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Abstract :   
 
Slaughter yields are traits of high interest especially for fish species sold in processed form like headless 
carcass or fillets, as well as with regard to increasing consumer preference for easy-to-prepare fish 
products. However, slaughter yields cannot be measured on live fish and thus their genetic improvement 
through mass selection is impossible. The usual alternatives are sib selection and/or indirect selection on 
correlated traits or morphological predictors of slaughter yields. In the present study, we assessed the 
possibility of using a combination of 3D digitized landmarks and ultrasound measurements in genetic 
improvement of slaughter yields in common carp. DNA – pedigreed market-size carp (n = 1553 fish) were 
produced from a partial factorial design of 20 dams and 40 sires. Morphological predictors were recorded 
in real-time using a 3D digitizer and ultrasound tomography, and combined by multiple linear regression 
to predict slaughter yields. The 3D model-predicted headless carcass and fillet yields explained 59% and 
50%, respectively, of the total phenotypic variation in slaughter yields. Genetic parameters of model-
predicted yields and of the best individual predictor (3D_P2 – ratio between abdominal fillet thickness – 
E8 and external 3D ventral height) were similar or slightly lower when compared to previous 2D-based 
predictors (Prchal et al., 2018a, 2018b, 2018c). This was also the case for the expected genetic gain 
using indirect selection on the same simple predictor for fillet yield improvement (0.48% fillet units for 3D 
vs. 0.52% for 2D). 3D model-predicted yields and especially simple predictors thus have a solid potential 
for genetic improvement of slaughter yields in common carp. While they are not better than 2D predictors, 
they are much more convenient and faster to collect in the field, as they do not imply post-processing of 
images. These practical aspects should be taken into account in the future carp breeding program. 
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Highlights 

► We studied combination of 3D digitized landmarks and ultrasound measurements. ► 3D collection of 
morphological landmarks do not imply post processing of images. ► 3D models / predictors have a solid 
potential for genetic improvement of slaughter yields. ► Future carp breeding strategies have been 
suggested. 
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1. Introduction 

 Fish traits defined as ratio of inputs and outputs (such as feed efficiency), or ratio of 

edible high-valued biomass relative to total fish weight (such as fillet yield) are fundamental 

efficiency-related traits for aquaculture operations. They are of high economic value 

(Kankainen et al., 2016), yet tricky to measure and include in breeding programs  (Haffray et 

al., 2013; Vandeputte et al., 2017; De Verdal et al., 2018; Fraslin et al., 2018).  

 Slaughter yields are traits of high interest especially for fish species sold in processed 

form like headless carcass or fillets (Kankainen et al., 2016), as well as with regard to 

increasing consumer preference for easy-to-prepare fish products (FAO, 2018). However, 

slaughter yields cannot be measured on live fish and consequently genetic improvement 

through mass selection on live breeding candidates is impossible. Similarly, the potential for 

marker-assisted selection (MAS) is significantly limited due to the polygenic structure of 

slaughter yields in fish species (Tsai et al., 2015; Gonzalez-Pena et al., 2016; Yoshida et al., 

2019). Yet, genomic selection might be seen as future possibility for the genetic improvement 

of yields, as it allows a better precision on sib-recorded traits (Yoshida et al., 2019). However, 

genomic selection is still too costly and thus useful only for fish species with well-developed 

breeding programs e.g. Atlantic salmon (Salmo salar) or rainbow trout (Oncorhynchus 

mykiss) (Robledo et al., 2017) and for common carp (Cyprinus carpio or Cyprinus 

rubrofuscus) there is no available commercial SNP assay for such trait. Presently, edible part 

yields are commonly genetically improved by sib selection or by indirect selection via traits 

which are genetically correlated to slaughter yields (Kause et al., 2007; Gjedrem, 2010). 

Morphological predictors of slaughter yields based on non-destructive recording of external 

2D landmarks and internal measures using ultrasound tomography could be an effective 
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option to select for improved yields, as they can be used on the candidates without need for 

(costly) sib or genomic information (Cibert et al., 1999; Bosworth et al., 2001; Rutten et al., 

2004; Van Sang et al., 2009; Haffray et al., 2013; Vandeputte et al., 2017; Prchal et al., 

2018a).  

 Common carp is an important fish species in world aquaculture, though its breeding 

programs are mainly focused on utilization of heterotic effect by crossbreeding (Vandeputte, 

2003; Janssen et al., 2017). This is the case despite the evidence for high genetic potential in 

using additive effect by genetic selection (Vandeputte et al., 2004; Kocour et al., 2007; 

Vandeputte et al., 2008; Nielsen et al., 2010; Ninh et al., 2011; Ninh et al., 2013; Hu et al., 

2017; Prchal et al., 2018b). In a previous study with common carp, we investigated 

phenotypic and genetic potential of slaughter yield predictors based on 2D image analysis and 

ultrasound measurements, and their use in carp breeding programs (Prchal et al., 2018a). We 

observed a high accuracy of predictors and a favourable genetic relationship to the real yields. 

However, digitization of 2D landmarks requires post processing of images and cannot 

measure variation in body width. So, this method is at the same time incomplete and time 

consuming, which is a major technical limitation for practical breeding programs. 

Alternatively, 3D collection of body landmarks could speed up digitization of potentially 

relevant morphological predictors and take into account the variability of carp body width. A 

variety of 3D imagery systems have been used in pigs (Tillett et al., 2004), chickens 

(Mortensen et al., 2016) and cattle (Cappai et al., 2019; Le Cozler et al., 2019). Moreover, 3D 

digitizers like the MicroScribe (Solution Technologies Inc, Oella, MD, USA) are often used 

for research related to direct 3D morphological digitization of animal skeletons (Drake, 2011; 

Owen et al., 2014; Hanot et al., 2017). However, their potential for real time digitization of 

slaughter yield predictors directly on live fish has never been studied.  
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 In the present study, a 3D digitizer was used to collect landmarks on the fish body, 

instead of 2D digitizing from post-processing images. Thus, we aimed to i) determine the best 

morphological predictors of slaughter yields using combination of 3D landmarks and 

ultrasound imagery, ii) estimate genetic parameters of slaughter yield predictors and their 

association to the real yields, and iii) predict and compare expected genetic gain in response 

to selection for slaughter yield predictors based on 2D and 3D measurements and their 

practical implication in the carp breeding program. 

 

 

2. Material and Methods 

2.1 Ethics statement 

The methodological protocol of the current study was approved by the expert 

committee of the Institutional Animal Care and Use Committee (IACUC) of the University of 

South Bohemia (USB), Faculty of Fisheries and Protection of Waters (FFPW) in Vodňany 

according to the law on the protection of animals against cruelty (Act no. 246/1992 Coll., ref. 

number 16OZ19179/2016-17214). At market size the fish were humanely euthanized by 

trained person for subsequent processing and slaughter yield evaluation.  

 

2.2 Production and rearing of experimental stock 

The fish are the same as those used in Prchal et al. (2018a). In short, an experimental 

stock of Amur mirror carp was produced at the Genetic Fishery Centre of University of South 

Bohemia (USB) in České Budějovice, Faculty of Fisheries and Protection of Waters (FFPW) 

in Vodňany, Czech Republic. Twenty dams and forty sires were propagated and crossed in a 

partial factorial design with four series of 5 dams and 10 sires. Each parental fish was DNA 

sampled (fin tissue) for later parentage assignment of the offspring fish. At the swimming 
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stage, the experimental stock was created by pooling equal volumes of larvae. These larvae 

were released (150,000 larvae. ha-1) to the prepared nursery ponds at the Klatovy fish farm 

and reared communally in ponds under a semi-intensive culture system typical for Central 

Europe. At one-year old, a random sample of 3000 fish from one pond (50% survival, mean 

weight ± SD = 15.8 ± 4.7 g) was anesthetized with 2-phenoxyethanol (0.5 ml per 1 l of water) 

and individually marked by PIT-Tags and DNA sampled for parentage assignment. The fish 

were harvested after the second growing period and the second overwintering. In October 

2016 the stock (mean weight = 1910 g) was harvested and moved to a storage pond before 

final traits recording at fish slaughter house of USB FFPW in České Budějovice, Czech 

Republic. A total of 1622 individuals were humanely killed by a hit on the head and bled by 

cutting the gills according to the law on the protection of animals against cruelty (Act no. 

246/1992).  

 

2.3 Final data collection  

Briefly, as previously reported (Prchal et al., 2018a), 1622 fish were phenotyped for 

total length (TL), standard length (SL), body length (BL), head length (HL), body height (BH) 

and body width (BWI) with an in-house electronic ruler (to nearest 0.1 mm), and body weight 

(BW) was recorded with an electronic scale (to nearest 0.1 g). To describe the shape of the 

body, the head and the lateral line, a total of 15 coordinates (Figure 1.) of morphological 

points were digitized in 3 dimension (X,Y,Z) using a 3D digitizer (MicroScribe G2LX) 

connected to a computer, to which raw data were exported and stored  in real time with a 

home-made software. The 11 landmarks and 4 semi landmarks (point 7, 10, 11 and 13) were 

chosen to be both easy to collect based on anatomical features (nose, operculum, fin, anus, 

lateral line) and evenly distributed all along the body to describe the whole body shape.  
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Four muscular thicknesses from anterior (E4), intermediate (E5, E8) and posterior 

(E6) were collected using ultrasound imagery (Hospimedi LC1000, 7.5 MHz). For more 

details see Haffray et al. (2013) and Vandeputte et al. (2017) that preceded this study.  

 The total muscle fat content (% Fat) was recorded using a Fish Fatmeter FM 692 

(Distell Ltd., UK), using calibration option 'CARP – 1'. Biometrical indicators were calculated 

as Fulton’s condition factor:  FC = 105 * [BW (g) / SL3 (mm)], relative body height: RelBH = 

BH / SL, and relative head length:  RelHL = HL / SL. After biometric recordings, each fish 

was processed and the following body portions were weighed (to nearest 0.5 g): head, 

left fillet, viscera, gonad, left fillet skin, half carcass, left fillet ribs + trimmings, fins and 

scales. The weight of slaughter body parts and vertebral axis was created by combining the 

previous body portions: headless carcass weight [hl-CarssW = left fillet + left skin + left ribs 

and trimmings + half carcass], fillet weight with skin [FilletW = (left fillet + left fillet skin) * 

2]. The slaughter yields expressed in % were calculated as: headless carcass yield % [% hl-

Carss = (hl-CarssW / BW) *100], and fillet yield [% Fill = (left fillet + left skin) * 2 / BW * 

100]. The natural logarithm was calculated for the weight of each slaughtered part and 

regressed on the logarithm of body weight to obtain growth-independent allometry residuals 

in order to provide genetic and phenotypic parameters giving reasonable estimates of 

predicted gains in slaughter yield (Gunsett, 1984, 1987; Vandeputte et al., 2014). Therefore, 

for % headless carcass and % fillet yield, the surrogate traits are defined as log-log residuals 

(Logr) and termed as Logr_hl-Carss and Logr_Fill, respectively. In addition, logarithm of 

weight of all body portions was regressed on the logarithm of body weight to visualize body 

allometry (See Supplementary Material in Prchal et al., 2018a). 

 

2.4 3D morphology and prediction models of slaughter yields 
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The association of the variation in carp morphology to the variation in processing 

yields was analysed using the MorphoJ software (Klingenberg, 2011) as described previously 

in Prchal et al. (2018a) but using 3D landmarks coordinates instead of 2D. The wireframe 

visualization was performed on the side (X and Y) and dorsal (X and Z) view of the fish. The 

R Package ‘geometry’ was used to calculate areas and volumes from 3D coordinates raw data. 

A multiple linear regression using the reg.best function of the FactoMineR of R software 

package was performed using external morphology descriptors, ultrasound measurements and 

fat meter value as independent variables and the Logr_hl-Carss and Logr_Fill as dependent 

variables. List of predictors calculated and initially included in the multiple linear regression 

are shown in Supplementary Table S1.  

The best prediction model identification corresponds to those with the highest R2 and 

F-value. The models were used to calculate the predicted yield values for each fish that are 

termed as Mod_hl-Carss for headless carcass yield and Mod_Fill for fillet yield. Models were 

cross validated using the crossval function of the bootstrap package in R software (Efron and 

Tibshirani, 1993). 

 

2.5 Parental allocation  

The 60 parents and 2035 offspring were genotyped with 12 microsatellites loci at 

LABOGENA-DNA, the French laboratory for livestock genotyping (ISO 170025 accredited, 

Jouy-en-Josas, France). Parental allocation was performed using the AccurAssign software, 

applying a maximum-likelihood method (Boichard et al., 2014). 

 

2.6 Estimation of genetic parameters 

The data set was checked for potential outliers and the final genetic model was applied 

on 1553 individuals assigned to a single parental pair with a complete set of variables. 
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Heritability (h2), phenotypic and genetic correlations (rp, and rg, respectively) were estimated 

in multivariate mixed models using the restricted maximum likelihood method in DMU 

statistical software (Madsen and Jensen, 2013). The univariate (for heritability) and 

multivariate analysis (for genetic correlations) were on the following animal model: 

 

Yijk = μi+ sex ij +  animik + eijk 

Where Yijkl is the measured phenotypic value of each analyzed trait, µi is the overall 

mean for trait i, sexij is the fixed effect of sex (j = female, male, unidentified sex) for trait i, 

animik is the random genetic effect of an animal k with pedigree based on parentage 

assignment (k = 1, 2, …, 1553) for trait i, and eijk is the random residual. Heritability estimates 

were calculated as the ratio of additive genetic variance (VA) divided by the total phenotypic 

variance (VP), h2 = VA / VP. The likelihood ratio test (LRT) was used for comparing 

the goodness of fit of two models (including vs. excluding the animal genetic effect). The 

heritability estimates were considered significant when the difference of additive genetic 

effect in -2Log-likelihood was higher than the threshold value for p < 0.05 of a χ2 distribution 

with 1 degree of freedom (Pinheiro and Bates, 2000). Genetic correlations were considered 

significant if rg - 1.96 x S.E. was higher than zero. 

The genetic gains (ΔG) per generation were estimated using the breeder’s equations 

from Falconer and McKay (1996) under a mass (MS), full-sib (FSS) and indirect (IS) 

selection responses for fillet yields. The theoretical genetic gain under mass selection 

(although it cannot be applied in practice) was calculated as ΔGM = i h2 σP, where i is the 

selection intensity and h2 and σP are the heritability and phenotypic standard deviation of the 

trait under selection, respectively. The response to selection of FSS was estimated as ∆𝐺𝐹𝑆 =

𝑖 × σ𝑃  × ℎ2 × 𝑛 × 𝑟   

√𝑛(1+ (𝑛−1) 𝑡) 
 , where n is the number of sibs sampled per family (n = 10), r is the genetic 

correlation between sibs (r = 0.5 for full sibs) and t is the phenotypic intra class correlation (t 
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= rh2). The estimated genetic gain for indirect selection criteria was calculated as ΔGI = i x h1 

x h2 x rg x σP2, where ΔGI is the estimated genetic gain on the target trait, h1 and h2 are the 

square roots of heritability of the indirect selection trait (on which selection is applied) and of 

the target trait, respectively, rg is the genetic correlation estimated between the indirect trait 

and the target trait and σP2 is the phenotypic standard deviation of the target trait. Finally, the 

real genetic gain was scaled back to the percent body weight units by multiplying ΔG by the 

real mean fillet yield in the present experimental stock (50%). The selection intensities were 

set up of 10% and 30%, with 10 sibs per family in FSS as the most practical intensities for 

potential common carp breeding program. 

 

3. Results 

3.1 Representation of families 

The 1553 fish used in this study arise from 197 full-sib families. The number of progeny per 

sire varied from 14 to 79, the average was 39. The number of progeny per dam varied from 25 

to 128, the average was 78.  

 

3.2 Slaughter yields percentage 

Percentage of headless carcass was 66% ± 2.19 and fillet yield was 50% ± 1.95. Such values 

were higher than usual values in common carp, most likely due to the specific experimental 

processing which was different from the commercial one but more valuable for studying the 

variation in the biological characteristics of the traits. 

 

3.3 3D morphology and prediction equations of slaughter yields 

A graphical visualization of body and ventral part morphology associated to low (blue 

line) and high (red line) yield for Logr_hl-Carss and Logr_Fill is shown in Fig. 2. The greatest 
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differences were observed on the abdominal part of the fish and on the head. Fish with higher 

yields present a lower ventral area, mainly under the dorsal fin, and also have a smaller head 

area.  

The most informative morphological predictors (3D_P1-7) included into two prediction 

equations (3DMod_hl-Carss and 3DMod_Fill), and their R2 and Fisher test values (F) are 

listed in Table 1. The selected 3D morphological landmarks (1-15) of carp body are shown on 

Figure 1.  

Logr_hl-Carss was best predicted with a model combining five simple predictors 

(3D_P2, 3D_P3, 3D_ P4, 3D_P5, 3D_P6). 3D_P2 = the ratio of abdominal fillet thickness (E8) 

to height between the lateral line and the aligned ventral point 7-8; 3D_P3 = 3D area between 

2-3-7-10-11-6 divided by 3D area 3-4-5-8-9-10-7; 3D_P4 = volume between 2-3-7-10-11-6 

divided by volume 3-4-5-8-9-10-7, 3D_P5 = width at point 7 divided by width at point 4 and 

3D_P6 = width at point 10 divided by width at point 4.  3DMod_hl-Carss explains 59.2% 

(R2CV = 58.8%) of total phenotypic variation in Logr_hl-Carss.  

Logr_Fill was best predicted by a model combining four predictors. Two of them were 

the same as for Logr_hl-Carss (3D_P2, 3D_P6) and the different ones were 3D_P1 = 3D head 

area divided by total area (except the 14-15-12-13) and 3D_P7 = volume between 6-11-10-7 

divided by volume 7-10-9-8. 3DMod_Fill explains 49.6% (R2CV = 49.3%) of total 

phenotypic variation of Logr_Fill. 

 

3.4 Heritability estimates and genetic correlations 

 Heritability estimates of the single predictors (3D_P1 – 3D_P7), Logr slaughter yields 

(Logr_hl-Carss and Logr_Fill) and model-predicted slaughter yields (3DMod_hl-Carss and 

3DMod_Fill) are given in Table 2. All heritabilities were significantly different from zero and 

achieved moderate to high values in the range of 0.29 – 0.66.  Heritability estimates and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

genetic correlations of yield-related phenotypes (BW, % Fat, FC, RelBH, RelHL) are detailed 

in Prchal et al. 2018a. 

 The genetic correlations between individual predictors, Logr and 3DMod slaughter 

yields are listed in Table 2. 3D_P1 was highly negatively correlated to 3D_P6 (rg = -0.70). 

3D_P3 and 3D_P4 were highly correlated to each other (0.98) as well as to 3D_P7 (rg = 0.87, 

0.85, respectively). Besides, 3D_P3 and 3D_P4 were also negatively genetically associated to 

3D_P5 and 3D_P6. Moreover, 3D_P5 and 3D_P6 were in moderately high genetic relationship 

(rg = 0.73). Only 3D_P1, 3D_P2 and 3D_P6 achieved favourable genetic relationship with 

Logr slaughter yields (rg = |0.44 – 0.80|). Likewise, 3D model-predicted slaughter yields 

showed high genetic associations to the real yields to be predicted (rg = 0.84 – 0.88). Besides, 

residual weights to be predicted (Logr) as well as model-predicted (3DMod) slaughter yields 

were highly correlated to each other (rg = 0.84 – 0.97). 

 The genetic correlations of yield-related phenotypes to the most informative simple 

predictors   and 3D model-predicted yields are presented in Table 3. The predictors 3D_P1 and 

3D_P6 were in absolute values in the same genetic pattern to all yield-related phenotypes. 

Thus, these predictors were genetically related to lower BW and FC (low correlation), RelBH 

(medium correlation) and RelHL (strong correlation). Oppositely, selecting for such 

predictors might lead to a slightly higher muscle fat (rg = |0.31 – 0.37|). 3D_P2 was not 

significantly correlated to BW, FC and RelBH but was also positively genetically associated 

to % Fat and negatively but at the edge of significance with RelHL. Regarding model-

predicted yields, genetic correlations were similar to 3D_P1 and 3D _P6 predictors but 

generally stronger for 3DMod_Fill especially in relation to BW, FC (insignificant for 

3DMod_hl-Carss) and RelHL (rg = -0.47 vs. -0.67, respectively).  

 

3.5 Expected genetic gain 
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Expected genetic gains (Table 4.) were calculated for fillet yield and compared among 

mass (MS), full-sib (FSS) and indirect selection (IS) scheme using 3D model (3DMod_Fill) 

and 3D single predictors (3D_P1 – 3D_P7).Genetic gain calculated for hypothetical mass 

selection (MS) was 0.70% (10% selection intensity) and 0.46% (30% selection intensity) per 

generation. Genetic gain for full-sib selection (FSS) with 10 sibs selected per family (10% and 

30% selection pressure) was slightly lower (0.61% and 0.40%) than for MS. Estimated 

genetic gain achieved by indirect selection on the 3D model-predicted fillet yields 

(3DMod_Fill) was 0.65% and 0.43% for 10% and 30% selection intensity, respectively. 

Genetic gains of the most effective 3D predictors (3D_P1, 3D_P2 and 3D_P6) ranged from 

0.27% to 0.47%. Other predictors showed much lower values (0.01% – 0.19%). Relative 

genetic changes of yield-related traits were calculated for fillet yield improvement using IS 

scheme (Supplementary Table S2). 

 

4. Discussion  

In the present study, we showed i) favourable phenotypic prediction accuracy of real 

slaughter yields, ii) moderate to high heritability estimates of simple 3D predictors and 3D 

model-predicted yields; iii) strong genetic correlations of 3D predictors / models with the real 

slaughter yields suggesting that the indirect selection could be strong enough to be used in 

genetic improvement of slaughter yields. Moreover, iv) potential genetic gain based on 

indirect selection of the 3D model (3DMod_Fil) was similar to that achieved by previously 

developed 2D model (2DMod_Fil) (Prchal et al., 2018a), however, best individual 3D 

predictor – 3D_P2 (E8/ 3D height in the ventral part) achieved less favorable genetic 

parameters than the same predictor in 2D – 2D_P2 (E8/ 2D height) (Prchal et al., 2018a). 

Still, 3D models / predictors have a solid potential for genetic improvement of slaughter 

yields in common carp as they are much faster evaluated on live breeding candidates, so that 
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breeding program would be simple, efficient and sustainable, compared to previously used 

methods of external and internal measures (Cibert et al., 1999; Bosworth et al., 2001; Rutten 

et al., 2004; Van Sang et al., 2009; Haffray et al., 2013; Vandeputte et al., 2017; Prchal et al., 

2018a).   

The 3D model-predicted yields explained 59% of the phenotypic variation in the real 

headless carcass yield, and 50% in real fillet yield. Accuracy to predict headless carcass yield 

using 3D was slightly lower than the accuracy in a previous study (63%) that used 2D and 

ultrasound measurements (Prchal et al., 2018a). Yet, prediction accuracy of 3D and 

ultrasound values for fillet yield prediction was equal to 2D and ultrasound recording in 

common carp (Prchal et al. 2018a) but higher than in rainbow trout (Haffray et al., 2013) and 

European sea bass (Vandeputte et al., 2017). So, model-predicted yields using 2D or 3D 

showed almost similar phenotypic prediction accuracy of real slaughter yields in common 

carp, explaining 49% – 63% of phenotypic variation. Nevertheless, in common carp headless 

carcass yield was only predicted using three simple 2D predictors (Prchal et al., 2018a) but 

the best models of headless carcass yield used six predictors in rainbow trout (Haffray et al., 

2013), nine predictors in European sea bass (Vandeputte et al., 2017) and five predictors in 

present study. It might have been caused by different digitization procedure between 2D and 

3D, as the previous 2D study in carp involved additional landmarks in the caudal part (Prchal 

et al., 2018a). So, comparison between 2D and 3D predictions might be affected by the 

number of landmarks digitized (15 in 3D vs. 20 in 2D) as more landmarks may lead to more 

precise measurements (especially areas) but on the other hand require more time for 

acquisition. Yet, the time required for post processing of morphological 2D landmarks and the 

lack of information on body width are the main limitations of 2D prediction. Moreover, 

Logr_Fill could be predicted only with 4 predictors using 3D instead of 5 2D predictors in 

Prchal et al. (2018a) and 6 predictors in Vandeputte et al. (2017), suggesting a simplified 
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model of fillet yield using 3D digitization. 3D model-predicted yields have generally a strong 

prediction accuracy similar to 2D models, but 3D predictions are more practical for using in 

the field on a large sample of fish, due to the possibility to acquire data in real time. On the 

other hand, the initial cost of 3D digitizer is higher than collection of 2D images by camera 

(10,000 € vs 1,000 €). However, when taking into account time required for post processing 

by one skilful person (almost one month), the return on this investment and practical use of 

such device is fast and clear. Briefly, during own recording it takes about 1.5 min. of skilful 

person to get 3D coordinates and no further post-processing is required. To have 2D picture it 

takes about 1 min. (correct positioning of fish to take an informative picture, checking the 

result) and further 1 min. to process the image later. So, 2D is about 30 s slower than 3D. 

However, the most important is that 3D coordinates we have immediately and can select the 

fish directly during one manipulation, meanwhile when using 2D we need to manipulate with 

all fish again later to select proper candidates. It represents further time and more stress for 

fish (two manipulations, longer short-term storage of fish in tanks). So, being able to select 

the fish during one manipulation is a crucial task. However, both 2D and 3D model-predicted 

yields rely on precise coefficients for linear combination of predictors. So, directly evaluating 

the potential of simple predictors is therefore potentially much simpler for practical indirect 

selection. 

Heritability estimates of 3D model-predicted yields were high (0.46 for hl-Carss and 

0.56 for fillet) and slightly lower than the estimates predicted using 2D digitization (0.48, 

0.63, respectively; Prchal et al., 2018a). Yet, the heritability estimates for 3D traits were 

higher when compared to other fish species (Van Sang et al., 2012; Haffray et al., 2013; 

Vandeputte et al., 2017). Predicted yields of both 2D and 3D models were strongly genetically 

correlated to the real yields (0.84 – 0.88), showing their strong potential for indirect selection 

to improve edible part yields. It is also necessary to know the genetic correlations between the 
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selected yield traits with other traits such as growth, body composition and fish welfare traits, 

as these traits may be changed indirectly by selection on yield traits. Some examples can be 

clearly seen in the previous studies that focused on improvement of yield that would 

indirectly lead to degradation of the flesh quality in cattle (Feitosa et al., 2017) and in 

common carp (Prchal et al., 2018c), pulmonary disease in broiler chicken (Hocking, 2010; 

Muir et al., 2014) or loss of flavour in tomatoes (Tieman et al., 2017).  

In this study, we observed that selecting for 3D model-predicted yields would 

indirectly lead to several undesirable impacts similarly as in case of 2D-based predictors 

(Prchal et al., 2018a). Thus, such selection would more likely increase muscle fat, slightly 

decrease body weight and cause fast change to an oblong-like body shape with a limited head 

size. A similar negative effect was also observed in other studies as a genetic consequence of 

the selection for improved slaughter yields (Kocour et al., 2007; Nguyen et al., 2010; Haffray 

et al., 2012; Janhunen et al., 2017; Fraslin et al., 2018). However, such changes could lead to 

negative fitness effects in a long-term breeding program (Fraslin et al., 2018). Therefore, 

these undesirable genetic relationships must be accounted for when breeding goal would be 

focused on increased slaughter yields. 

Yields predicted by multitrait models are constructed from several simple individual 

predictors and the collection of all of them requires time and precision of measurements. Our 

results showed that recording of suitable individual predictors seems to be efficient for a 

simplified breeding program. Seven individual predictors from which the yield predictors 

were estimated achieved moderate to high heritability (0.29 – 0.66). Three of them (3D_P1, 

P2, P6) could be eventually used in a breeding program due to their high heritabilities (h2 = 

0.44 – 0.66) and significant genetic correlations with the Logr yields (rg = |0.44 – 0.80|). In 

addition, 3D_P1 and 3D_P2 are the same morphological predictors as the previous 2D 

predictors 2D_P1 and 2D_P2 differing only in a way of digitization (Prchal et al., 2018a). 
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The best simple predictor seems to be 3D_P2 (ratio between abdominal fillet thickness 

– E8 and external ventral height measured between points 7-8 in 3D), similar to 2D predictor 

P2 in Prchal et al. (2018a) and ratio of E8 to E23 (depth of the peritoneal cavity) in rainbow 

trout (Haffray et al., 2013). 3D_P2 is a highly heritable predictor, has genetic association to 

edible part yields showing its strong potential to be used in a breeding program as “quick-to 

measure” indirect selection criterion for improvement of yields in common carp. In addition, 

selection for that predictor would not lead to such significant decrease on head size and 

general body shape as in case of selection on 3D model predicted yields. On the other hand, 

both yield models and simple predictors are positively genetically correlated to muscle fat. 

Hence, a selection program focused on improvement of slaughter yields should check muscle 

lipid level and eventual change of feeding strategy would be necessary to keep high flesh 

quality with respect to beneficial fatty acids (Prchal et al., 2018c). 3D_P1 as well as 2D_P1 are 

defined as a ratio between head area to total body area with a negative genetic correlation to 

the real yields. Nevertheless, 3D_P1 has a higher heritability than 2D_P1 (h
2 = 0.50 vs. 0.34 in 

2D) and is also more correlated to Logr yields (rg = -0.54 – -0.59 vs. -0.52 – -0.57 in 2D). 

3D_P6 (width at point 10 divided by width at point 4) was a new simple predictor with very 

high heritability (0.66) and favourable genetic relationship to the slaughter yields (0.44 – 

0.58). However, selection based on these simple predictors could indirectly lead to several 

unwanted changes similarly like in case of selection on 2D/3D yield models already discussed 

above. Therefore, the use of predictors in a selection index including shape and fat content 

would be a suitable breeding scenario to avoid a negative impact of indirect selection for fillet 

yield on other traits of interest. 

The calculations of expected genetic gains showed that 3D model-predicted yields or 

simple predictors are interesting candidates for a selection program. The highest genetic gain 

in fillet yield was observed by hypothetical mass selection (MS) on real fillet yield (0.70% for 
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10% selection intensity). Such selection method is typically used as benchmark value to 

compare with other selection schemes, though it is not possible in the breeding program. 

Slightly lower genetic gain was observed using sib selection (FSS) on real fillet yield, a 

typical approach applied for traits requiring destructive recording (slaughter yields, meat 

quality) or disease resistance (Gjedrem, 2010). However, costs for FSS are higher and in our 

case cover also parentage assignment and processing costs of sib groups. Thus, our work 

confirm that indirect selection may be an interesting alternative to establish a lower cost and 

sustainable breeding program. Indeed, indirect selection on 3D model-predicted fillet yields 

showed even better genetic progress than FSS. This result was also in accordance with 

previous 2D fillet model yields (Prchal el., 2018a) that showed the same expected response to 

selection. However, main limitations of using model-predicted yields in a breeding program 

have been already discussed above. Expected genetic gains of simple predictors were 

generally lower than from 2D or 3D fillet yield models but still significant enough to be 

included in a selection program. 3D_P1 achieved a better gain than the same predictor in 2D 

(0.41% vs. 0.33%). Alternatively, new 3D_P6 predictor was better for genetic progress than 

3D_P1 but these predictors are genetically related to unfavourable consequences that might be 

considered as reasonable biological limits in a long-term breeding program. The best genetic 

progress using a simple predictor would be obtained by 3D_P2 (0.48%), similarly to our 

previous 2D experiment where the gain was even higher (0.52%) (Prchal et al., 2018a). 

Moreover, this predictor is more favourably genetically connected to other phenotypes and 

easy and especially quick to record in the field and thus a very practical simple trait for 

indirect selection of slaughter yields in common carp.   

 

5. Conclusions 
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The accuracy of the phenotypic prediction of slaughter yields by 3D models is high 

and almost similar to 2D prediction models. Likewise, expected genetic progress to be 

obtained by selection on model-predicted yields and on the best individual predictor (3D_P2) 

were similar or only slightly lower when compared to the 2D-based models and the best 2D 

simple predictor (Prchal et al., 2018). In conclusion, model-predicted yields and especially 

simple 3D predictors have a solid potential for genetic improvement of slaughter yields in 

common carp. While such predictors are not better than 2D predictors, they are much more 

convenient and faster to collect in the field, as they do not imply post-processing of images. 

These practical aspects should be taken into account in the future carp breeding program and 

we expect to verify the applicability of such predictors in a practical selection response 

experiment. 
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Tables 

Table 1: Multiple linear regression models to predict Logr headless carcass and Logr fillet 

yields in common carp including predictors characteristics, regression statistics R2, F - Fisher 

test value and prediction equations. 

Headless carcass yield 3D model Predictor characteristics 

3D_P2 Ratio between E8 and 3D height between points 7-8 

3D_P3 
3D area between 2-3-7-10-11-6 divided by area 3-4-5-

8-9-10-7 

3D_P4 
Volume between 2-3-7-10-11-6 divided by volume 3-

4-5-8-9-10-7 

3D_P5 Width at point 7 divided by width at point 4 

3D_P6 Width at point 10 divided by width at point 4 

Regression statistics: R
2
 = 0.59, F = 449.7 

3DMod_hl-Carss = -0.18 + 5.88 3D_P2 + 0.21 3D_P3 - 

0.13 3D_P4 - 0.02 3D_P5 + 0.09 3D_P6  

Fillet yield 3D model Predictor characteristics 

3D_P1 
3D head area divided by total area (except the 14-15-

12-13) 
3D_P2 Ratio between E8 and 3D height between points 7-8 
3D_P6 Width at point 10 divided by width at point 4 

3D_P7 
Volume between 6-11-10-7 divided by volume 7-10-9-

8 

Regression statistics: R
2
 = 0.49, F = 381.9 

3DMod_Fill = -0.10 - 0.46 3D_P1 + 5.88 3D_P2 + 

0.11 3D_P6 + 0.02 3D_P7  
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Table 2: Heritability (± standard error) estimates (diagonal) in bold, phenotypic (below the diagonal) and genetic correlations ± standard error 
(above the diagonal) in common carp for simple predictors (3D_P1 – 3D_P7), log-log residuals (Logr) of slaughter yields and 3D models (Mod) 
to predict slaughter yields. 

 
3D_P1 3D_P2 3D_P3 3D_P4 3D_P5 3D_P6 3D_P7 

Logr_hl-

Carss 
Logr_Fill 

3DMod_hl-

Carss 
3DMod_Fil 

3D_P1 
0.50 ± 
0.08 

-0.25 ± 0.15 0.27 ± 0.15 0.38 ± 0.14 -0.46 ± 0.12 -0.70 ± 0.08 0.17 ± 0.16 
-0.54 ± 

0.11 
-0.59 ± 

0.10 
-0.47 ± 0.12 -0.72 ± 0.08 

3D_P2 -0.07 0.44 ± 0.08 -0.02 ± 0.16 -0.09 ± 0.16 -0.25 ± 0.15 0.18 ± 0.15 0.12 ± 0.16 
0.80 ± 

0.06 

0.73 ± 

0.08 
0.93 ± 0.02 0.80 ± 0.06 

3D_P3 0.15 0.25 0.39 ± 0.07 0.98 ± 0.01 -0.39 ± 0.14 -0.41 ± 0.13 0.87 ± 0.05 
-0.10 ± 

0.16 

-0.19 ± 

0.16 
-0.07 ± 0.16 -0.22 ± 0.15 

3D_P4 0.17 0.21 0.95 0.42 ± 0.08 -0.44 ± 0.13 -0.51 ± 0.12 0.85 ± 0.05 
-0.20 ± 

0.16 
-0.29 ± 

0.15 
-0.17 ± 0.16 -0.33 ± 0.15 

3D_P5 -0.41 -0.06 -0.17 -0.22 0.48 ± 0.09 0.73 ± 0.08 -0.37 ± 0.14 
-0.01 ± 

0.16 
0.17 ± 
0.15 

-0.01 ± 0.16 0.23 ± 0.15 

3D_P6 -0.49 0.15 -0.16 -0.19 0.56 0.66 ± 0.09 -0.25 ± 0.15 
0.44 ± 

0.12 

0.58 ± 

0.10 
0.49 ± 0.12 0.69 ± 0.08 

3D_P7 0.09 0.30 0.63 0.70 -0.19 0.02 0.29 ± 0.06 
0.05 ± 

0.16 

-0.03 ± 

0.16 
0.12 ± 0.16 -0.01 ± 0.16 

Logr_hl-Carss -0.23 0.65 0.21 0.14 0.05 -0.23 0.22 
0.46 ± 

0.08 

0.97 ± 

0.01 
0.86 ± 0.04 0.85 ± 0.05 

Logr_Fill -0.38 0.54 0.04 0.01 0.19 -0.38 0.17 0.77 
0.50 ± 
0.08 

0.84 ± 0.05 0.88 ± 0.04 

3DMod_hl-
Carss 

-0.18 0.94 0.30 0.20 0.05 -0.18 0.30 0.70 0.60 0.46 ± 0.08 0.94 ± 0.02 

3DMod_Fil -0.53 0.83 0.12 0.08 0.26 0.53 0.26 0.66 0.67 0.90 0.56 ± 0.09 
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Table 3: Genetic correlations ± standard error between most informative simple predictors, 

3D model-predicted yields and yield-related traits 

 3D_P1 3D_P2 3D_P6 3DMod_hl-Carss 3DMod_Fil 

rg BW 0.36 ± 0.13 -0.10 ± 0.15 -0.32 ± 0.13 -0.21 ± 0.14 -0.30 ± 0.14 
rg FC 0.47 ± 0.11 -0.05 ± 0.14 -0.36 ± 0.12 -0.18 ± 0.13 -0.30 ± 0.13 

rg % Fat -0.37 ± 0.13 0.37 ± 0.13 0.31 ± 0.13 0.43 ± 0.13 0.49 ± 0.11 
rg RelBH 0.50 ± 0.11 -0.13 ± 0.13 -0.51 ± 0.10 -0.31 ± 0.13 -0.43 ± 0.11 
rg RelHL 0.86 ± 0.04 -0.27 ± 0.13 -0.61 ± 0.08 -0.47 ± 0.11 -0.67 ± 0.08 
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Table 4: Genetic gains (in percent body weight units) per generation with two selection 

intensities (% selected – 10%, 30%) using mass (MS), full sib (FSS), and indirect (IS) 

selection for fillet yield improvement. 

Trait selected Type of selection Genetic gain (10%) Genetic gain (30%) 

Logr_Fill MS 0.70 0.46 
Logr_Fill FSS 0.61 0.40 

3DMod_Fill IS 0.65 0.43 
3D_P1 IS 0.41 0.27 
3D_P2 IS 0.48 0.32 
3D_P3 IS 0.12 0.08 

3D_P4 IS 0.19 0.12 

3D_P5 IS 0.09 0.06 

3D_P6 IS 0.47 0.31 
3D_P7 IS 0.02 0.01 

2DMod_Fill IS 0.66 0.43 
2D_P1* IS 0.33 0.22 
2D_P2* IS 0.52 0.34 

                   * cited from Prchal et al., (2018a) 
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Figure Captions  

Figure 1: 3D landmarks place on each carp. 

1: head extremity; 2: end of the head beginning of the fillet on the back; 3: intersection 

between opercula and lateral line; 4: opercula at the maximum length from the landmark 1; 5: 

end of the head beginning of the fillet on the ventral part; 6: beginning of the dorsal fin; 7: 

intersection between the lateral line and the vertical of landmark 6; 8: intersection of the 

ventral part and the vertical of point 7; 9: beginning of the anal fin; 10: intersection between 

lateral line and vertical of point 9 towards the carp back; 11: vertical of point 10 on the back; 

12: end of anal fin; 13: intersection of lateral line and vertical of 12; 14: vertical of point 13 

on the carp back; 25: end of the caudal fin at the fork. 

 

Figure 2: A graphical visualization of body and ventral part morphology associated to 

low (blue line) and high (red line) yield for Logr_hl-Carss (A, B) and Logr_Fill (C, D) 
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Figures 

Figure 1 
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Figure 2A 
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Figure 2B 
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Figure 2C 
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Figure 2D 
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Highlights 

 We studied combination of 3D digitized landmarks and ultrasound measurements 

 3D collection of morphological landmarks do not imply post processing of images 

 Genetic parameters of 3D model/simple predictors were solid 

 Future carp breeding strategies have been suggested 
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