J. D. Bassett, T. C. Yang, D. Bernard, J. B. Millar, S. L. Swift et al., CD8 + T-cell expansion and maintenance after recombinant adenovirus immunization rely upon cooperation between hematopoietic and nonhematopoietic antigen-presenting cells, Blood, vol.117, pp.1146-1155, 2011.

J. M. Bergelson, J. A. Cunningham, G. Droguett, E. A. Kurt-jones, A. Krithivas et al., Isolation of a common receptor for, 1997.

, Coxsackie B viruses and adenoviruses 2 and 5, Science, vol.275, pp.1320-1323

C. Cheng, J. G. Gall, W. P. Kong, R. L. Sheets, P. L. Gomez et al., Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells, PLoS.Pathog, vol.3, p.25, 2007.

D. Y. Cheng, J. K. Kolls, D. Lei, and R. A. Noel, In vivo and in vitro gene transfer and expression in rat intestinal epithelial cells by E1-deleted adenoviral vector, Hum. Gene Ther, vol.8, pp.755-764, 1997.

M. A. Croyle, M. Stone, G. L. Amidon, and B. J. Roessler, In vitro and in vivo assessment of adenovirus 41 as a vector for gene delivery to the intestine, Gene Ther, vol.5, pp.645-654, 1998.

M. A. Croyle, E. Walter, S. Janich, B. J. Roessler, A. et al., Role of integrin expression in adenovirus-mediated gene delivery to the intestinal epithelium, Hum. Gene Ther, vol.9, pp.561-573, 1998.

M. D. Dicks, A. J. Spencer, L. Coughlan, K. Bauza, S. C. Gilbert et al., Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice, Sci. Rep, vol.5, p.16756, 2015.

H. C. Ertl, Immunological insights from genetic vaccines, Virus Res, vol.111, pp.89-92, 2005.

J. Farache, I. Koren, I. Milo, I. Gurevich, K. Kim et al., Luminal bacteria recruit CD103 + dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation, Immunity, vol.38, pp.581-595, 2013.

J. D. Finn, J. Bassett, J. B. Millar, N. Grinshtein, T. C. Yang et al., Persistence of transgene expression influences CD8 + T-cell expansion and maintenance following immunization with recombinant adenovirus, J. Virol, vol.83, pp.12027-12036, 2009.

P. K. Foreman, M. J. Wainwright, B. Alicke, I. Kovesdi, T. J. Wickham et al., Adenovirus-mediated transduction of intestinal cells in vivo, Hum. Gene Ther, vol.9, pp.1313-1321, 1998.

M. B. Gonzalez-hernandez, T. Liu, H. C. Payne, J. E. Stencel-baerenwald, M. Ikizler et al., Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells, J. Virol, vol.88, pp.6934-6943, 2014.

F. L. Graham, J. Smiley, W. C. Russell, and R. Nairn, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J. Gen. Virol, vol.36, pp.59-74, 1977.

T. E. Hamilton, S. J. Mcclane, S. Baldwin, C. Burke, H. Patel et al., Efficient adenoviral-mediated murine neonatal small intestinal gene transfer is dependent on alpha(v) integrin expression, J. Pediatr. Surg, vol.32, pp.1695-1703, 1997.

J. M. Hammond, E. S. Jansen, C. J. Morrissy, A. L. Hodgson, J. et al., Protection of pigs against "in contact" challenge with classical swine fever following oral or subcutaneous vaccination with a recombinant porcine adenovirus, Virus Res, vol.97, pp.151-157, 2003.

J. M. Hammond, E. S. Jansen, C. J. Morrissy, M. M. Williamson, A. L. Hodgson et al., Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene, Arch. Virol, vol.146, pp.1787-1793, 2001.

M. J. Havenga, A. A. Lemckert, J. M. Grimbergen, R. Vogels, L. G. Huisman et al., Improved adenovirus vectors for infection of cardiovascular tissues, J. Virol, vol.75, pp.3335-3342, 2001.

M. Hemmi, M. Tachibana, S. Tsuzuki, M. Shoji, F. Sakurai et al., The early activation of CD8 + T cells is dependent on type I IFN signaling following intramuscular vaccination of adenovirus vector, Biomed. Res. Int, p.158128, 2014.

K. A. Kadaoui and B. Corthésy, Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment, J. Immunol, vol.179, pp.7751-7757, 2007.

D. R. Kaufman, M. Bivas-benita, N. L. Simmons, D. Miller, and D. H. Barouch, Route of adenovirus-based HIV-1 vaccine delivery impacts the phenotype and trafficking of vaccine-elicited CD8 + T lymphocytes, J. Virol, vol.84, pp.5986-5996, 2010.

F. Kesisoglou, P. Schmiedlin-ren, D. Fleisher, and E. M. Zimmermann, , 2010.

, Adenoviral transduction of enterocytes and M-cells using in vitro models based on Caco-2 cells: the coxsackievirus and adenovirus receptor (CAR) mediates both apical and basolateral transduction, Mol. Pharm, vol.7, pp.619-629

R. Khare, M. L. Hillestad, Z. Xu, A. P. Byrnes, and M. A. Barry, Circulating antibodies and macrophages as modulators of adenovirus pharmacology, J. Virol, vol.87, pp.3678-3686, 2013.

A. O. Kolawole, M. B. Gonzalez-hernandez, H. Turula, C. Yu, M. D. Elftman et al., Oral norovirus infection is blocked in mice lacking Peyer's patches and mature M cells, J. Virol, vol.90, pp.1499-1506, 2015.

S. Lecollinet, F. Gavard, M. J. Havenga, O. B. Spiller, A. Lemckert et al., Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and d fibers, J. Virol, vol.80, pp.2747-2759, 2006.

H. Lelouard, M. Fallet, B. De-bovis, S. Méresse, and J. Gorvel, , 2012.

, Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores, Gastroenterology, vol.142

H. Lelouard, S. Henri, B. De-bovis, B. Mugnier, A. Chollat-namy et al., Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme, Gastroenterology, vol.138, pp.1-3, 2010.

S. W. Lin, A. S. Cun, K. Harris-mccoy, and H. C. Ertl, Intramuscular rather than oral administration of replication-defective adenoviral vaccine vector induces specific CD8 + T cell responses in the gut, Vaccine, vol.25, pp.2187-2193, 2007.

R. W. Lindsay, P. A. Darrah, K. M. Quinn, U. Wille-reece, L. M. Mattei et al., CD8 + T cell responses following replication-defective adenovirus serotype 5 immunization are dependent on CD11c + dendritic cells but show redundancy in their requirement of TLR and nucleotide-binding oligomerization domain-like receptor signaling, J. Immunol, vol.185, pp.1513-1521, 2010.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 CT method, Methods, vol.25, pp.402-408, 2001.

M. D. Lubeck, A. R. Davis, M. Chengalvala, R. J. Natuk, J. E. Morin et al., Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus, Proc. Natl. Acad. Sci. U.S.A, vol.86, pp.6763-6767, 1989.

A. J. Macpherson, E. Slack, M. B. Geuking, and K. D. Mccoy, The mucosal firewalls against commensal intestinal microbes, Semin. Immunopathol, vol.31, pp.145-149, 2009.

A. J. Macpherson and T. Uhr, Compartmentalization of the mucosal immune responses to commensal intestinal bacteria, Ann. N. Y. Acad. Sci, vol.1029, pp.36-43, 2004.

J. R. Mcdole, L. W. Wheeler, K. G. Mcdonald, B. Wang, V. Konjufca et al., Goblet cells deliver luminal antigen to CD103 + dendritic cells in the small intestine, Nature, vol.483, pp.345-349, 2012.

G. T. Mercier, P. N. Nehete, M. F. Passeri, B. N. Nehete, E. A. Weaver et al., Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules, Vaccine, vol.25, pp.8687-8701, 2007.

G. Mutwiri, C. Bateman, M. E. Baca-estrada, M. Snider, and P. Griebel, Induction of immune responses in newborn lambs following enteric immunization with a human adenovirus vaccine vector, Vaccine, vol.19, pp.1284-1293, 2000.

M. R. Neutra, N. J. Mantis, and J. P. Kraehenbuhl, Collaboration of epithelial cells with organized mucosal lymphoid tissues, Nat. Immunol, vol.2, pp.1004-1009, 2001.

R. L. Owen, Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches-a personal and historical perspective, Semin. Immunol, vol.11, pp.157-163, 1999.

M. B. Parrott, K. E. Adams, G. T. Mercier, H. Mok, S. K. Campos et al., Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification, Mol. Ther, vol.8, pp.688-700, 2003.

Q. Qiu, Z. Xu, J. Tian, R. Moitra, S. Gunti et al., Impact of natural IgM concentration on gene therapy with adenovirus type 5 vectors, J. Virol, vol.89, pp.3217-3231, 2015.

;. L. R-core-team and H. Muench, R: A Language and Environment for Statistical Computing, Am. J. Epidemiol, vol.27, pp.493-497, 1938.

J. Rey, N. Garin, F. Spertini, and B. Corthesy, Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells, J. Immunol, vol.172, pp.3026-3033, 2004.

C. D. Scallan, D. W. Tingley, J. D. Lindbloom, J. S. Toomey, and S. N. Tucker, An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models, Clin. Vaccine Immunol, vol.20, pp.85-94, 2013.

M. Schenk and C. Mueller, Adaptations of intestinal macrophages to an antigen-rich environment, Semin. Immunol, vol.19, pp.84-93, 2007.

O. Schulz and O. Pabst, Antigen sampling in the small intestine, Trends Immunol, vol.34, pp.155-161, 2013.

J. W. Shiver, T. M. Fu, L. Chen, D. R. Casimiro, M. E. Davies et al., Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature, vol.415, pp.331-335, 2002.

I. Spadoni, E. Zagato, A. Bertocchi, R. Paolinelli, E. Hot et al., A gut-vascular barrier controls the systemic dissemination of bacteria, Science, vol.350, pp.830-834, 2015.

R. M. Steinman, Decisions about dendritic cells: past, present, and future, Annu. Rev. Immunol, vol.30, pp.1-22, 2012.

M. Suleman, S. Galea, F. Gavard, N. Merillon, B. Klonjkowski et al., Antigen encoded by vaccine vectors derived from human adenovirus serotype 5 is preferentially presented to CD8 + T lymphocytes by the CD8? + dendritic cell subset, Vaccine, vol.29, pp.5892-5903, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01191081

J. A. Sweeney and J. P. Hennessey, Evaluation of accuracy and precision of adenovirus absorptivity at 260 nm under conditions of complete DNA disruption, Virology, vol.295, pp.284-288, 2002.

N. Tatsis, J. C. Fitzgerald, A. Reyes-sandoval, K. C. Harris-mccoy, S. E. Hensley et al., Adenoviral vectors persist in vivo and maintain activated CD8 + T cells: implications for their use as vaccines, Blood, vol.110, pp.1916-1923, 2007.

T. Tuboly and E. Nagy, Construction and characterization of recombinant porcine adenovirus serotype 5 expressing the transmissible gastroenteritis virus spike gene, J. Gen. Virol, vol.82, pp.183-190, 2001.

A. Vos, A. Neubert, E. Pommerening, T. Muller, L. Dohner et al., Immunogenicity of an E1-deleted recombinant human adenovirus against rabies by different routes of administration, J. Gen. Virol, vol.82, pp.2191-2197, 2001.

E. Walter, M. A. Croyle, B. J. Roessler, A. , and G. L. , The absence of accessible vitronectin receptors in differentiated tissue hinders adenoviralmediated gene transfer to the intestinal epithelium in vitro, Pharm. Res, vol.14, pp.1216-1222, 1997.

T. J. Wickham, P. Mathias, D. A. Cheresh, and G. R. Nemerow, Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment, Cell, vol.73, pp.309-319, 1993.

J. L. Wolf, D. H. Rubin, R. Finberg, R. S. Kauffman, A. H. Sharpe et al., Intestinal M cells: a pathway for entry of reovirus into the host, Science, vol.212, pp.471-472, 1981.

Z. Xiang, Y. Li, G. Gao, J. M. Wilson, and H. C. Ertl, Mucosally delivered E1-deleted adenoviral vaccine carriers induce transgene productspecific antibody responses in neonatal mice, J. Immunol, vol.171, pp.4287-4293, 2003.

Z. Q. Xiang, G. P. Gao, A. Reyes-sandoval, Y. Li, J. M. Wilson et al., Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier, J. Virol, vol.77, pp.10780-10789, 2003.

T. C. Yang, K. Dayball, Y. H. Wan, and J. Bramson, Detailed analysis of the CD8 + T-cell response following adenovirus vaccination, J. Virol, vol.77, pp.13407-13411, 2003.

T. C. Yang, J. Millar, T. Groves, N. Grinshtein, R. Parsons et al., The CD8 + T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity, J. Immunol, vol.176, pp.200-210, 2006.

M. Yoshida, S. M. Claypool, J. S. Wagner, E. Mizoguchi, A. Mizoguchi et al., Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells, Immunity, vol.20, pp.769-783, 2004.

S. Zhang, Y. Liu, A. R. Fooks, F. Zhang, and R. Hu, Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabiescanine adenovirus type-2 vaccine confers long-lasting immunity against rabies, Vaccine, vol.26, pp.345-350, 2008.

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest