al. 2012). Despite their popularity, a key issue 
that remains problematic is that the methodology associated 
with SDMs is difficult to test and validate with real data. For 
example, we often lack detailed information on what really 
determines a species range, or on how to scale relevant physi-
ological or population information at local scales into large-
scale range maps (but see Schurr et al. 2012). Furthermore, 
SDMs are usually applied at regional, continental or some-
times even global scales, making it impossible to design a rep-
licable experiment to test their properties in the real world. 
Considering all these difficulties, it has become clear that 
simulations of virtual species (VS) are potentially useful to 
propose and test SDM methodologies (Zurell  et  al. 2010, 
Meynard and Kaplan 2013, Thibaud et al. 2014). In an early 
review of knowledge gaps and advances in the SDM litera-
ture, Austin et al. (2006) and Austin (2007) went as far as to 
suggest that the simulation of VS should be used systemati-
cally to test any new method in this field before applying it to 
real data, and that those simulations should be made in accor-
dance with ecological theory. Subsequently, VS studies have 
increased, covering a variety of topics (Table 1). Because of 
this boom in VS use, especially as it relates to testing methods 
to model species distributions, we found it useful to review 
here what topics have been explored with this approach, and 
to provide some guidelines regarding the methodologies used 
to this effect.

We started by reviewing the abstracts of 123 papers 
found in an initial web of science search (performed on 10 
September 2018) using different combinations of ‘virtual spe-
cies’, ‘artificial species’ and ‘simulations’ or ‘simulated’ + ‘spe-
cies distribution*’ in ‘ecology’, to which we added references 
that we found relevant by doing some more specific and iso-
lated searches, and by inspecting the references cited in rele-
vant papers. This allowed us to filter out papers that were not 
relevant to our review, focusing on occurrence distribution 
models (rather than abundance or population models), and 
on papers that tested methods related to SDMs. In the rest of 
this review, we focus on a subset of ~60 papers that we review 
in more detail (Table 1, Supplementary material Appendix 
1 for the full list). An earlier review of VS literature (Miller 
2014) emphasized specific methodological choices during the 
SDM modelling part. Here we update that literature review, 
but we also emphasize conceptual issues related to VS sim-
ulations that can affect results and generalizability. We will 
therefore focus on key findings and simulation choices, and 
the implications that they may have for generalizing to more 
realistic situations. We will start by defining the VS approach 
with a step-by-step description of the simulation process, and 
pointing to key stages that can lead to important differences 
on the VS outcome. We then go on to summarize the major 
findings and related shortcomings of published VS studies, 

and end up with a review of the software that is currently 
available to simulate VS.

The virtual species approach: simulation 
stages and key choices

Here we will define a VS as a simulated entity that has a 
known occurrence–environment relationship and for which 
we can control the sampling strategy, as well as any other 
desirable property that might be useful in understanding 
model behavior or in proposing sampling, calibration or 
validation strategies. Some authors have developed virtual 
distributions based on simulations of abundances or popula-
tion dynamics (Austin et al. 2006, Soberón 2010). However, 
the vast majority of the SDM literature today is based on 
occurrence data (i.e. presence–absence or presence-only data-
sets). Therefore, for the purposes of this review, we will limit 
ourselves to VS studies based on presence–absence simula-
tions. Notice that the SDM literature is vast, and a review 
of SDMs per se is outside the scope of this article. Interested 
readers can find detailed accounts of SDM methods and their 
applications in other recent publications (Franklin 2009, 
Guisan et al. 2017). Here we will focus solely on a review of 
the VS approach in the SDM literature.

The general principle of the VS approach is to design a 
VS, project it into a landscape, and then use the usual SDM 
procedures to test one or several stages of the SDM modelling 
process on the VS as if it was a real species (Fig. 1). Therefore, 
while the VS simulation is unique to VS studies (Fig. 1, stages 
1–4), the rest of the work flow (Fig. 1, stage 5) is meant to 
mimic real-case SDM fitting and testing, and should be 
familiar to most SDM users. We will therefore largely focus 
on stages 1–4.

The first stage in the simulation process (Fig. 1, stage 1) 
is to define a relationship between the VS occurrence and 
the environment. We will call this the definition of the ini-
tial suitability function. VS studies that focus on this stage 
will usually address the effects of the shape of the suitabil-
ity function, the effects of the number and complexity of 
interactions between environmental drivers, or the effects of 
niche properties such as specialization or niche breadth on 
model performance (Table 1, Fig. 1, stage 1). The ecological 
niche concept is often based on the principle that there is an 
optimal environment for a species to survive, and therefore a 
Gaussian or a skewed Gaussian distribution (as a function of 
environment) is often assumed (Austin et al. 2006, Soberón 
2010). However, this relationship can take any shape and can 
depend on different environmental gradients. At this stage, if 
multiple predictors with different range values are combined 
into a suitability function, it is often useful to scale them (for 
example to have all predictors with a mean = 0 and standard 
deviation = 1 over the landscape) so that their relative impacts 
on the species response to the environment can be directly 
compared.
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Table 1. Examples of virtual species (VS) studies as classified by the simulation stages and topics defined in Fig. 1. The number under ‘stage’ 
refers to the numbers given in Fig. 1 for each simulation stage: 1 = generation of the virtual species; 2 = applying to a landscape; 3 = conversion 
to presence–absence pattern; 4 = sampling presence–absence data; 5 = SDM fitting and testing. The references mentioned in this table are 
separated according to their simulation strategy (threshold versus probabilistic simulation approach) in the Supplementary material 
Appendix 1.

Stage Potential effects tested References Major conclusions

1 Effects of the shape and 
complexity of the 
suitability function

Meynard and Quinn 2007, Elith 
and Graham 2009, Santika 
2011, Meynard and Kaplan 
2012, García-Callejas and 
Araújo 2016

•• Threshold responses are easier to predict in terms of 
presence–absences than other types of responses (linear, 
Gaussian, combination of shapes).

•• More complex suitability functions (e.g. composed of 
responses to different variables with a combination of linear 
and non-linear components) are more difficult to model, 
recover and predict.

•• Specific statistical models were designed for certain  
types of responses (e.g. threshold versus linear versus 
Gaussian), and they tend to perform better under those 
circumstances.

•• Model performance indices based on presence–absence 
classification success do not detect calibration issues (i.e. the 
SDM may be fitting response curves that do not match the real 
species response curves but still have good classification 
success).

1 Effects of specialization/
niche breadth

Saupe et al. 2012, 
Valladares et al. 2014, Soultan 
and Safi 2017, Connor et al. 
2018

•• Specialist species are more predictable than generalists are.
•• Simulations based on the threshold VS approach may include 

confounding effects of prevalence and other factors in their 
results.

2 Effects of resolution and 
extent, upscaling and 
downscaling

Bombi and D’Amen 2012, 
Lauzeral et al. 2013, 
Nakazawa and Peterson 2015, 
Fernandez et al. 2017, 
Connor et al. 2018, Mertes and 
Jetz 2018, Moudry et al. 2018

•• Predictions are best when the layers used for model  
calibration are at the same resolution than the species 
response, and when the whole extent of the species 
distribution is included.

•• Upscaling strategies can be successful; downscaling strategies 
show more mixed results.

•• Prediction of species occurrences is better when  
high-resolution datasets are used in model calibration  
(but see caveats in section ‘What have we learnt and  
what are we missing from virtual species studies?’ of this 
review).

•• Scaling VS studies using a probabilistic approach are under-
represented and may lead to different conclusions than 
threshold VS studies.

3 Species prevalence or 
rarity

Real et al. 2006, Albert and 
Thuiller 2008, Jimenez-
Valverde et al. 2009, Meynard 
and Kaplan 2012, Fukuda and 
De Baets 2016

•• There is a strong effect of sample bias when sample 
prevalence is different from species prevalence.

•• Species prevalence seems influential mainly when it is 
extreme (> 90% or < 10%), especially when sample size is 
small.

•• Some have proposed an ‘environmental favorability function’ 
that makes model output independent from sample 
prevalence and could be useful when different species need 
to be compared in the same scale (e.g. prioritization of 
conservation sites).

•• VS studies based on a threshold simulation approach do not 
separate appropriately rarity (prevalence) from specialization 
(niche breadth) and other confounding factors.

3 Effects of dispersal 
patterns/constraints

De Marco et al. 2008, 
Saupe et al. 2012, 
Thibaud et al. 2014, 
Hattab et al. 2017, De Marco 
and Nobrega 2018

•• Predicting distributions from early stages of invasion is 
difficult because the species has not occupied all of its 
potential environmental space. At late stages of dispersal, 
considering dispersal constraints may become less 
important.

•• Strategies to take into account the invasion process have been 
proposed.

(Continued)
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Stage Potential effects tested References Major conclusions

4 Data quality, sampling 
strategy, sampling 
size, sampling bias, 
imperfect detection 
issues

Hirzel and Guisan 2002, 
Jimenez-Valverde et al. 2009, 
Lauzeral et al. 2012, 
Sheth et al. 2012, Kramer-
Schadt et al. 2013, 
Owens et al. 2013, Dorazio 
2014, Guillera-Arroita et al. 
2014a, Lahoz-Monfort et al. 
2014, Thibaud et al. 2014, 
Varela et al. 2014, Stolar and 
Nielsen 2015, Fei and Yu 2016, 
Ranc et al. 2017, Liu et al. 
2018

•• Unbiased presence–absence data is always better than biased 
presence-only data, but several strategies to correct bias and 
use presence-only datasets have been proposed.

•• Representing the full environmental gradient is key to a good 
model calibration.

•• Several studies have pointed to a minimum of 50–100 
occurrences needed to characterize a species environmental 
niche; however, there is great variability depending on species 
properties, whether or not absences are considered, and how 
is the sample biased or not.

•• In studies considering multiple factors at a time, sample size 
usually comes up as the most influential factor determining 
model performance, especially at the lower end of the 
spectrum (< 50 occurrences).

•• Bias in presence-only datasets can be partially corrected by 
using pseudo-absence bias-correction strategies.

•• Notice that VS studies using a threshold simulation approach 
will inadvertently confound several of these factors with 
species and sample prevalence.

4 Pseudo-absence strategy Lobo and Tognelli 2011, 
Barbet-Massin et al. 2012

•• The use of a large number of random pseudo-absences or a 
relatively smaller number of pseudo-absences coupled with a 
large number of iterations is recommended.

•• Some exceptions are found at small sample sizes and for some 
statistical models under special conditions.

•• Notice that these studies are dominated by the use of indices 
that are influenced by sample prevalence (e.g. AUC and TSS, 
Leroy et al. 2018), so we cannot discard the possibility that the 
increased performance when using a large number of 
pseudo-absences is an artifact of the indices used.

5 Statistical models Reineking and Schroder 2006, 
Meynard and Quinn 2007, 
Elith and Graham 2009, 
Guillera-Arroita et al. 2014b, 
Thibaud et al. 2014, Qiao et al. 
2015

•• Statistical models may differ greatly on their results.
•• Some statistical models are better adapted to different types of 

datasets (e.g. presence-only versus presence–absence), 
different types of response curves (e.g. threshold, linear, 
symmetric bell-shaped, asymmetric bell-shaped), or other 
underlying factors.

•• Most statistical techniques perform well under the ideal 
conditions they were designed to solve, but in real situations, 
we may not have all the relevant information to choose the 
most pertinent one.

•• User knowledge of the specific statistical tool under use is 
fundamental to make appropriate choices. Regularization (i.e. 
methods that aim to balance model fit and model complexity) 
may be key to good model performance.

5 Thresholds for 
presence–absence 
predictions

Jimenez-Valverde and Lobo 
2007, Liu et al. 2013, 2016, 
Meynard and Kaplan 2013

•• Threshold methods based on the maximization of the sum 
between sensitivity and specificity, or on the minimization of 
the difference between sensitivity and specificity tend to 
outperform the others.

•• There is a tradeoff between sensitivity and specificity, and 
simulations based on a probabilistic VS approach show higher 
uncertainty and more caveats to the previous results.

5 Testing indices of 
performance (based 
on classification or on 
predicted probability/
suitability)

Li and Guo 2013, 
Rapacciuolo et al. 2014, 
Fieberg et al. 2018

•• Several propositions have been made to base model 
performance metrics on the predicted probability of 
occurrence and on model calibration, rather than on the 
success to predict presences and absences.

•• Probabilistic VS studies have shown that metrics based on 
presence–absence classification rates are limited by the 
probabilistic nature of the distribution (e.g. expected AUC 
values < 1 even for a model that recovers the true probability 
of occurrence).

Others Testing biogeographic 
patterns

Kent and Carmel 2011, 
Nakazawa and Peterson 
2015, Hawkins et al. 2017

•• Simulations of individual species distributions stacked to form 
diversity or community composition patterns have shown 
promise to test biogeographic/macroecological hypotheses, or 
test related methodological procedures.

Table 1. Continued
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A common alternative to this artificial simulation process 
has been to model a real species using a common SDM, and 
then use the resulting occurrence–environment relationship 
as a VS suitability function. For example, Thibaud  et  al. 
(2014) used a GLM to model the distribution of real plant 
species in the Swiss Alps. This resulted in occurrence–envi-
ronment functional responses estimated from GLMs, which 
were then used as if they were true suitability functions. In 
the end, both types of approaches come down to the genera-
tion of a suitability function that summarizes habitat qual-
ity with respect to one or several environmental gradients 
(Fig. 1, stage 1).

The second stage of the VS simulation is to project the 
simulated relationship into a landscape (Fig. 1, stage 2). 
This landscape can be real or simulated itself, and this step 
can be accomplished in one or several steps (Fig. 1, stage 2). 
Using a real landscape (e.g. Worldclim data for a particular 
continent) has the advantage of being simple and permits a 
realistic set of explanatory environmental variables with col-
linearity and interactions that we can then relate to real case 
studies. However, simulating the landscape itself can have 
some advantages when we are trying to separate the effects 

of a particular method from the effects of environmental 
structure (Thibaud et al. 2014, Yackulic and Ginsberg 2016, 
Mertes and Jetz 2018). Therefore, simulating the landscape 
can allow greater flexibility in trying to tease apart the effects 
of the environmental structure per se with respect to the other 
components. VS studies focusing on this stage can ask ques-
tions related to the influence of environmental structures on 
SDM performance, resolution and scale, and data aggrega-
tion strategies, among other things (Fig. 1, Table 1, stage 2).

The third stage of the VS simulation is to decide how to 
transform the initial suitability values, which can theoreti-
cally have any range of values, into a presence–absence dis-
tribution, which is usually the target for modelling in SDM 
studies. This is a key step in the simulation process because 
deciding how presences and absences will be determined will 
affect the shape of the suitability–environment relationship 
originally simulated, and will also determine what is the true 
probability of occurrence (which, unlike the suitability func-
tion, needs to be between 0 and 1). We will therefore dis-
tinguish here the initial suitability function, which describes 
the species–environment relationship but can have any range 
of values, from the true probability of occurrence, which is 

Figure 1. Stages involved in the simulation of a virtual species. The different stages are marked in the orange boxes, whereas the potential 
effects that can be tested at each step are marked in the blue boxes. Stages 1–4 are unique to the virtual species simulation, whereas stage 5 
is common to any species distribution study. Our focus is therefore on the first stages.
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the final function after any transformation have been applied 
to the initial suitability function. Therefore, unlike the ini-
tial suitability function, the true probability of occurrence is 
bounded between 0 and 1 and gives the probability that a 
species is present for a given set of environmental conditions.

At this stage, there have been at least two very different 
approaches to transform the initial suitability function into 
a true probability of occurrence, each having very impor-
tant consequences for the subsequent steps (Fig. 2). The first 
approach has been called a ‘threshold simulation approach’ 
(Meynard and Kaplan 2013) and is well exemplified by 
Hirzel’s original studies, which greatly promoted the use of 
VS in this field (Hirzel et al. 2001, Hirzel and Guisan 2002). 
Here, presences are defined with respect to a threshold in 
the suitability function: any grid cell that has a suitability 
value greater than a certain threshold will become a presence, 
whereas any grid cell with a lower suitability value is trans-
lated into an absence. Although this approach is attractive 
because of its simplicity, it inadvertently transforms a com-
plex suitability function (Fig. 2a, blue line) into a probability 

function that is either 0 (below the threshold) or 1 (above the 
threshold) (Fig. 2a, black line). Notice that in our example, 
even though the suitability function was a Gaussian (Fig. 2a, 
blue line), the true probability of occurrence is composed of 
two thresholds with a plateau of pure presences between them 
(Fig. 2a, black line). A common mistake in threshold VS 
studies has been to compare the initial suitability functions 
with the predicted probabilities to see if the SDM could 
recover the simulated environment–occurrence relationship. 
However, the correlation between those curves will often be 
low (Hirzel and Guisan 2002) because the true probability of 
occurrence is quite different from the initial suitability func-
tion (Fig. 2, blue versus black line). Therefore, the recovery 
of the true probability of occurrence (i.e. the black curve in 
Fig. 2a, when using a threshold) is key when the comparison 
of simulated and predicted probabilities is part of the model 
evaluation process.

The second approach to simulating presence–absences 
from the suitability function has been called a ‘probabilis-
tic simulation approach’ (Meynard and Kaplan 2013). This 
approach involves interpreting the initial suitability function 
as a probability of occurrence, which involves scaling the suit-
ability values to be between 0 and 1. The way the suitability 
function is scaled to the probability range will affect the origi-
nal shape of the suitability function to individual environ-
mental gradients. Two alternatives have been commonly used 
at this stage: a linear transformation (Meynard and Quinn 
2007) or a logistic function (Meynard and Kaplan 2012). A 
linear transformation will preserve the shape of the originally 
simulated occurrence–environment relationships, uniformly 
increasing or decreasing the probabilities of occurrence across 
the landscape (Fig. 2b, black line). However, controlling for 
species prevalence and making sure that the probability of 
occurrence is within the 0–1 range may be a little tricky with 
this method (but see an example in Supplementary mate-
rial Appendix 2). A logistic function on the other hand, will 
ensure that the simulated probability is within the 0–1 range 
and allow easy control of species prevalence (Meynard and 
Kaplan 2012). However, the logistic function will also flatten 
out the relationship at extreme suitability values, and narrow 
or broaden the intermediate probability values depending on 
the slope of the logistic curve (Fig. 2b, red line). Notice that a 
logistic function with a steep slope will approximate a thresh-
old response (Meynard and Kaplan 2012), so the parameters 
of the logistic function may have a great influence on how 
different the true probability of occurrence is from the initial 
suitability function. Here again, if the VS study aims at com-
paring true and predicted probability values, it is important 
to recover the true probability of occurrence after applying 
the linear or logistic transformation, instead of directly using 
the initial suitability function.

In practice, once the suitability function has been trans-
lated into a probability of occurrence within a probabilistic 
VS approach, each grid cell in the landscape can be subjected 
to a Bernoulli trial by simply generating a random number 
out of a uniform distribution between 0 and 1 with which 
to compare its probability. Therefore, under a probabilistic 

Figure 2. Schematic example of a simulated suitability function and 
its corresponding simulated probability under (a) a threshold simu-
lation approach and (b) a probabilistic simulation approach. The 
blue line corresponds to the simulated functional response, whereas 
black and red lines indicate the corresponding probability of 
occurrence after the suitability has been converted in different ways.
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VS approach, and unlike the threshold VS approach, every 
iteration of the Bernouilli trial will generate a different dis-
tribution pattern. In R, the function rbinom can be used to 
such effect, and, if the same distribution pattern needs to be 
reproduced (for example, so that the readers of a paper can 
replicate a study under exactly the same distribution pattern), 
the function set.seed can be set to a specific value at the start 
of the simulation process. Notice that other (non-uniform) 
statistical distributions can be used to generate random num-
bers for determining presence (e.g. Thibaud et al. 2014 used 
random numbers drawn from a Gaussian distribution), but 
these will further distort the shape of the true probability 
with respect to the initial suitability function, as well as the 
intended species prevalence, if it was initially controlled for. 
It is therefore a good practice to check the match between 
the initial suitability function, the true probability of occur-
rence, and the simulated distribution before going further in 
the simulation process. In more general terms, one should 
always check at this stage that the properties that we intend to 
attribute to the VS are in fact translated into the distribution 
patterns generated in the simulation process, before going 
into the SDM testing stages.

A number of variants, some of which were intended as 
combinations of threshold and probabilistic approaches, 
have been used to simulate presence–absence or presence-
only data from the simulated suitability functions. Given 
the importance of this step, it is interesting to think 
about the implicit assumptions that some of these vari-
ants reflect. For example, Barbet-Massin et al. (2012) used 
a threshold on the lower end of the suitability function 
under which the simulated species were always absent. 
Above that threshold, a Bernoulli trial was used to draw 
presences according to the simulated probability of occur-
rence. This combination of threshold and probabilistic 
processes comes down to a true probability of occurrence 
that looks like a truncated distribution (Fig. 2a, red line). 
Soultan and Safi (2017) used yet another variant, where 
they applied a threshold over the initial suitability function 
to determine the species range (the species is always pres-
ent inside and always absent outside); however, they used 
the initial suitability inside the distribution range to place 
the sampling locations (i.e. the species was more likely to 
be sampled in the most suitable sites) and the inverse of 
that suitability outside the range (sites that were less suit-
able were more likely to be visited and marked as absent). 
In the end, this strategy comes down to a threshold simu-
lation approach where sampling effort is diminished near 
the threshold value that defined the original range of the 
VS, therefore inadvertently introducing a sampling bias in 
the environmental gradient that was not accounted for by 
the authors, and transforming all suitability functions into 
a threshold. Here again, one should not compare true and 
predicted probabilities of occurrence if the modelling steps 
were not well recovered, especially since the initial suitabil-
ity function does not have a linear relationship to the true 
probability of occurrence.

A more interesting variant in this step is to simulate the 
dispersal of the VS in the geographical space (Table 1, stage 
3), for example using a spatially explicit cellular automata 
(De Marco and Nobrega 2018), which will start by seeding 
the landscape with a few occurrences and will proceed by col-
onizing further habitat as a function of habitat suitability and 
a dispersal function. This has the advantage of simulating VS 
distributions that potentially mimic the real species distribu-
tions with stochastic and limited dispersal, allowing one to 
assess the importance of these processes. However, dispersal 
limitation is a further confounding factor that needs to be 
accounted for in model analyses. Finally, another variant in 
the simulation of presence–absence data is to skip the geo-
graphic projection all together, and directly simulate a sam-
pling process of environmental space. Whether that reflects a 
threshold or a probabilistic simulation approach will depend 
on how the sampling is simulated. If a simple threshold on 
suitability determines the presence or absence of the spe-
cies, this approach is equivalent to a threshold simulation 
approach and it will have the same properties. If the simu-
lated suitability is compared to a random number of uniform 
distribution, then the approach is equivalent to a Bernoulli 
trial, and therefore it falls within the probabilistic simulation 
approach. In other words, the geographic projection of the 
simulated range is not strictly necessary in some situations, 
as long as we understand the underlying assumptions of the 
sampling generation method used.

In summary, the conversion of the initial suitability func-
tion or the true probability of occurrence into a distribution 
pattern is a step in the simulation process that can have many 
variants and that can greatly affect the implicit assumptions 
of the VS study. By applying a threshold over the suitabil-
ity function, all simulations will be based on a threshold 
environment–occurrence response, whereas by applying a 
Bernouilli trial the probability–environment relationship will 
be preserved. The question then becomes how much distor-
tion, if any, was introduced in the process of converting the 
suitability function into a probability of occurrence (Fig. 2) 
or by simulating specific biases in the sampling procedure or 
occupancy patterns.

General recommendations and guidelines

The previous section shows that there are a number of meth-
odological choices when carrying out a VS study and that 
diligence is required to make sure that the VS has the prop-
erties that were originally intended (Fig. 3). We provide a 
simple example of some of the most common approaches 
to VS simulations in a script in Supplementary material 
Appendix 2. In this section we will summarize our main 
recommendations for future VS studies (Fig. 3).

Our first recommendation is to introduce multiple 
checks during the simulation strategy, to make sure that the 
simulated environment–occurrence relationship, as well as 
any other key simulation step, was simulated as originally 
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intended (Fig. 3, blue arrows and text). This may seem as 
a trivial step. However, as shown in the previous section, if 
the simulation process is not well understood or explored, a 
simulation that was intended to match ecological theory or 
a specific species–environment relationship may well end-up 
leading to a distribution or sampling pattern that has little in 
common with such theory or with reality.

Our second recommendation is to clearly define the 
purpose of the VS study at hand, to define accordingly at 
which stage of the simulation process most effort should 
be allocated. When trying to understand the effects of one 
particular factor on SDM outcomes, it is a good idea to 
put more emphasis on that stage of the simulation process, 
leaving everything else constant and using the simplest and 
most transparent modeling approach. Under ideal and sim-
ple conditions, the fit between true and predicted values 
should be good. If that is not the case, then going back 
to the previous steps and understanding why the outcome 
is not as expected is key to providing further insights into 
the following modeling stages. This will guarantee that the 

simulation process runs as intended before testing the mod-
elling steps of interest. For example, Jimenez-Valverde et al. 
(2009) wanted to understand the effects of sample size on 
SDM results. Therefore, they decided to use the same pre-
dictors used for simulating the VS during model calibra-
tion. That allowed them to eliminate variable selection and 
variable omission as a confounding effect in their results 
and focus on sample size and prevalence instead. Once the 
target effects had been isolated, then they could add other 
factors and understand how and when they interacted. 
Notice, however, that others have argued the opposite, i.e. 
that the only way to understand the importance of a factor 
is to consider it within a large set of other potential factors 
(Thibaud  et  al. 2014, Soultan and Safi 2017). Regardless 
of the number of factors that one aims at studying in the 
end, in terms of checking and understanding the simula-
tion process, starting with the simplest case is, in our view, 
the best way to make sure the results are consistent with the 
initial intent, even if in the final analysis we end up looking 
at multiple factors at a time.

Figure 3. Graphical representation of recommendations and guidelines proposed in section ‘General recommendations and guidelines’ for 
future virtual species studies.
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Clearly defining the purpose of the VS study is also key 
to determining the complexity of the simulation itself. In a 
few cases, the simulation of a distribution per se or a suit-
ability function may not be needed at all. For example, to 
test different classification success performance indices, 
Allouche et al. (2006) and Leroy et al. (2018) simply simu-
lated the confusion matrix (a tabulation of the number of 
predicted versus observed presences and absences used to 
calculate classification success in SDM predictions) to show 
that different classification success indices are subject to 
prevalence biases. In both cases, simulating the confusion 
matrix was sufficient to point to a problem with the different 
metrics, so a VS approach was not strictly required. However, 
the VS approach can add further information regarding the 
suitability function and its interactions with different land-
scape properties and sampling schemes (Thibaud et al. 2014, 
Fernandez et al. 2017).

Another question that often arises in VS studies is at what 
stage and how many iterations of the modeling processes are 
necessary to achieve study goals. In a threshold VS study, 
iterations of the distribution pattern will not produce any 
variability, so the number and type of iterations is only depen-
dent on the stage of the SDM modeling process that is of 
interest (sampling, calibration or testing, Fig. 1, stages 4–5). 
However, when using a probabilistic VS approach, every dis-
tribution realization will be different. If the landscape is large 
enough, as is often the case in simulation studies, iterating 
this step will have little influence on final results, and it is 
more interesting to place effort on iterations at the sampling 
stage (stage 4 in Fig. 1). VS studies based on the probabilistic 
approach usually present a tradeoff between sample size and 
variability between iterations, so that the use of a small sam-
ple size will require more iterations to capture the full spec-
trum of variability than one based on larger sample sizes. We 
would argue that, since most real SDM studies include small 
sample sizes (50 < n < 300), it will often be more interesting 
to include in a VS study more iterations (i.e. 1000 iterations 
rather than 10) with small sample sizes, instead of few itera-
tions with large sample sizes.

Our third recommendation has to do with how to test 
the results in a VS study. There seems to be a belief that test-
ing the performance of models, even under simulated con-
ditions, requires using exactly the same protocols that are 
used in real case studies (e.g. use presence-only data for VS 
evaluation if the main question has to do with presence-only 
data). We contend that one of the main advantages of the 
VS approach is that it is relatively easy to compare model 
performance under idealized conditions (i.e. using the true 
presence–absence and true probability of occurrence) with 
performance indices obtained when using more realistic 
data, such as presence-only data. This can, and should, be 
used to our advantage to separate the target question in two 
pieces: 1) which method performs the best under ideal con-
ditions (question that should be addressed using true pres-
ence–absence or true probability of occurrence) and 2) are 
these conclusions regarding performance robust to the use 

of more-realistic imperfect data (e.g. presence-only data) in 
the evaluation process. In other words, even if the interest is 
in imperfect data and measures, evaluations based on the VS 
approach should always include more idealized performance 
evaluations with which to compare results.

A fourth question that we see occasionally addressed 
is what kind of statistical analyses should be applied to VS 
studies. Liu et al. (2019) argued that, as VS represent simu-
lations, standard statistical analyses cannot be used to ana-
lyze the results. This was based on an argument advanced by 
White et al. (2014) and dealing with simulated data at large. 
In that forum paper, White  et  al. (2014) contended that, 
when using simulations, one could use unrealistically large 
sample sizes and find very significant results when comparing 
two entities that we know for a fact are different (because they 
were simulated as different). For example, if we generated 
two VS that have different suitability functions with the same 
environmental gradient, and then used a large sample size 
to test the idea that these two species have indeed different 
suitability functions, that would be wrong: we already know 
that the two species are different and differences will always 
be detected given sufficiently large sample size. However, 
the interest of the VS approach does not lie in those types 
of comparisons, which are indeed circular. Instead, the VS 
approach is useful to test which methods work under realistic 
conditions: at what sample size can we hope to start seeing 
those differences and detecting them with our conventional 
statistical tools? What types of sampling biases are more likely 
to affect our results? Given a set of problematic datasets, can 
we correct the results? Those are questions that we cannot 
answer without a statistical test.

On the opposite extreme, Thibaud et al. (2014) proposed 
a very specific statistical framework to follow under a VS 
framework involving the use of linear mixed-effects mod-
els. However, given the flexibility of the VS approach and 
the variety of topics that can be covered, it is unlikely that a 
single statistical framework will fit all purposes. We therefore 
recommend being careful about the conceptual pertinence 
of the question being asked, especially avoiding circularity 
between simulation and testing, and otherwise using classic 
statistical analyses to test the results, adapting them to the 
situation at hand in the same way we would do under a real-
case scenario.

Our final recommendation is to provide scripts for every 
published simulation study. This will ensure that the study 
is reproducible, as well as enhance understanding of the 
simulation process and its implications. It will also guaran-
tee that the results of any given study can be improved by 
subsequent ones. An interesting example of how the avail-
ability of scripts can help understand a problem is given by 
Guillera-Arroita  et  al. (2014b). In this study the authors 
were replying to Thibaud et al. (2014), who had found that 
MAXENT often outperformed the other models tested, 
including GLM, under situations where GLM should have 
outperformed MAXENT. By re-working on Thibaud  et  al. 
(2014)’s scripts, Guillera-Arroita et al. (2014b) were able to 
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show that this result was an artifact of the fact that the VS 
created in Thibaud et al. (2014) had, by chance, a prevalence 
of about 50%, which makes it a particular case under which 
MAXENT’s regularization algorithm produces a suitability 
estimate that matches the species true probability of occur-
rence. Furthermore, whereas MAXENT prioritizes variable 
importance, Thibaud et al. (2014) had not implemented any 
variable selection or regularization strategy for GLM, mak-
ing the methods not fully comparable. Guillera-Arroita et al. 
(2014b)’s complementary simulations then showed that 
GLM performed better than MAXENT when the VS had a 
different species prevalence and when a regularization algo-
rithm was applied to GLM. By including the details of how 
the simulations were carried out, the authors of both studies 
provided new opportunities for advancement of value to the 
entire community. These details are often difficult to pres-
ent in a methods section that has space constraints and that 
should be readable by a more generalist audience, but they 
are all made explicit in a reproducible script. Therefore, the 
availability of well-documented scripts (and in particular 
scripts written using tools that enhance reproducibility, such 
as Rmarkdown) makes it really practical and easy to share, 
replicate and develop new tests to understand different facets 
of SDM approaches.

In summary, we propose five general recommenda-
tions for future VS studies (Fig. 3): 1) implement multiple 
checking points at different simulations stages to make 
sure that the simulated species and sampling schemes have 
the desired properties; 2) clearly define the goals of the VS 
study to define accordingly at which stage iterations are the 
most useful and where more or less complexity should be 
used in the simulation process to achieve those goals; 3) 
include true presence–absence and/or true probability of 
occurrence in the evaluation process to take full advantage 
of the VS framework; 4) apply adapted statistical tests in 
the VS analyses; and 5) provide scripts for all simulations 
wherever possible.

What have we learnt and what are we 
missing from virtual species studies?

The review of results for each stage of the simulation process 
is summarized in Table 1. In this section we will only high-
light aspects of these results that seem particularly original 
or different from what has been found in previous reviews 
(Miller 2014) and in the empirical literature.

Most virtual species studies have focused on issues related 
to data quality and sampling (size, bias, strategy, effects of 
prevalence, pseudo-absences), classification success measures 
(such as Kappa, AUC, TSS), and issues directly related to 
the modelling process. Not surprisingly, they have generally 
agreed that there is no replacement for good quality pres-
ence–absence data, but, more interestingly, some statistical 
algorithms and targeted corrective methods can be applied 
successfully to non-ideal situations (Table 1).

Studies that have tried to tease apart the relative impor-
tance of different factors have, in general, agreed that sampling 
size, especially for n < 100, is always one of the main deter-
mining factors for a good modelling result, often followed 
by the statistical model used (Thibaud et al. 2014, Soultan 
and Safi 2017). Also, the fewer the occurrence points, the 
more important it becomes that those occurrences represent 
the environmental gradients that are relevant in explaining 
the species distribution (Fei and Yu 2016).

Despite the many advances in understanding different 
factors affecting SDM performance (Table 1), the VS litera-
ture has been dominated by implicit assumptions related to 
the threshold simulation approach (reviewed by Meynard 
and Kaplan 2013, Meynard et al. 2019), which are the most 
common in published VS studies (Supplementary mate-
rial Appendix 1). This shows a disconnect between niche 
and metapopulation theories on the one hand, which usu-
ally assume bell-shaped environment–occurrence relation-
ships and probabilistic occurrence patterns (Hanski 1994, 
Austin et al. 2006, Austin 2007, Soberón 2010), and the VS 
simulation strategy on the other. This begs the question of 
whether or not there is any theoretical basis to think that 
threshold responses to environmental gradients should be 
prevalent in any SDM context.

VS studies dealing with scaling issues provide for a good 
example of how this simulation choice (threshold versus 
probabilistic simulation approach) can feed into scaling 
theories, resulting in opposite expectations and becoming 
ingrained in the current scientific paradigm. If we look at 
threshold VS studies, they usually conclude that using fine-
grain datasets always results in increased classification rates 
and better model performance as compared to datasets that 
have been up-scaled to coarser resolutions (Fernandez et al. 
2017, Mertes and Jetz 2018). This result is expected when 
using a threshold simulation approach because the thresh-
old will not introduce any variability in the presence–absence 
distribution pattern. Under these circumstances, given an 
ideal sampling and modelling strategy, we can always recover 
the exact presence–absence pattern at the scale at which 
the VS was originally designed, and measures of classifica-
tion rates such as sensitivity, specificity, AUC and others will 
be perfect. Up-scaling environmental and occurrence data 
can only blur this perfect predictive pattern. However, the 
expectation is not the same under a probabilistic simulation 
approach. Several VS studies have shown that performance 
measures based on presence–absence classification rates are 
not good performance measures when the species response is 
probabilistic rather than threshold (Reineking and Schroder 
2006, Elith and Graham 2009, Meynard and Kaplan 2012). 
Intrinsically linked to stochasticity in the distribution pat-
tern and on the probabilistic properties of statistical models 
is the fact that SDMs are designed to recover the probability 
of occurrence, not a specific pattern of presence and absence. 
Therefore, model success measures based on classification 
rates (e.g. sensitivity, specificity, AUC, TSS and others) will 
show poor values if the distribution pattern is stochastic 
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because the goal is misplaced, not because the model is poor 
(Meynard and Kaplan 2012). For example, a model that cor-
rectly predicts the probability of occurrence of a site at 0.5 
will be wrong half of the time if we say that that probability 
corresponds to a presence or to an absence. In this case, the 
appropriate measure of model performance should be based 
on comparisons of true versus predicted probabilities of 
occurrence or goodness-of-fit measures rather than on predic-
tions of presences and absences per se (Meynard and Kaplan 
2012, Thibaud  et  al. 2014). Meynard and Kaplan (2013) 
suggested that a distribution that shows a probabilistic pat-
tern at a fine temporal and spatial scale may show a threshold 
response at coarser scales due to the way data is aggregated 
in space and time. Considering as a presence any site that 
was occupied at any point over a long time period and over a 
large area, regardless of whether the site was continuously and 
entirely occupied or only partially occupied, has the impact 
of eliminating the probabilistic signal and transforming any 
site that has some non-zero probability of occupancy into a 
presence, potentially mimicking a threshold response. Large-
scale threshold responses would therefore be an artifact of 
data aggregation.

Putting these two pieces together – i.e. the fact that sto-
chastic distribution patterns may become threshold-like 
when data are aggregated, and that AUC values (or any other 
metric based on presence–absence classification success) 
will increase as the response becomes threshold-, one may 
hypothesize that AUC values will increase as data resolution 
becomes coarser, which is the opposite of what threshold VS 
studies have found.

To demonstrate these points, we designed a very simple 
simulation exercise (scripts available in Supplementary 
material Appendix 3). We generated a VS with a logistic 
response to mean annual temperature in Belgium (real gradi-
ent). This species is more likely to be found in colder areas 
of Belgium; real environmental data was downloaded from 
Worldclim (Hijmans et al. 2005) at 0.5° resolution. To look 
at the effects of landscape structure, we also simulated two 
other landscapes: one with the same range and mean values 
for mean annual temperature but with a perfect east-to-west 
trend (perfect gradient), and another one where we added 
random noise around the perfect gradient (noisy gradient). 
Then we up-scaled distributions and temperature values in 
2 × 2, 4 × 4 and 8 × 8 grid cells by marking the larger grid 
cells as present if any of its constituent smaller grid cells had 
a presence, and by taking average values of temperature at 
coarser spatial resolutions. The presence–absence pattern was 
generated using both a threshold and a probabilistic simula-
tion approach. Then we randomly sampled 1000 sites at the 
finest resolution for calibration purposes, and a different set 
of 1000 sites for validation purposes; we used the same sites 
across scales (which means that the number of sites decreases 
as we coarsen the resolution).

First, when projected into a perfect gradient, results fit 
perfectly well with our expectations (Fig. 4a): when using a 
threshold simulation approach, presence–absence predictions 

are almost perfect at all scales, especially at the finest reso-
lution, but when a probabilistic approach is used, AUC is 
actually poorer at the finest resolution and increases as we 
up-scale the data, although variability between runs also 
increases. This confirms that expectations regarding model 
performance are opposite when using a threshold versus a 
probabilistic approach in this context. When we apply the 
same methods to a noisy gradient (Fig. 4b), the thresh-
old approach produces a pattern of degradation and then 
improvement of AUC at larger scales. Overall, however, 
when using a threshold simulation approach on this noisy 
gradient, it is always better to use the finer resolution dataset, 
as concluded by Mertes and Jetz (2018). This contrasts with 
the probabilistic simulation approach results, where changes 
in AUC are more erratic across scales, and variance increases 
greatly as we aggregate over larger scales. Finally, the real tem-
perature gradient (Fig. 4c) is a mixed bag of results where 
AUC values for the threshold simulation approach decrease 
with the up-scaling, and AUC values for the probabilistic 
simulation approach increase and then decrease at coarser 
resolutions revealing an interaction between occupancy and 
landscape structure in the up-scaling process.

This simulation exercise demonstrates that expectations 
regarding scaling issues can change significantly when a prob-
abilistic simulation approach is used as opposed to a thresh-
old approach. Further exploration of these patterns is needed 
to draw robust conclusions from these results. This exercise 
also shows that simulating the landscape itself can be very 
useful to understand the impacts of different processes on 
VS results. As shown in this example, the general framework 
proposed by Mertes and Jetz (2018) that separates response 
grain, environmental grain and modelling grain can be 
extremely useful in this sense. Finally, the theory and recom-
mendations issued from threshold simulation studies should 
be interpreted carefully and revisited under the probabilistic 
simulation approach when the threshold response is not in 
agreement with ecological theory.

Software and virtual species simulation 
tools

We hope that the recent publication of software dedicated 
to simulate VS will help standardize the implementation of 
VS studies, as well as make the underlying assumptions more 
explicit.

Most VS studies initially used custom code to carry out 
their simulation work, and some of them published the 
scripts as a supplementary material (Meynard and Kaplan 
2012, Guillera-Arroita  et  al. 2014b, Thibaud  et  al. 2014). 
However, there have been at least three software packages 
published for the generation of VS: sdmvspecies (Duan et al. 
2015), virtualspecies (Leroy et al. 2016) and Niche Analyst or 
NicheA (Qiao et al. 2016). The first package was published as 
an R library, but it contains a limited number of functions, 
which can be easily recovered from other packages, it is not 
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associated with a comprehensive manual, and it has not been 
updated since its publication. Therefore, we focus the rest of 
this section on virtualspecies and NicheA.

In terms of usage, both packages are fairly distinct. vir-
tualspecies is an R package that was specifically designed to 
generate VS with features that mimic real-world properties 
and datasets. Since it is an R package, it integrates easily with 
the rest of the functionality that R offers and follows the same 
programming language, making scripting and reproducibil-
ity easy. NicheA, on the other hand, is a stand-alone Java 
software. It was designed to explore the interplay between 
environmental and geographic spaces in the context of the 

biological-abiotic-mobility framework proposed by Soberón 
and Peterson (2005), with an emphasis on multidimensional 
graphical displays and a threshold hypervolume niche con-
cept. NicheA also includes tools to analyze ecological niches 
outside of the geographical space (Qiao et al. 2016), which 
we will not discuss further here. The graphical user interface 
of NicheA can be easier for non-programmers to understand, 
but may be limiting in terms of parametrization and options 
available for manipulation. The command-line interface of 
virtualspecies is more complex for users who are not used to 
the R language, but its open-source code offers more transpar-
ency, flexibility and possibilities in terms of batch execution 

Figure 4. AUC as a function of resolution in an up-scaling VS exercise in (a) a simulated perfect east-to-west gradient of temperature, (b) a 
gradient with random noise built on top of the east-to-west gradient and (c) a real gradient corresponding to mean annual temperature in 
Belgium. The corresponding maps of each gradients are represented in (d–f ). Boxplots represent results of a threshold simulation approach 
in yellow, and a probabilistic simulation approach in blue.
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(see e.g. the different scenarios of virtual North America with 
2000 species each in Hawkins et al. (2017).

Both virtualspecies and NicheA provide comprehensive 
tools to generate virtual species, including niche simulation, 
projection to geographical space, dispersal limitation and 
simulation of occurrence sampling (see Table 2 for a detailed 
comparison). Both software now implement a probabilistic 
simulation approach, although this feature was added later in 
NicheA and is based on the principle that habitat suitability 
is equal to one at the center of the multidimensional habitat 
conditions, and decreases outwards to reach zero at the edge 
(Qiao unpubl.), which will reduce the size of the realized 
niche compared to the initial hypervolume.

Regarding functionality, here we highlight three main 
differences (Table 2). First, both software implement dis-
tinct steps to generate virtual niches. Despite those differ-
ences, they allow generating similar species. For example, 
generating niches with a PCA approach in virtualspecies will 

resemble the ‘multidimensional ellipsoid continuous niches’ 
in NicheA. These continuous niches can in turn be trans-
formed into presence–absence, which will be very similar in 
shape to the ‘minimum-volume ellipsoid niches’ generated 
in NicheA. However, notice that virtualspecies uses in this 
step the probabilistic approach as its default option, whereas 
NicheA uses the threshold approach as its default option. A 
second difference lies in the simulation of limited dispersal 
for the VS. Although both software allow defining an area of 
dispersal, they differ on the options provided: NicheA pro-
poses a graphical drawing tool to define polygons, whereas 
virtualspecies can incorporate geographic objects (i.e. shape-
files and raster data) to limit species dispersal. Finally, a third 
important difference between these two software relates to 
the data that is recovered to later test the performance of spe-
cies distribution models: while NicheA focuses on random 
sampling of presence-only datasets, virtualspecies can sample 
either presence-only or presence–absence datasets. At this 

Table 2. Comparison between the two main software available to generate virtual species: virtualspecies (Leroy et al. 2016) and NicheA 
(Qiao et al. 2016). Names of functions or tools are indicated in italics.

Virtual species Niche analyst

Format R package Java software
Interface R scripts Graphical User Interface
Current version ver. 1.4-4, September 2018 ver. 3.0.12, March 2018
Manual <borisleroy.com/files/virtualspecies-tutorial.html> <nichea.sourceforge.net/overview.html>
Source code <github.com/Farewe/virtualspecies>
Environmental 

data
Continuous or categorical raster data in any format readable by 

the R package raster (ESRI ascii, netCDF, GeoTiff, etc.).
Environmental variables can be used directly to generate niches 

or can be transformed with a principal component analysis 
(PCA).

Continuous raster data in GeoTiff or ESRI ascii 
format.

A function is available to standardise or normalise 
variables.

Variables can be used directly to generate niches 
(Draw background cloud) or can be transformed 
with a PCA (principal component analysis).

Niche simulation Virtual niches can be generated either by defining a response to 
each environmental variable, or by defining a response to 
axes of a PCA. A function is also available to generate random 
virtual niches (generateRandomSp). Options include:

•• From multiple variables (generateSpFromFun)
Response functions (linear, Gaussian or any other shape 

available through eternal functions in R) are defined for each 
environmental variable and then combined to obtain an 
environmental suitability value. No a priori assumption is 
made on the nature of the niche, thus both scenopoetic and 
biotic variables can be used. Any formula can be used to 
combine partial responses into environmental suitability.

•• From PCA axes (generateSpFromPCA)
Gaussian responses are defined for any subset of axes of the 

PCA of environmental conditions. This method generates 
spherical or ellipsoidal continuous niches in the 
environmental space on the basis of scenopoetic variables of 
the Grinnellian niche concept.

•• From non-analoguous climate (generateSpFromBCA):
This variant of the PCA method above allows generating a 

virtual niche in non-analogous conditions and therefore 
test for extrapolation and transferability of models under 
conditions that do not exist today but will become available 
under climate change scenarios. This option uses between-
group component analysis (BCA), analogous to a PCA but 
highlighting non-analogous conditions between two sets 
of environmental data for the same variables (current and 
future).

Virtual niches are based on scenopoetic variables in 
the Grinnellian niche concept. The core 
assumption is that niches are convex in shape 
and thus virtual niches are generated as convex 
polyhedrons or minimum-volume ellipsoids. 
Options include:

•• Minimum volume ellipsoids (Generate virtual 
N(s) from ellipsoid)

Minimum-volume ellipsoids are generated by 
drawing the ellipsoids inside environmental 
space with the interface.

•• Convex polyhedrons (Generate virtual N(s) from 
occurrences)

Convex polyhedrons are generated on the basis of a 
number of occurrence points in geographic 
space. From these occurrences, environmental 
data is extracted to calculate the convex 
polyhedron in environmental space. When a 
convex polyhedron is drawn, NicheA 
automatically calculates the corresponding 
minimum volume ellipsoid.

•• Response to one variable (Virtual species 
– parameter)

Occurrence points of a species can be generated 
with the response to a single environmental 
variable according to one of four available 
functions: uniform, normal, binomial or Poisson 
distribution.
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stage, virtualspecies also permits spatial biases in sampling 
effort or detection probability to mimic real-world occur-
rence datasets.

Conclusions

Here we provide a general overview of the steps involved 
in VS studies and the different methodological choices 
available. One key element is the approach used to con-
vert a suitability function into a presence–absence distri-
bution. Though the threshold VS approach dominates the 
published literature (Supplementary material Appendix 
1), its use implicitly depends on a number of underlying 
assumptions that may not be desirable and that are not 
required or are more explicit in the probabilistic simula-
tion approach. In general, we recommend using a proba-
bilistic approach, which includes a threshold response as a 
special case-scenario and allows for the study of a broader 
spectrum of possible species distributions (Meynard and 
Kaplan 2013).

Many recent reviews of the SDM literature have pointed 
out that there is a lack of conceptual understanding of what 
SDM models can or cannot do, or whether the niche con-
cept is valid at the scale of the range or the scale of indi-
vidual populations (Soberón 2010, Araújo and Peterson 
2012, Yackulic and Ginsberg 2016). We would argue that 
the VS simulation process is intrinsically linked to these same 
conceptual questions, and that these questions should there-
fore be considered at the planning stages of the VS study 
(Austin et al. 2006, Austin 2007). In particular, the question 
of whether or not a threshold response arises from aggre-
gating data over large scales has not been fully tested in the 
literature. Moreover, conceptual questions such as how and 
when would probabilistic versus threshold strategies apply 
are important for determining which simulation framework 
is most appropriate in a particular case. The virtual species 
approach is powerful in that it allows isolating confound-
ing factors and understanding their effects in different stages 
of the modelling process. Because of its many advantages, it 
has a great potential to feed macroecological theories and be 
applied in real case studies. However, if we are to advance 
the field, we must establish a rigorous simulation approach, 
make our assumptions more explicit, and link simulation 
frameworks to a theoretical macroecological background. We 
hope the guidelines provided above will help provide some 
of these links, but there are certainly many areas in which 
theoretical development is still needed.
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