R. G. , U. L. , K. H. , S. N. , A. R. et al.,

G. N. Gowda, S. Zhang, and H. Gu, Metabolomics-based methods for early disease diagnostics, Expert Rev Mol Diagn, vol.8, pp.617-650, 2008.

J. G. Bundy, M. P. Davey, and M. R. Viant, Environmental metabolomics: a critical review and future perspectives, Metabolomics, vol.5, pp.3-21, 2009.

K. Peters, A. Worrich, and A. Weinhold, Current challenges in plant eco-metabolomics, Int J Mol Sci, vol.19, p.1385, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02342541

R. Weber, T. N. Lawson, and R. M. Salek, Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through Galaxy, Metabolomics, vol.13, p.12, 2017.

A. R. Joyce and B. Ø. Palsson, The model organism as a system: integrating "omics" data sets, Nat Rev Mol Cell Biol, vol.7, pp.198-210, 2006.

K. Haug, R. M. Salek, and P. Conesa, MetaboLights-an openaccess general-purpose repository for metabolomics studies and associated meta-data, Nucleic Acids Res, vol.41, pp.781-787, 2013.

J. C. Lindon and J. K. Nicholson, The emergent role of metabolic phenotyping in dynamic patient stratification, Expert Opin Drug Metab Toxicol, vol.10, pp.915-924, 2014.

L. W. Sumner and R. D. Hall, Metabolomics across the globe, Metabolomics, vol.9, pp.258-64, 2013.

A. Rosato, L. Tenori, and M. Cascante, From correlation to causation: analysis of metabolomics data using systems biology approaches, Metabolomics Off J Metabolomic Soc, vol.14, p.37, 2018.

A. Vignoli, V. Ghini, and G. Meoni, High-throughput metabolomics by 1D NMR, Angew. Chem. Int. Ed, vol.57, pp.2-29, 2018.

R. Goodacre, D. Broadhurst, and A. K. Smilde, Proposed minimum reporting standards for data analysis in metabolomics, Metabolomics, vol.3, pp.231-272, 2007.

M. Sud, E. Fahy, and D. Cotter, Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools, Nucleic Acids Res, vol.44, pp.463-70, 2016.

F. Giacomoni, L. Corguille, G. Monsoor, and M. , Work-flow4Metabolomics: a collaborative research infrastructure for computational metabolomics, Bioinformatics, vol.31, pp.1493-1498, 2015.

K. Haug, R. M. Salek, and C. Steinbeck, Global open data management in metabolomics, Curr Opin Chem Biol, vol.36, pp.58-63, 2017.

R. M. Salek, S. Neumann, and D. Schober, COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access, Metabolomics, vol.11, pp.1587-97, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165673

, IPCN. International Phenome Centre Network, 2018.

, Higher Education and the National Agency for Science, 2018.

R. Tautenhahn, G. J. Patti, and D. Rinehart, Online: a web-based platform to process untargeted metabolomic data, Anal Chem, vol.84, pp.5035-5044, 2012.

J. Chong, O. Soufan, and C. Li, MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res, vol.46, pp.486-94, 2018.

E. Afgan, D. Baker, and M. Van-den-beek, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids Res, vol.44, pp.3-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360125

C. Hoffa, G. Mehta, and T. Freeman, On the Use of Cloud Computing for Scientific Workflows, IEEE Fourth Int Conf EScience, 2008.

W. Digan, H. Countouris, and M. Barritault, An architecture for genomics analysis in a clinical setting using Galaxy and Docker, GigaScience, vol.6, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01653621

J. Goecks, A. Nekrutenko, J. Taylor, G. Team-t-;-novella, J. A. Khoonsari et al., Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Wren J . editor. Bioinformatics, vol.11, pp.1-8, 2010.

D. Jacob, C. Deborde, and M. Lefebvre, NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics, Metabolomics, vol.13, p.36, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01401241

D. Schober, D. Jacob, and M. Wilson, nmrML: a community supported open data standard for the description, storage, and exchange of NMR Ddta, Anal Chem, vol.90, pp.649-56, 2018.

R. M. Salek, M. L. Maguire, and E. Bentley, A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human, Physiol Genomics, vol.29, pp.99-108, 2007.

J. M. Buescher, M. R. Antoniewicz, and L. G. Boros, A roadmap for interpreting 13 C metabolite labeling patterns from cells, Curr Opin Biotechnol, vol.34, pp.189-201, 2015.

S. Niedenführ, W. Wiechert, and K. Nöh, How to measure metabolic fluxes: a taxonomic guide for 13 C fluxomics, Curr Opin Biotechnol, vol.34, pp.82-90, 2015.

P. Emami-khoonsari, P. Moreno, and S. Bergmann, teroperable and scalable data analysis with microservices: Applications in Metabolomics, 2018.

C. Ruttkies, E. L. Schymanski, and S. Wolf, MetFrag relaunched: incorporating strategies beyond in silico fragmentation, J Cheminformatics, vol.8, 2016.

S. Herman, P. E. Khoonsari, and A. Tolf, Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis, Theranostics, vol.8, pp.4477-90, 2018.

E. A. Thévenot, A. Roux, and Y. Xu, Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses, J Proteome Res, vol.14, pp.3322-3357, 2015.

K. Peters, K. Gorzolka, and H. Bruelheide, Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytes, Sci Data, vol.5, p.180179, 2018.

. Phenomenal, The Portal App Library, 2018.

P. Rocca-serra, R. M. Salek, and M. Arita, Data standards can boost metabolomics research, and if there is a will, there is a way, Metabolomics, vol.12, p.14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01232411

B. Smith, M. Ashburner, R. Cthe, and O. Consortium, The OBI Consortium, The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration, Nat Biotechnol, vol.25, pp.1251-1256, 2007.

C. Steinbeck, P. Conesa, and K. Haug, MetaboLights: towards a new COSMOS of metabolomics data management, Metabolomics, vol.8, pp.757-60, 2012.

Y. Gil, E. Deelman, and M. Ellisman, Examining the challenges of scientific workflows, Computer, vol.40, pp.24-32, 2007.

I. K. Moutsatsos, I. Hossain, and C. Agarinis, Jenkins-CI, an open-source continuous integration system, as a scientific data and image-processing platform, SLAS Discov Adv Life Sci RD, vol.22, pp.238-287, 2017.

M. Van-rijswijk, C. Beirnaert, and C. Caron, The future of metabolomics in ELIXIR, F1000Research, vol.6, p.1649, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630635

, EGI Foundation. EGI: Advanced Computing for Research, 2018.

. Inigo-datacloud, INtegrating Distributed data Infrastructures for Global ExplOitation, 2018.

M. Viljoen, L. Dutka, and B. Kryza, Towards European Open Science Commons: the EGI Open Data Platform and the EGI DataHub, Procedia Comput Sci, vol.97, pp.148-52, 2016.

D. Salomoni, I. Campos, and L. Gaido, INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures, J Grid Computing, vol.16, pp.381-408, 2018.

M. Capuccini, A. Larsson, and M. Carone, On-demand virtual research environments using microservices, pp.1-31

A. Cs, , 2018.

P. Rocca-serra, M. Brandizi, and E. Maguire, ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level, Bioinformatics, vol.26, pp.2354-2360, 2010.

M. Sariyar, I. Schluender, and C. Smee, Sharing and reuse of sensitive data and samples: supporting researchers in identifying ethical and legal requirements, Biopreservation Biobanking, vol.13, pp.263-70, 2015.

R. Heatherly, L. V. Rasmussen, and P. L. Peissig, A multiinstitution evaluation of clinical profile anonymization, J Am Med Inform Assoc, vol.23, pp.131-138, 2016.

. Phenomenal and . Wiki, , 2018.

, PhenoMeNal. GitHub Project Repository, 2018.

. Phenomenal, Public Galaxy Instance, 2018.

P. M. Mell and T. Grance, The NIST definition of cloud computing. In: Gaithersburg MD . National Institute of Standards and Technology, 2011.

, PhenoMeNal. Deploy on Microsoft Azure, 2018.

, PhenoMeNal. Deploy on a local server (bare metal, vol.58, 2018.

, wiki/How-to-make-your-software-tool-avail able-through-PhenoMeNal, Phnmnl GitHub, 2018.

A. Nekrutenko and J. Taylor, Next-generation sequencing data interpretation: enhancing reproducibility and accessibility, Nat Rev Genet, vol.13, pp.667-72, 2012.

C. Sloggett, N. Goonasekera, and E. Afgan, BioBlend: automating pipeline analyses within Galaxy and CloudMan, Bioinformatics, vol.29, pp.1685-1691, 2013.

K. Thomas, R. Benjamin, and P. Fernando, Jupyter Notebooks -a publishing format for reproducible computational workflows, Stand Alone, pp.87-90, 2016.

S. Lampa, J. Alvarsson, and O. Spjuth, Towards agile large-scale predictive modelling in drug discovery with flow-based programming design principles, :67. 65. PhenoMeNal. Jenkins-CI Instance, vol.8, 2016.

. Phenomenal and . Jenkins-guide, , 2018.

M. E. Piras, L. Pireddu, and G. Zanetti, wft4galaxy: a workflow testing tool for galaxy, Bioinformatics, vol.33, pp.3805-3812, 2017.

M. D. Wilkinson, M. Dumontier, and I. Aalbersberg, The FAIR guiding principles for scientific data management and stewardship, Sci Data, vol.3, 2016.

S. Cohen-boulakia, K. Belhajjame, and O. Collin, Scientific workflows for computational reproducibility in the life sciences: status, challenges and opportunities, Future Gener Comput Syst, vol.75, pp.284-98, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516082

I. Lappalainen, J. Almeida-king, and V. Kumanduri, The European genome-phenome archive of human data consented for biomedical research, Nat Genet, vol.47, pp.692-697, 2015.

C. Inc and . Cloudflare, , 2018.

, PhenoMeNal. Portal Help

. Eu/help, , 2018.

, PhenoMeNal. Interactive Galaxy Tours, 2018.

K. Peters, J. Bradbury, and S. Bergmann, Supporting data for "PhenoMeNal: Processing and analysis of Metabolomics data in the Cloud, GigaScience Database, 2018.

Y. Brikman and . Terraform, Writing Infrastructure as Code, 2017.

M. D. Hanwell, W. A. De-jong, and C. J. Harris, Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application, J Cheminformatics, vol.9, p.55, 2017.

S. Newman, Building microservices: designing fine-grained systems. First Edition, 2015.

, SOA with REST: principles, patterns & constraints for building enterprise solutions with REST, 2012.

A. Bandrowski, R. Brinkman, and M. Brochhausen, The Ontology for Biomedical Investigations, PLoS One, vol.11, p.154556, 2016.

S. Sansone, P. Rocca-serra, and D. Field, Toward interoperable bioscience data, Nat Genet, vol.44, pp.121-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695792

S. Sansone, D. Schober, and H. J. Atherton, Metabolomics standards initiative: ontology working group work in progress, Metabolomics, vol.3, pp.249-56, 2007.

S. Dyke, A. A. Philippakis, R. De-argila, and J. , Consent Codes: upholding standard data use conditions, PLoS Genet, vol.12, p.1005772, 2016.

V. A. Selivanov and B. A. Miranda, MIDcor, an Rprogram for deciphering mass interferences in mass spectra of metabolites enriched in stable isotopes, BMC Bioinformatics, vol.18, p.88, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01455760

J. Hao, M. Liebeke, and W. Astle, Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN, Nat Protoc, vol.9, pp.1416-1443, 2014.

P. Rinaudo, S. Boudah, and C. Junot, biosigner: a new method for the discovery of significant molecular signatures from omics data, Front Mol Biosci, vol.3, p.26, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01869335

C. Kuhl, R. Tautenhahn, and C. Böttcher, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal Chem, vol.84, pp.283-292, 2012.

K. Dührkop, H. Shen, and M. Meusel, Searching molecular structure databases with tandem mass spectra using CSI:FingerID, Proc Natl Acad Sci, vol.112, pp.12580-12585, 2015.

A. D. Southam, R. Weber, and J. Engel, A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics, Nat Protoc, vol.12, pp.255-73, 2017.

Z. A. King, A. Dräger, and A. Ebrahim, Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways, PLOS Comput Biol, vol.11, p.1004321, 2015.

L. Cottret, C. Frainay, and M. Chazalviel, MetExplore: collaborative edition and exploration of metabolic networks, Nucleic Acids Res, vol.46, pp.495-502, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886470

G. Libiseller, M. Dvorzak, and U. Kleb, IPO: a tool for automated optimization of XCMS parameters, BMC Bioinformatics, vol.16, p.118, 2015.

A. González-beltrán, S. Neumann, and E. Maguire, The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again, BMC Bioinformatics, vol.15, p.11, 2014.

S. Sansone, P. Rocca-serra, and D. Field, Toward interoperable bioscience data, Nat Genet, vol.44, pp.121-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695792

V. A. Selivanov, P. Vizán, and F. Mollinedo, Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis, BMC Syst Biol, vol.4, p.135, 2010.

F. Perez and B. E. Granger, IPython: a system for interactive scientific computing, Comput Sci Eng, vol.9, pp.21-30, 2007.

C. Ludwig and U. L. Günther, MetaboLab -advanced NMR data processing and analysis for metabolomics, BMC Bioinformatics, vol.12, p.366, 2011.

G. Wohlgemuth, P. K. Haldiya, and E. Willighagen, The Chemical Translation Service-a web-based tool to improve standardization of metabolomic reports, Bioinformatics, vol.26, pp.2647-2655, 2010.

R. Rueedi, R. Mallol, and J. Raffler, Metabomatching: using genetic association to identify metabolites in proton NMR spectroscopy, PLOS Comput Biol, vol.13, p.1005839, 2017.

J. J. Helmus and C. P. Jaroniec, Nmrglue: an open source Python package for the analysis of multidimensional NMR data, J Biomol NMR, vol.55, pp.355-67, 2013.

A. Mohamed, C. H. Nguyen, and H. Mamitsuka, NMRPro: an integrated web component for interactive processing and visualization of NMR spectra, Bioinformatics, vol.32, pp.2067-2075, 2016.

M. Sturm, A. Bertsch, and C. Gröpl, OpenMS -an open-source software framework for mass spectrometry, BMC Bioinformatics, vol.9, p.163, 2008.

B. J. Blaise, G. Correia, and A. Tin, Power analysis and sample size determination in metabolic phenotyping, Anal Chem, vol.88, pp.5179-88, 2016.

K. Scheubert, F. Hufsky, and D. Petras, Significance estimation for large scale metabolomics annotations by spectral matching, Nat Commun, vol.8, pp.1-24, 2017.

M. C. Chambers, B. Maclean, and R. Burke, A cross-platform toolkit for mass spectrometry and proteomics, Nat Biotechnol, vol.30, pp.918-938, 2012.

I. A. Lewis, S. C. Schommer, and J. L. Markley, rNMR: open source software for identifying and quantifying metabolites in NMR spectra, Magn Reson Chem, vol.47, pp.123-129, 2009.

N. Rodriguez, A. Thomas, and L. Watanabe, JSBML 1.0: providing a smorgasbord of options to encode systems biology models: Table 1, Bioinformatics, vol.31, pp.3383-3389, 2015.

H. P. Benton, D. M. Wong, and S. A. Trauger, XCMS 2 : processing tandem mass spectrometry data for metabolite identification and structural characterization, Anal Chem, vol.80, pp.6382-6391, 2008.