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Integration of GWAS, pathway 
and network analyses reveals 
novel mechanistic insights into the 
synthesis of milk proteins in dairy 
cows
Sara Pegolo  1, Núria Mach2, Yuliaxis Ramayo-Caldas2,3, Stefano Schiavon1,  
Giovanni Bittante1 & Alessio Cecchinato  1

The quantities and proportions of protein fractions have notable effects on the nutritional and 
technological value of milk. Although much is known about the effects of genetic variants on milk 
proteins, the complex relationships among the set of genes and pathways regulating the different 
protein fractions synthesis and secretion into milk in dairy cows are still not completely understood. 
We conducted genome-wide association studies (GWAS) for milk nitrogen fractions in a cohort of 1,011 
Brown Swiss cows, which uncovered 170 significant single nucleotide polymorphism (SNPs), mostly 
located on BTA6 and BTA11. Gene-set analysis and the network-based Associated Weight Matrix 
approach revealed that the milk proteins associated genes were involved in several biological functions, 
particularly ion and cation transmembrane transporter activity and neuronal and hormone signalling, 
according to the structure and function of casein micelles. Deeper analysis of the transcription factors 
and their predicted target genes within the network revealed that GFI1B, ZNF407 and NR5A1 might 
act as master regulators of milk protein synthesis and secretion. The information acquired provides 
novel insight into the regulatory mechanisms controlling milk protein synthesis and secretion in bovine 
mammary gland and may be useful in breeding programmes aimed at improving milk nutritional and/or 
technological properties.

Milk is an important source of proteins of high-quality due to their high content of essential amino acids, such 
as lysine, which is deficient in many human diets1, and their well-known physiological effects, such as immu-
nomodulatory and gastrointestinal activities2. The main proteins in bovine milk are the four key caseins (CN), 
namely αS1-CN, αS2-CN, β-CN and κ-CN, which are organized in micelles and account for about 80% of the total 
protein content. Casein micelles have a role in concentrating, stabilizing and transporting essential nutrients 
in milk, mainly Ca2+ and proteins, to the offspring3. The other protein category is the whey proteins fraction, 
which consists of mainly β-lactoglobulin (β-LG) and α-lactalbumin (α-LA), immunoglobulins, serum albumin, 
lactoferrin, lactoperoxidase and a minor component corresponding to glycomacropeptide3. This fraction make 
up approximately 20% of total milk proteins4 and it is demonstrated to affect satiety by reducing food intake, 
stimulating satiating gut hormone production and slowing stomach emptying in humans and animal models 
(reviewed by Sánchez-Moya et al.5).

Milk protein content and composition influence milk technological properties (MCP) and are therefore 
important for the dairy industry, especially in Europe, where the majority of milk produced is transformed into 
cheese6. Milk coagulation, curd structure, curd firmness and cheese yield are directly related to casein content7. 
Additionally, genetic variants of milk protein fractions, and particularly of κ-CN, strongly influence MCPs; κ-CN 
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B milk is indeed characterised by an increased κ-CN content, which favourably affect MCPs8. Moreover, milk 
payment systems in the dairy sectors producing hard cheeses with EU Protected Designation of Origin (PDO) 
status often include among their payment criteria coagulation and curd firming properties, which are strongly 
affected by the amounts, proportions and genetic variants of milk protein fractions8, as these are related to cheese 
quality and sensory properties9,10. Different milk protein fractions and genetic variants (such as the A1 and A2 
variants of β-CN) also seem to affect human health and wellbeing in different ways11,12.

In recent decades, there have been extraordinary advances in our knowledge of the physiology and biochem-
istry of the lactating mammary gland. Despite such efforts, little is as yet known of the genetic regulation of the 
physiological and cellular mechanisms required for milk protein synthesis and secretion. It is well known that 
milk protein synthesis in the mammary gland depends on hormonal and developmental cues that modulate 
the transcriptional and translational regulation of genes through the activity of specific transcription factors, 
non-coding RNAs and alterations of the chromatin structure in the mammary epithelial cells13,14. The interplay 
between all the aforementioned factors might play a key role in milk protein synthesis, which is crucial during 
the onset and throughout the lactation in high-producing dairy cattle. Recently, it has also been shown that CN 
phosphorylation, one of the most important factors controlling the stabilization of calcium phosphate nanoclus-
ters in casein micelles and the internal structure of the casein micelles15, is also essential for the protein synthesis 
machinery in the mammary gland. Differences in the phosphorylation of αS1-CN may be of particular interest 
as it represents 40% of the total CN fraction in bovine milk16. The possibility of tailoring milk composition, e.g., 
to obtain milk with high protein content and/or favourable MCPs, would allow to meet specific demands from 
the cheese industry and consumers, and therefore represents a highly desirable goal for the dairy industry. Since 
milk protein composition is less responsive to diet than milk fat content17, genomic selection may offer a valid 
alternative for optimising milk protein nutritional value in relation to human health7 while maximizing economic 
returns for the dairy industry.

There are substantial differences among different bovine breeds in the proportions of milk protein fractions 
and in the frequencies of protein genotypes18. Several studies have investigated the effects of genetic variants of 
CN and β-LG genes on the milk protein content and cheese-making ability8,18,19. However, other loci seem to 
contribute to regulate the proportions and characteristics of milk proteins, suggesting that regulation is shared 
among different genes16,20–26. Deeper knowledge of the set of genes and pathways regulating bovine milk protein 
synthesis and secretion might, therefore, help to identify their contribution to optimising casein and whey protein 
contents during lactation. Pathway-based and gene network analyses have been often used as complementary 
approaches for extracting biological information from genome-wide association analysis studies (GWAS) and for 
better characterising the genomic structure of complex traits21,22.

To date, only one study has explored this type of integrated analysis for milk protein fractions (albeit lim-
ited to κ-CN and β-LG and a small cohort of 164 lactating cows), and it suggests that, in addition to the role 
played by single genes, a complex multi-hormonal system regulates the expression of milk proteins and the inter-
actions between mammary epithelial cells and the components of the extracellular matrix23. Nevertheless, no 
genome-wide association analysis (GWAS) of Brown Swiss populations with the aim of unravelling the genomic 
architecture controlling milk protein synthesis and secretion has been yet reported. The aims of this study, 
therefore, were: i) to perform a GWAS analysis to identify genomic regions associated to the proportions of 
non-protein nitrogen (N) and protein fractions in milk samples from 1,011 Brown Swiss cows; ii) to uncover the 
biological functions regulating the milk N compound profile through gene-set enrichment analysis; and iii) to 
use an association weight matrix (AWM) approach24 based on SNP co-associations in silico, to identify regulatory 
networks associated with milk protein synthesis, metabolism and secretion in cattle.

Results
GWAS analysis. Summary statistics and genomic heritabilities for milk N fractions calculated from a cohort 
of 1,011 Italian Brown Swiss cows are reported in Table 1. Overall, very high genomic heritabilities were found 
for the proportions of β-CN (0.833), κ-CN (0.681) and αS1-CN (0.661) out of the total nitrogenous compounds. 
Of the whey proteins, the β-LG proportion also had high heritability (0.558), while the estimates for α-LA were 
decidedly lower (0.194). Heritabilities of milk non-protein N compounds were moderate (0.363 for minor N 
compounds, 0.248 for urea).

Table 2 and Supplementary Table S1 report the results of the GWAS analysis. A total of 170 SNPs were signifi-
cant, mainly located on two Bos taurus autosomes (BTAs), BTA6 and BTA11. Three regions were detected on BTA6, 
which showed associations with 11 traits (Fig. 1). Region 6a included 3 SNPs (~37.02–39.60) close to the significance 
threshold associated to the total CN percentage and milk yield (MY). Region 6b (~68.55–74.85 Mbp) corresponded 
to 17 SNPs associated to αS2-CN, β-CN and κ-CN. A total of 103 signals were detected in region 6c (~77.19–99.45) 
with significant associations with MY, all the CN fractions except for αS1P-CN and αS1P/αS1-CN, the two whey pro-
teins, α-LA and β-LG, and other N compounds except for milk urea (MUN). Very high peaks corresponding to 
κ-CN, β-CN and αS1-CN were detected in this region. In particular, the highest signal corresponded to the marker 
Hapmap52348-rs29024684 (~87.40 Mbp), which was significantly associated to κ-CN (P = 5.05443E-59). The pro-
portion of additive genetic variance (Va) explained by this SNP was 71.60% (see Supplementary Table S1). Other 
peaks corresponded to Hapmap28023-BTC-060518 (~87,20 Mbp), which was associated with β-CN (P = 1.72926E-
52, Va = 49.67%) and αS1-CN (P = 1.2914E-39, Va = 39.56%), and Hapmap24184-BTC-070077 (~87,25 Mbp), 
which was associated to β-CN (P = 2.60856E-50, Va = 47.55%) (see Supplementary Table S1). Moderate linkage dis-
equilibrium (LD) was observed between Hapmap52348-rs29024684 and Hapmap28023-BTC-060518, and between 
Hapmap52348-rs29024684 and Hapmap24184-BTC-070077 (r2 = 0.35). The markers Hapmap28023-BTC-060518 
and Hapmap24184-BTC-070077 were in full LD (r2 = 1) (see Supplementary Fig. S1). Two regions were detected 
on the tail part of BTA11: region 11a, containing 7 significant SNPs (~94.69–98.89 Mbp), and region 11b 
(~101.27–106.54 Mbp), containing 22 SNPs. Both regions were significantly associated to β-LG, whey proteins, 
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other N compounds and minor N compounds (Table 2) (Fig. 2). The highest signals were detected in region 11b 
and corresponded to markers ARS-BFGL-NGS-115328 (~103.11 Mbp) associated to β-LG (P = 1.12371E-20), and 
ARS-BFGL-NGS-104610 (~104.29 Mbp) associated to β-LG (P = 6.92605E-24) and total WP (P = 1.29446E-20). 
The markers BTA-76907-no-rs and ARS-BFGL-NGS-110734 had undefined positions on the genome and showed 
highly significant associations with κ-CN (P = 2.80E-16) and β-CN (P = 6.16E-15) (see Supplementary Table S1).

Adjusting for the effect of the highest signals for κ-CN and β-LG altered the SNPs with the most significant 
associations (see Supplementary Table S1). The genetic variance explained by the SNPs for the κ-CN propor-
tion decreased dramatically (0.124 vs 1.138; −89.1%), as did heritability (0.325 vs 0.681; −73.3%). Significant 
decreases were also observed for the proportions of β-CN (−43.9% genetic variance, −23.5% heritability) and of 
β-LG, although to a lesser extent (−23.4% genetic variance, −11.0% heritability) (see Supplementary Table S1).

Pathway analysis. Of the total 37,568 SNPs used in this study, 17,006 were located in the 15 kb flanking 
region of the annotated genes. These were assigned to 13,269 genes on the basis of the UMD3.1 bovine genome 
sequence assembly. On average, a total of 600 genes showed significant associations (P < 0.05) with MY or milk 
N fractions. To gain a better understanding of the functional implications of these 600 significant genes, we 
performed pathway analyses in order to identify over-represented biological processes. On the one hand, the 
total CN percentage was significantly enriched by K+ transport pathways, including 7 over-represented gene 
ontology (GO) categories, e.g., K+ ion transmembrane transport (q = 0.00015), voltage-gated K+ channel com-
plex (q = 6.07E-06) and K+ channel activity (q = 1.16E-05; Fig. 3a). The plasma membrane, plasma membrane 
protein complex and cell-periphery cellular components were also significantly enriched for CN (q = 0.00011, 
q = 1.33E-05 and q = 8.94E-05, respectively; Fig. 3a). On the other hand, over-represented pathways for β-CN 
included cellular responses to stimuli, e.g., alcohol (q = 2.89E-06), corticosteroid hormones (q = 2.30E-05) and 
ketone bodies (q = 4.54E-05; Fig. 3a). Minor N compounds (N min) were significantly associated with the metal 
ion transport pathways (q = 1.04E-05) (Fig. 3a). The full list of significantly enriched pathways (q < 0.05) is given 
in Supplementary Table S2).

Complementary, the most significant over-represented KEGG pathways for κ-CN included genes involved 
with Ca2+ homeostasis, Ca2+ cycling and elevation in intracellular Ca2+, as well as hypertrophic cardiomyopathy 
(HCM) processes (q = 7.22E-06), arrhythmogenic right ventricular cardiomyopathy (ARVC) (q = 2.73E-05) and 
dilated cardiomyopathy (DCM) (q = 8.63E-05; Fig. 3b). Axon guidance was enriched for total CN (q = 3.92E-07) 
while salivary secretion was associated with αS1-CN (q = 5.20E-05). The Fc γ R-mediated phagocytosis displayed 
an association with αS1P-CN (q = 8.86E-05) (Fig. 3b and Supplementary Table S2).

Gene network analyses. A total of 15,277 annotated SNPs were used for the AWM construction and the 
SNP co-association analyses. The AWM matrix was then built using a total of 15 phenotypes and the 1,917 SNPs 
that were significantly associated with at least one of these phenotypes (selected after applying the filtering steps 
described in the Material and Methods section). These SNPs corresponded to 1,917 unique genes. The SNPs 

Trait1 Mean SD h2 #SNP2

Milk yield, kg/d 24.26 7.96 0.094 2

True protein N, % total milk N 89.05 2.29 0.402 21

Milk N fractions, % total milk N

Caseins 77.97 1.25 0.133 4

  β-CN 32.14 2.45 0.833 64

  κ-CN 9.48 1.48 0.681 74

  αS1-CN 25.71 1.85 0.661 39

  αS1P-CN 1.45 0.62 0.171 3

  αS1P/αS1-CN 0.06 0.03 0.183 3

  αS2-CN 9.19 1.14 0.365 32

Whey proteins 11.08 1.70 0.523 32

  β-LG 8.72 1.56 0.558 29

  α-LA 2.36 0.51 0.194 7

Other N compounds 10.95 2.28 0.402 21

  Minor N compounds 7.94 2.37 0.363 17

  MUN 3.01 1.04 0.248 4

Table 1. Descriptive statistics and genomic heritability h( )2  for milk yield and milk nitrogen fractions (n = 1,011). 
1True Protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N; αS2-CN: αS2-casein; 
α-LA: α-lactalbumin; β-LG: β-lactoglobulin; β-CN: β-casein; κ-CN: κ-casein; αS1-CN: αS1-casein; αS1P-CN/
αS1-CN: ratio between αS1(phosphorylated)-casein and αS1-casein; αS1P-CN: αS1(phosphorylated)-casein; 
caseins: Σcaseins (β-CN+ κ-CN+ αS1-CN+ αS1P-CN+ αS2-CN+ αS1P/αs1-CN); Whey proteins: Σ whey proteins 
(α-LA + β-LG). Other N compounds: other N compounds (Σurea + minor N compounds); Minor N compounds: 
minor N compounds (e.g., small peptides, ammonia, creatine, creatinine, etc.); MUN: milk urea N. SD: standard 
deviation; h2: genomic heritability. 2#SNP: number of significant SNP (5 × −10 5) for each trait.
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selected by the AWM method explained 72% of the phenotypic variance for κ-CN, which was significantly larger 
(P < 0.001) than the average variance (46%) explained by the same number of randomly selected SNPs (10,000 
replicates). Hierarchical clustering of traits was firstly performed to describe the set of phenotypes that inevitable 
were correlated between them. In fact, milk N fractions profiles were clustered in three different groups: the first 
comprised the minor N compounds, the second comprised the whey proteins, total CN and the αS-CN fraction, 
while the third included β-CN, κ-CN, urea, αS1P-CN and the αS1P/αS1-CN ratio (Supplementary Fig. S2). Then, 
operating on the rows of the AWM matrix, the correlations between all pair-wise genes were used to predict gene 
interactions and generate a regulatory network for the milk N fractions, where the nodes are genes and the edges 
represent significant interactions between nodes. The PCIT algorithm identified a total of 235,764 edges connect-
ing the 1,917 nodes. After filtering for sparse correlations values ≥ |0.80|, we obtained a regulatory network with 
101,284 edges and 1,904 nodes. The analysis of the network topological parameters, e.g., closeness centrality and 
betweenness centrality, revealed that the genes related to ion transport pathway (e.g., ITPR2, IQGAP1, TP53RK 
and LACE1), protein metabolism (e.g., METAP1 and PRC1) and axon guidance (e.g., NTNG1 and ROBO3) might 
have an important influence on the regulatory network. Ranking the nodes according to their degree (number 
of significant interactions), we found BPIFB1 and FAM169A at the top of the list with 481 and 477 edges, respec-
tively (Supplementary Table S3). Analysis with the LASAGNA tool, which predicts the transcription factors (TF) 
binding sites in the genes’ promoter regions, showed that the promoter of BPIFB1 and FAM169A contained 
binding sites for several TFs involved in regulating milk protein synthesis, such as GR, ER, STAT5A, C/EBP and 
YY1 (Supplementary Table S4). Additionally, we detected other highly-connected nodes within our regulatory 
network, including the K+ channel KCNK9 (with 455 edges), transporters such as CRABP1 (450 edges) and 
SLC4A7 (420 edges), and the phosphatase PLPP7 (located 2 Mb from PAEP; 418 edges) (Supplementary Table S3).

The TFs act in a regulatory network and can drive or repress the expression of different genes in a feed-forward 
and feedback manner. Accordingly, a second network was generated to explore the main putative regulatory TFs 

BTA1 #SNP Interval, Mbp P-value (range) Top SNP
Top SNP 
location, bp

Top SNP 
MAF Trait2

1 1 — 2.75E-05 BTB-01778303 151883849 0.02 αS2-CN

3 1 — 4.64E-05 ARS-BFGL-NGS-100159 88864456 0.49 α-LA

3 1 — 1.23E-05 ARS-BFGL-NGS-33061 44364191 0.01 CN

4 1 — 3.68E-05 BTB-01672972 21194199 0.01 Other N, protein

4 1 — 3.29E-05 BTB-01066453 53857273 Other N, protein

4 2 73.60–73.84 (7.34E-06, 2.72E-05) BTA-71368-no-rs 73837632 0.05 MUN

5 1 — 1.8E-05 Hapmap44167-BTA-95489 82944314 0.07 MUN

6a 3 37.02–39.60 (1.64E-05, 2.23E-05) Hapmap31921-BTC-033863 37019972 0.05 MY, CN

6b 16 68.55–74.85 (5.86E-08, 4.5E-05) Hapmap29639-BTC-041962 71350048 0.02 αS2-CN, β-CN, κ-CN

6c 105 77.19–99.45 (5.05E-59, 4.96E-05) Hapmap52348-rs29024684 87396306 0.24
κ-CN, β-CN, αS2-CN, 
αS1-CN, MY, α-LA, 
Nmin, WP, β-LG, 
protein, Other N

9 1 — 4.34E-05 BTA-21753-no-rs 36790663 0.01 αS1-CN

11a 7 94.69–98.89 (2.36E-07, 3.60E-05) Hapmap56906-rs29014970 97844929 0.31 β-LG, WP, protein, 
Other N, Nmin

11b 22 101.27–106.54 (6.93E-24, 4.94E-05) ARS-BFGL-NGS-104610 104293559 0.45 β-LG, WP, Other N, 
protein, Nmin

13 1 — 2.9E-05 ARS-BFGL-NGS-108308 28999095 0.23 MUN

14 1 — 2.16E-05 BTA-02620-rs29010169 45601728 0.01 αS1P/αS1-CN, αS1P-CN

20 1 — 1.27E-05 ARS-BFGL-NGS-102102 10233876 0.37 αS1P-CN, αS1P/αS1-CN

20 1 — 6.37E-06 Hapmap51592-BTA-41521 46709345 0.37 αS1P/αS1-CN, αS1P-CN

20 1 — 5.85E-06 BTB-01648552 58264762 0.42 Protein, Nmin, Other N

24 1 — 4.22E-05 ARS-BFGL-BAC-42839 4118163 0.11 Nmin

25 1 — 5.19E-06 Hapmap31994-BTC-065943 5385729 0.14 CN

Table 2. Summary results of the genome wide association analysis for milk nitrogen fractions. #SNP = number 
of the single nucleotide polymorphisms significantly associated to the trait; Interval: The region on the 
chromosome spanned among the significant SNP(s) (in Mb); P-value (range) = The P-value of the highest 
significant SNP adjusted for genomic control and the range of the P-values when multiple SNP were 
significantly associated to one trait; Top SNP location (bp) = position of the highest significant SNP on the 
chromosome in base pairs on UMD3.1 (http://www.ensembl.org/index.html); Top SNP MAF = minor allele 
frequency of the top SNP. 2True Protein nitrogen (N) and milk N fractions are expressed as percentage of 
total milk N; αS2-CN: αS2-casein; α-LA: α-lactalbumin; Other N: other N compounds (urea + minor nitrogen 
compounds); MY: milk yield; β-LG: β-lactoglobulin; β-CN: β-casein; κ-CN: κ-casein; αS1-CN: αS1-casein; 
Nmin: minor N compounds (e.g., small peptides, ammonia, creatine, creatinine, etc.); αS1P/αS1-CN: ratio 
between αS1(phosphorylated)-casein and αS1-casein; αS1P-CN: αS1(phosphorylated)- casein; CN: casein, 
Σcaseins (β-CN+ κ-CN+ αS1-CN+ αS1P-CN+ αS2-CN+ αS1P/αS1-CN); WP: whey proteins, Σ whey proteins 
(α-LA + β-LG); MUN: milk urea N. The trait with the highest P-value in each genomic region is bolded.

http://www.ensembl.org/index.html
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in our regulatory network and the connectivity between them. We identified GFI1B, NR5A1 and ZNF407 as the 
“best” trio of TFs within our regulatory network. Altogether, they potentially regulated the transcription of 452 
genes (about 24% of genes in the AWM matrix filtered for correlations ≥|0.80|; Fig. 4). Figure 5A,B show the 

Figure 1. Manhattan plots for the genome-wide association studies on Bos taurus autosome 6 (BTA6). (a) MY: milk 
yield; (b) CN: Σcaseins (β-CN+ κ-CN+ αS1-CN+ αs1 (phosphorylated)-CN+ αS2-CN+ αS1(phosphorylated)/
αS1-CN); (c) aS2-CN: αS2-casein; (d) β-CN: β-casein; (e) aS1-CN: αS1-casein; (f) k-CN: κ-casein; (g) a-LA: α-lactal- 
bumin; (h) Prot: true protein nitrogen (N); (i) WP: Σ whey proteins (α-lactalbumin+ β-lactoglobulin);  
(l) OtherN: other N compounds (urea + minor N compounds); (m) Nmin: minor N compounds (small peptides, 
ammonia, creatine, creatinine, etc.). The red horizontal lines indicate a −log10 (P-values) of 4.30 (corresponding to P-
value = 5 × −10 5). 6a: region 6a; 6b: region 6b; 6c: region 6c.
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distribution of the partial correlation coefficients in the full and TF networks. More sophisticated regulation pat-
terns between the TFs and their target genes were provided by the LASAGNA promotor analyser. For instance, 
the promoters of GFI1B and NR5A1 were discovered to contain putative binding sites for the TFs that are known 
to regulate milk protein synthesis (e.g. STAT5A, C/EBPbeta, YY1, NFκB, NF-1 and CREB; Supplementary 
Table S4; Fig. 4). Differences between the correlation values of the full regulatory network and the TFs network 
were apparent. The absolute correlation values of the full regulatory network ranged from 0.80 to 1.00, with a 
mean of 0.86, whereas the absolute correlation values of the TF network ranged from 0.80 to 0.99, with a mean of 
0.86. Moreover, while NR5A1 repressed most of its target genes (63%), the proportion of repressed and induced 
target genes were similar for GFI1B and ZNF407 (Fig. 5).

To identify the most important cellular activities controlled by the regulatory network and the TFs network, 
we analysed over-represented GO biological process terms using ClueGO. The full list of enriched pathways 
and ontologies is reported in Supplementary Table S5. Most of the molecular functions that were commonly 
enriched in both the full and TF networks were related to ion and cation transmembrane transporter activity 
and phosphatidylinositol signalling (Fig. 5C). The two networks also shared a considerable number of path-
ways and biological processes related to neuronal and hormone (e.g. glucocorticoids and insulin) signalling, 
reproduction, nitrogenous compound metabolism and molecular transport (Supplementary Table S5). Several 
functions related to the Golgi apparatus were also enriched in both networks such as Golgi vesicle transport, reg-
ulation of Golgi organization, intra-Golgi vesicle-mediated transport and post-Golgi vesicle-mediated transport 
(Supplementary Table S5). In addition, processes and components belonging to the extracellular matrix (ECM), 
such as the proteinaceous extracellular matrix (q = 0.00418), and cell proliferation, e.g., epithelial cell prolifera-
tion (q = 0.03981), were significantly overrepresented in the full network (Supplementary Table S5). Immune 
system response was only over-represented in the TF network, e.g., “positive regulation of lymphocyte medi-
ated immunity” (q = 0.03696) and “regulation of adaptive immune response based on somatic recombination of 
immune receptors built from immunoglobulin superfamily domains” (q = 0.04188) (Supplementary Table S5).

Figure 2. Manhattan plots for the genome-wide association studies on Bos taurus autosome 11 (BTA11). (a) 
β-LG: β-lactoglobulin; (b) Prot: true protein nitrogen (N); (c) WP: whey proteins (β-LG+ α-lactalbumin); (d) 
OtherN: other N compounds (urea + minor N compounds); (e) Nmin: minor N compounds (small peptides, 
ammonia, creatine, creatinine, etc.). The red horizontal lines indicate a −log10 (P-values) of 4.30 
(corresponding to P-value = 5 × −10 5); 11a: region 11a; 11b: region 11b.
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Discussion
GWAS analysis. We carried out GWAS analysis of the bovine milk N profile, including the main CN and 
whey protein fractions and non-protein N compounds. The genomic heritabilities we found were generally higher 
than previously found in the literature, which may be partially due to several factors, such as differences in breed, 
population size, analytical method, statistical model and data measurement unit (e.g., yield vs proportion)20–26. 
Heritabilities of single casein fractions such as κ-CN and β-CN were much higher than that of total caseins. This 
might be due to the fact that single protein fractions (as well as totals) were expressed as percentage of total N and 
therefore qualitative (and not quantitative) information was provided. Accordingly, proportions of single milk 
protein fractions do not share the same profile nor necessarily vary conforming to the totals. The same explana-
tion might be applied also to the number of significant SNPs (much lower in the case of total caseins). However, 
it is worth mentioning that when using a less stringent P- value (as in the case of pathway analyses) the situation 
was reversed, suggesting that in the case of total caseins the significantly associated signals tended to be mostly 
weak. These findings might provide further indication that selection for individual milk protein fractions might 
be more effective than selection based on total caseins, especially when setting breeding programmes aimed at 
improving milk nutritional and/or technological properties.

As expected, our GWAS results confirmed the highest signals to be on BTA6 in the region of the casein 
cluster and its flanking region (~86.35–87.40 Mb), and on the tail part of BTA11 including the region of 
the PAEP gene (~101.27–106.54), in line with previous results20–23. The most significant SNPs for κ-CN 
(Hapmap52348-rs29024684), β-CN (Hapmap28023-BTC-060518 and Hapmap24184-BTC-070077, in full LD) 

Figure 3. Distribution of the significantly enriched terms/pathways using genes associated to the milk nitrogen 
fractions. The SNP (P < 0.05) were assigned to genes if they were located within the gene or in a flanking 
region of 15 kb up- and downstream of the gene using the biomaRt R package. For mapping, the Ensembl 
Bos taurus UMD3.1 assembly was used as reference. Gene-set enrichment analysis was carried out using the 
goseq R package. Only the traits showing significantly enriched terms are reported (q < 0.05). (a) GO terms; 
(b) KEGG-pathways. β-CN: β-casein; CN: Σcaseins (β-CN+ κ-CN+ αS1-CN+ αS1phosphorylated-CN+ 
αS2-CN+ αS1 (phosphorylated)/αS1-CN); Nmin: minor nitrogen compounds; aS1-CN: αS1-casein; aS1P-CN: 
αS1(phosphorylated)-casein; κ-CN: κ-casein.
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and β-LG (ARS-BFGL-NGS-104610 and ARS-BFGL-NGS-115328) are located near (less than 1 Mb from) the 
causal mutations for protein variants25,27–35.

Even after adjusting for the effect of the highest significant SNPs, we still detected high signals on BTA6. 
Apart from Hapmap28023-BTC-060518 and Hapmap24184-BTC-070077, which are in moderate LD with 
Hapmap52348-rs29024684, we still found peaks in the ranges 82 to 85 Mb and 88 to 94 Mb. The highest signal 
in the former region corresponded to Hapmap46932-BTA-111719, which was associated to β-CN, αS1-CN and 
αS2-CN. This marker was located about 0.2 Mb from CTSL2 and 0.5 Mb from IARS. CTSL2 belongs to the cathep-
sins family, which are endogenous proteases affecting the physicochemical characteristics of fresh milk and the 
quality of dairy products; an increase in CTSL2 expression in bovine milk was observed over the course of lac-
tation28. IARS, on the other hand, encodes for the isoleucyl-tRNA synthetase. Aminoacyl-tRNA synthetases are 
key enzymes involved in translating the genetic code by attaching the correct amino acid to each tRNA species 
and hydrolysing an incorrectly attached amino acid in the editing process29. Amino acids serve as precursors for 
protein synthesis but also act as regulators of protein synthesis30. Furthermore, isoleucine seemed to act cooper-
atively with leucine to increase milk protein synthesis31,32, which appeared to be controlled (at least partially) by 
the mTOR pathway33. The highest peak in the latter region corresponded to Hapmap43045-BTA-76998, which 
was associated to αS2-CN and mapped in close proximity to several genes involved in immune system response, 
e.g., 0.2 Mb from IL8, 0.1 Mb from CXCL6 and 64 Kb from PPBP. IL8, for instance, is a highly polymorphic gene 
considered to be a mastitis trait34 and may also be a quantitative trait locus (QTL) for milk production traits35,36. 
We found highly significant SNPs on BTA11 in the region flanking PAEP (102.94–103.05 Mb) and including the 
QTL for the β-LG percentage deposited in the Cattle QTL Database. The marker ARS-USMARC-Parent-AY85
1163-rs17871661 (associated to β-LG, whey proteins, other N compounds, protein and N minor compounds) 
was located within GFI1B (intron variant effect), one of the TFs we proposed as master regulators of milk protein 

Figure 4. Activators and repressors of the regulatory network of genes associated with the bovine milk κ-casein 
content. This network contained 452 nodes and 498 edges. In the network, each node represents a gene, whereas 
every edge connecting two nodes represents a significant interaction (correlation value ≥ |0.80|). In the network, 
the best trio of transcription factors is showed: GFI1B, NR5A1 and ZNF407. Together they control 2.5% of the 
regulatory network. The nodes shape indicates whether the node is a transcription factor (triangles), a miRNA 
(hexagon), a metabolite (round rectangle), a membrane receptor (rectangle), a transporter (parallelogram), 
or other type of genes (ellipses). The node colour represents the biological function of the gene according to 
Ingenuity Pathway Analysis (IPA) annotation. The edge colour intensity indicates the level of the association: 
red = positive correlation - and blue = negative correlation between two nodes.
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synthesis in bovine mammary gland. We also found a high signal located at 104.29 Mb and corresponding to 
ARS-BFGL-NGS-104610, which was associated to the same phenotypes. Interestingly, this region (104.13–
104.31 Mb) is densely packed with genes coding for small nucleolar-RNA and micro-RNA, well-known regulators 
of gene expression37,38.

Pathway and network analyses. Pathway and network analyses derived from GWAS gave additional 
insights into the complex relationships among genes and the interconnected pathways that are likely to have a 
role in regulating protein synthesis and secretion in the mammary gland. For instance, we found several pathway 
associations within our regulatory network, which to the best of our knowledge have not been fully described 
before, namely: (i) ion and cation transmembrane transport (particularly K+, P, and Ca2+); (ii) hormone signal-
ling, (iii) neuronal signalling and (iv) immune system response (Fig. 6; Supplementary Table S5). Additionally, 
we also identified three TFs, which were likely to be key activators and repressors of a total of 1,904 targets genes 
within the regulatory network, e.g., GFI1B, ZNF407 and NR5A1, which controlled the expression respectively of 
260, 197 and 41 genes in the network. Interestingly, many of these pathways derived from GWAS analysis have 
been also related to milk coagulation properties, curd firmness, cheese yield and curd nutrient recovery22, such as 
calcium and potassium transport, neuronal and hormonal signalling, as well as phosphatidylinositol signalling. 
These functional findings might confirm the established relationship between milk protein composition and 
cheese-making traits.

The relationship between CN percentage in milk and the genes involved in the regulation of Ca2+ and phos-
phate transmembrane transport is in line with the structure and the main functions of the casein micelles, which 
on the one hand act as Ca2+-transporting vehicles to supply young mammals with a highly concentrated yet 
soluble form of calcium phosphate and on the other hand, prevent calcified, proteinaceous deposits containing 
amyloid fibrils in the mammary gland39. Caseins bind Ca2+ via highly phosphorylated sequences called phosphate 
centres present in αS1-CN, αS2-CN, β-CN40. Calcium-dependent CN kinase is responsible for κ-CN phospho-
rylation before micelle formation and milk secretion41. In agreement to our results, the Ca2+ ion-binding GO 
term has been already associated with κ-CN and β-LG in bovine milk23. These biologically reasonable associa-
tions were further confirmed by the enrichment of several functions related to the Golgi vesicle transport within 
the full-network and our TFs network. Indeed, the milk proteins newly synthesized in the rough endoplasmic 

Figure 5. Molecular functions commonly enriched in the full- and the transcription factor-network. Partial 
correlation values and GO terms displayed between the two types of networks. (A) Density plot representation 
of the partial correlation values in the regulatory network of genes significantly associated with κ-casein profiles 
in bovine milk; (B) Density plot representation of the partial correlation values in the regulatory network 
based on the three transcription factors. (C) The GO term identified with the ClueGO tool were summarized 
for the two types of network and displayed using a heatmap. The heatmap to show those GO terms that were 
statistically significant after Benjamini-Hochberg correction (FDR <0.05).
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reticulum are transferred to the Golgi apparatus where they are processed for transport to the apical area of the 
mammary epithelial cells through secretory vesicles3. A cardiovascular regulation function through several genes 
(e.g. ARVC, HCM, and DCM) has been also associated with κ-CN, suggesting that this protein fraction is involved 
with the regulation of Ca2+ homeostasis. Impaired Ca2+ ion regulation (and alteration in insulin signalling) is 
known to contribute to the pathophysiological effect on cardiomyocyte function42. Furthermore, these cardi-
ovascular related pathways also included genes coding for integrins, the major ECM receptors that have been 
identified as important regulators of mammary epithelial cell growth and differentiation43. In relation to these 
results, pathways pertaining to the extracellular matrix were indeed significantly enriched in our full-regulatory 
network. Similarly, Gambra et al.23 reported an association between the extracellular matrix receptors, κ-CN and 
β-LG concentrations in bovine milk23. Besides Ca2+ ion, the K+ transport was also enrichment. It is likely that 
prolactin (PRL), which have a direct role in milk synthesis33, activates the extrusion of Na+ and the entry of K+ 
in mammary cells in both lactating and pre-lactating tissue44. Interestingly, a plasmin-induced β-CN breakdown 
product (fraction 1–28) has been found to act as a potent blocker of K+ channels in bovine mammary epithelia 
apical membranes45.

Our study also showed that milk proteins related genes were associated with the concerted action of hormones 
such as prolactin, growth hormone, thyroid hormone, corticosteroids, insulin, and growth factors, which are 
essential for the regulation of milk protein synthesis within the bovine mammary epithelium33. Lactogenic hor-
mones enter MECs by diffusion and synergistically bind to milk protein gene promoters. Indeed, the proximal 
promoters of the β- and κ-CN genes contain so-called lactogenic response elements that harbour binding sites 
for TFs, which act either as inducers, such as GR, STAT5, NF-1 and C/EBPβ, or as repressors, such as YY-146,47. 
Remarkably, binding sites for these abovementioned TFs have also been predicted by the LASAGNA tool for the 
two most important nodes in the full regulatory network, in particular BPIFB1 and FAM169A, and for the two 
key TFs, GFI1B and NR5A1. Among the pathways overrepresented in the networks, regulation of insulin secre-
tion and of insulin-like growth factor receptor signalling pathways were included (Supplementary Table S5). A 
direct effect of insulin on the bovine mammary gland might be mediated by the major milk protein ELF5, which 
seemed to be regulated by means of phosphoinositide 3-kinase/Akt signalling48, which has been identified as 
playing a central role in lactation49. Overrepresentation of phosphatidylinositol signalling (PI3K) in the full and 
TF networks might provide further support for this hypothesis. Both insulin and IGF1 might in turn activate the 
mTOR signalling pathway, which is crucial for milk protein synthesis50,51. Among the enriched genes included in 

Figure 6. Regulation of milk protein synthesis in bovine mammary gland. The Figure outlines the main 
significant pathways and cellular functions related to genes associated with milk proteins in bovine mammary 
gland, including: (i) the regulation of ion and cation transmembrane transport, which is related to the ability 
of casein micelles to allow transport of calcium phosphate into milk and prevent the formation of calcified, 
proteinaceous deposits containing amyloid fibrils; and (ii) hormonal and neuronal signaling, particularly 
through the concerted action of prolactin (PRL), glucocorticoids (GC) and insulin (INS), which are responsible 
for the regulation of milk protein contents. PIH: prolactin-inhibiting hormone; CRH: corticotropin-releasing 
hormone; ACTH: adrenocorticotropic hormone. This figure was partly created using images provided by 
Servier Medical Art (http://www.servier.com/Powerpoint-image-bank/).

http://www.servier.com/Powerpoint-image-bank/
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the insulin secretion pathway, GLUT1 (SLC2A1) is of particular interest. The large uptake of glucose by the mam-
mary gland during lactation considerably induces the expression of GLUT133, which seemed also to be regulated 
by mTOR52. Both RPTOR and GLUT1 were predicted to be targets for ZNF407 by our TF network.

Additionally, milk proteins associated genes were involved in the activation of neuronal signalling pathways, 
suggesting an indirect link to the reproduction process and lactation. The overrepresentation of neurotransmitter 
signalling, such as the cholinergic synapse (enriched in the full network) and axon guidance may be explained by 
the stimulation of mechanoreceptors in the teat skin, which induces cholinergic nerve impulses with the result 
that oxytocin is released from the pituitary gland, essential for milk secretion53. In fact, the study carried out by 
Gao et al.54 provides support to this hypothesis. These authors reported a significant increase in the expression of 
all CN genes in the bovine mammary gland at the lactation onset54, which is reasonably consistent with the need 
to meet the nutritional requirements of new-born calves. Having established that neuronal signalling appeared to 
be associated to milk protein components, we also demonstrated that CN could be related to the control of repro-
duction. The mammary gland is considered as an accessory reproductive organ55. This later association may be 
attributable to several genes involved in the regulation of reproductive process, including NR5A1, which plays an 
important role in various aspects of reproductive development and function56 and also regulates gene expression 
of pituitary gonadotropins, such as the luteinizing hormone (LH) and the follicle-stimulating hormone (FSH)57. 
On the other hand, we found 100 genes in the full network that might be related to amyloidosis disease. Caseins, 
as other unfolded proteins, tend to form amyloid fibrils and calcified deposits, although to avoid the risk of 
amyloidosis and calcification, the mammary gland orchestrates different aggregation mechanisms that result in 
the formation of the casein micelle58. Amyloidosis and the production of amyloid proteins have been associated 
with a variety of so-called protein conformational or protein misfolding diseases (including Alzheimer’s disease, 
Parkinson’s disease, type-II diabetes)59. Caseins have been also found to function as holdase molecular chaper-
ones to prevent the potentially harmful formation of amyloid fibrils58, which might explain the enrichment of the 
signal sequence binding found in our study.

Finally, the enrichment of pathways related to immune response observed for the TF-network might be partly 
related to the biological role of GFI1B which is a transcriptional repressor that plays important roles in the differ-
entiation of several haematopoietic cells60. Our findings might be related to the antimicrobial activity of caseins, 
and specifically of κ-CN61; of interest, an overall increase in the immune response and/or in milk antimicrobial 
activity of the bovine mammary gland has been observed during lactation62.

Milk protein composition is subject to the well-known effect of the major genes coding for the various CNs 
and whey proteins. In our study, the combination of GWAS and pathway and network analyses showed several 
genes that were coordinated and highly connected between them, making a substantial contribution at different 
stages of milk protein synthesis. This information advances our understanding of bovine mammary gland func-
tionality and could be helpful to breeding programmes aimed at improving milk quality and/or technological 
properties. However, altogether, the correlative nature of associations between outcomes from which causality 
cannot be determined limits the interpretation of our results. Therefore, it is of paramount importance to carry 
on larger longitudinal studies to explore the causes and the persistency of these interactions. Additionally, the 
predicted associations need to be biologically validated, e.g., by integrating genomic data with gene expression 
profiles, by using machine-learning approaches or animal models with knockout genes.

Methods
Ethics statement. The cows included in this study belonged to commercial private herds and were not 
subjected to any invasive procedures. Milk and blood samples were previously collected during the routine milk 
recording coordinated by technicians working at the Breeder Association of Trento Province (Italy) and therefore 
authorized by a local authority.

Phenotypes and genotypes. Individual milk samples were collected from 1,264 Italian Brown Swiss cows 
from 85 commercial herds located in the Alpine province of Trento (Italy). Details of the animals used in this 
study and the characteristics of the area are reported in Cipolat-Gotet et al.63 and Cecchinato et al.64.

Milk total nitrogen, casein and urea nitrogen (MUN) were measured using a MilkoScan FT6000 (Foss, 
Hillerød, Denmark). Proportions of the true proteins, e.g., casein fractions (αS1-, αS1P-, αS2-, β- and κ- CN), 
and whey proteins [β-lactoglobulin (β-LG) and α-lactalbumin (α-LA)] were determined using validated 
reversed-phase high-performance liquid chromatography (RP-HPLC)65. Each fraction was expressed as a per-
centage of the milk total nitrogen (N) content. These percentages were summed and deducted from the milk total 
N content to arrive at the proportion of the remaining minor milk N compounds.

The Illumina BovineSNP50 v.2 BeadChip (Illumina Inc., San Diego, CA) was used to genotype 1,152 cows 
(blood samples were not available for all the phenotyped animals). Quality control excluded markers that do not 
fulfil the subsequent criteria: call rates >95%, minor allele frequencies >0.5% and no extreme deviation from the 
Hardy-Weinberg equilibrium (P > 0.001, Bonferroni corrected). After filtering, 1,011 cows and 37,568 SNPs were 
retained for subsequent analyses.

Genome-wide association study. Genome-wide association analyses (GWAS) were conducted using 
single-marker regression in the GenABEL R package66 and GRAMMAR-GC (Genome-wide Association using 
Mixed Model and Regression - Genomic Control) with the default function gamma67. There are 3 steps to the 
GRAMMAR-GC: firstly, an additive polygenic model with a genomic relationship matrix is fitted; secondly, the 
residuals obtained from this model are regressed on the SNPs to test for associations; finally, genomic control 
corrects for conservativeness of the procedure68. The polygenic model was:
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β= + +y X a e, (1)

where y is a vector of the milk N fractions; β is a vector with fixed effects of (i) days in milk of the cow (classes of 
30 days each), (ii) parity of each cow (classes of 1, 2, 3, ≥4), and (iii) herd-date effect (n = 85); X is an incidence 
matrix connecting each observation to specific levels of the factors in β. The two random terms in the model were 
the animal and the residuals, which were assumed to be normally distributed as σ~a N G(0, )g

2  and σ~e N I(0, )e
2 , 

where G is the genomic relationship, I is the identity matrix, σg
2 is the additive genomic variance and σe

2 the resid-
ual variance. The G matrix was built in the GenABEL R package, where for a given pair of individuals i and j, the 
identical by state coefficients (fi,j) is calculated as:
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where N is the number of markers used, xi,k is the genotype of the ith individual at the kth SNP (coded as 0, ½ and 
1), pk is the frequency of the “+” allele and k = 1, …, N.

A significance threshold of P < 5 × −10 5 was adopted69. Manhattan plots were drawn using the qqman R 
package70.

SNP variance was calculated as 2pqa2, where p is the frequency of one allele, q = 1 − p is the frequency of the 
second allele and a is the estimated additive genetic effect. Model (1) was also used to estimate the variance com-
ponents and the genomic heritability of the traits based on the genomic relationship matrix (2). Heritability was 
estimated as =

σ

σ σ+
h2 g

g e

2

2 2
.

To identify secondary association signals, association analysis conditioning on the primary associated SNPs 
was carried out to test for the presence of other significantly associated SNPs. Therefore, in model (1) we fixed 
the most significant SNPs on BTA6 and on BTA11 to obtain SNP effect estimates adjusted for the effect of these 
highly significant SNPs.

The r-squared statistic was chosen to predict the extent of LD. The r2 between pairwise SNPs covering the 
region of CN loci on BTA6 and the region of the β-LG gene (progestagen-associated endometrial protein, PAEP) 
on BTA11 and their respective 1 Mb flanking regions was calculated using the R package LDheatmap71.

Gene-set enrichment and pathway analyses. Pathway analyses were performed as detailed in Dadousis 
et al.22 to identify the biological functions regulating the milk N fraction profile. Briefly, the SNPs (nominal 
P-values < 0.05) were assigned to genes if they were located within the gene or within 15 kb of 5′ and 3′ends72 
using the BiomaRt R package73,74 and the Ensembl Bos taurus UMD3.1 assembly. Respect to the GWAS analysis, a 
less stringent significance threshold was adopted since we aimed to detect the effect of less significant SNPs which 
still contribute to explain phenotypic variability, as associated to genes which are part of biological networks and 
cellular processes. Combining weaker but related variant signals we can improve the prediction of how these var-
iants might be collectively related to the phenotypes of interest. The Kyoto Encyclopaedia of Genes and Genomes 
(KEGG)75 and the Gene Ontology (GO) databases76 were used to define the functional categories associated to the 
gene sets. To avoid testing broad or narrow functional categories, only GO and KEGG terms with >10 and <1000 
genes were inspected. A Fisher’s exact test was applied to each functional category to test for overrepresentation of 
significant gene sets. A q-value of 0.05 was set as the cut-off for significant enrichments. The gene-set enrichment 
analysis was performed using the R package goseq77.

SNP co-association and network analyses. The GWAS results were used to build the AWM as described 
by Fortes et al.24. The selection criteria favour genes harbouring SNPs with significant associations across related 
traits. In brief, κ-CN was selected as the key phenotype (due to its greater importance for milk technological 
properties) and the SNPs that were associated with it (P ≤ 0.05) were included in the AWM.

Dependency among phenotypes was explored by estimating the average number of other phenotypes (Ap) 
that were associated with these SNPs at the same P value (P ≤ 0.05) (Ap = 3). Then, we selected SNPs that were 
both close (<10 Kb) to the nearest annotated gene (UMD3.1 assembly) and were associated with any ≥3 other 
traits (P < 0.05). To identify putative regulators, the TFs reported by Vaquerizas78 and the microRNA (miRNA) 
that were mapped to the UMD 3.1 bovine genome assembly (GenBank assembly accession: GCA_000003055.3) 
were also included in this analysis. To estimate the phenotypic variance explained by the AWM-SNPs, we con-
structed a first G matrix based only on the SNPs that were selected for the AWM. The same numbers of randomly 
selected SNPs were used to build 10,000 G matrices (10,000 replicates), to estimate the variance explained by 
those randomly selected SNPs. The Pearson correlations obtained from pair-wise correlations of AWM columns 
(standardized SNP effects across traits) were computed and hierarchical clustering of traits was visualised using 
the hclust function in R79. The PCIT algorithm80 was used to report significant interactions in the network, which 
were visualized in Cytoscape81. Every node in the network represents a gene, while every edge connecting two 
nodes represents a significant interaction. In order to include only the high-confidence gene co-associations 
determined by PCIT, those with correlations ≥|0.80| were retained (n = 1,904 unique genes), on the assump-
tion that these genes have relevant biological significance for the key phenotype from which the AWM-PCIT 
was constructed. The co-association network was automatically generated using the organic layout algorithm in 
Cytoscape V2.7 (http://cytoscape.org). Network topological parameters and node centrality values were calcu-
lated using the NetworkAnalyzer plugin82 to gain insights into the organisation and structure of the complex net-
works formed by the interacting molecules. In parallel, the list of co-associated genes was fed into the Cytoscape 
plugin ClueGo83 to identify relevant categories of molecular functions, cellular components and biological 

http://cytoscape.org
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processes. The ClueGO cut-off for the statistical assessment was FDR < 0.05. In addition, the list of co-associated 
genes was uploaded to the Ingenuity Pathway Analysis (IPA, version 5.5; Ingenuity Systems, USA) to define 
information on molecule type (e.g., transcription factor, cytokine, transporter). Genes in the network were 
coloured according to the biological processes they participate in. Then, a list of TFs (based on Vaquerizas et al.78)  
and their target genes, to which they were potentially connected, were identified within our high-confidence gene 
network (r ≥ |0.80|). An information-lossless approach84 was used to identify the optimal subset of TFs spanning 
the majority of the network topology. The density plots of the genes’ partial-correlation values in the full and the 
TF network were generated using the R package ggpubr.

Prediction of TF binding sites in the genes’ promoter regions was performed by the LASAGNA-Search 2.0 web 
tool85 using matrices in the TRANSFAC public database and with a significance threshold of P = 0.001.
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