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Abstract :

Slaughter yields are traits of high interest especially for fish species sold in processed form like headless
carcass or fillets, as well as with regard to increasing consumer preference for easy-to-prepare fish
products. However, slaughter yields cannot be measured on live fish and thus their genetic improvement
through mass selection is impossible. The usual alternatives are sib selection and/or indirect selection on
correlated traits or morphological predictors of slaughter yields. In the present study, we assessed the
possibility of using a combination of 3D digitized landmarks and ultrasound measurements in genetic
improvement of slaughter yields in common carp. DNA — pedigreed market-size carp (n = 1553 fish) were
produced from a partial factorial design of 20 dams and 40 sires. Morphological predictors were recorded
in real-time using a 3D digitizer and ultrasound tomography, and combined by multiple linear regression
to predict slaughter yields. The 3D model-predicted headless carcass and fillet yields explained 59% and
50%, respectively, of the total phenotypic variation in slaughter yields. Genetic parameters of model-
predicted yields and of the best individual predictor (3D_P2 — ratio between abdominal fillet thickness —
E8 and external 3D ventral height) were similar or slightly lower when compared to previous 2D-based
predictors (Prchal et al., 2018a, 2018b, 2018c). This was also the case for the expected genetic gain
using indirect selection on the same simple predictor for fillet yield improvement (0.48% fillet units for 3D
vs. 0.52% for 2D). 3D model-predicted yields and especially simple predictors thus have a solid potential
for genetic improvement of slaughter yields in common carp. While they are not better than 2D predictors,
they are much more convenient and faster to collect in the field, as they do not imply post-processing of
images. These practical aspects should be taken into account in the future carp breeding program.
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Highlights

» We studied combination of 3D digitized landmarks and ultrasound measurements. » 3D collection of
morphological landmarks do not imply post processing of images. » 3D models / predictors have a solid
potential for genetic improvement of slaughter yields. » Future carp breeding strategies have been
suggested.
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1. Introduction

Fish traits defined as ratio of inputs and outputs (such as feed efficiency), or ratio of
edible high-valued biomass relative to total fish weight (such as fillet yield) are fundamental
efficiency-related traits for aquaculture operations. They are of high economic value
(Kankainen et al., 2016), yet tricky to measure and include in .> eeding programs (Haffray et
al., 2013; Vandeputte etal., 2017; De Verdal et al., 2018; Frac'in ¢tal., 2018).

Slaughter yields are traits of high interest especicily *: fish species sold in processed
form like headless carcass or fillets (Kankainen et al, 2016), as well as with regard to
increasing consumer preference for easy-to-prepe.e fish products (FAO, 2018). However,
slaughter yields cannot be measured or. ‘ve fish and consequently genetic improvement
through mass selection on live breeding ca.lidates is impossible. Similarly, the potential for
marker-assisted selection (MAS) 1. s ificantly limited due to the polygenic structure of
slaughter yields in fish species (7 -ai ec al., 2015; Gonzalez-Pena et al., 2016; Yoshida et al.,
2019). Yet, genomic selection Mignt be seen as future possibility for the genetic improvement
of yields, as it allows a L atter precision on sib-recorded traits (Yoshida et al., 2019). However,
genomic selection is stil' .00 costly and thus useful only for fish species with well-developed
breeding programs e.g. Atlantic salmon (Salmo salar) or rainbow trout (Oncorhynchus
mykiss) (Robledo et al, 2017) and for common carp (Cyprinus carpio or Cyprinus
rubrofuscus) there is no available commercial SNP assay for such trait. Presently, edible part
yields are commonly genetically improved by sib selection or by indirect selection via traits
which are genetically correlated to slaughter yields (Kause et al, 2007; Gjedrem, 2010).
Morphological predictors of slaughter yields based on non-destructive recording of external

2D landmarks and internal measures using ultrasound tomography could be an effective



option to select for improved vyields, as they can be used on the candidates without need for
(costly) sib or genomic information (Cibert et al., 1999; Bosworth et al., 2001; Rutten et al.,
2004; Van Sang et al, 2009; Haffray et al., 2013; Vandeputte et al., 2017; Prchal et al.,
2018a).

Common carp is an important fish species in world aquaculture, though its breeding
programs are mainly focused on utilization of heterotic effect by crossbreeding (Vandepuitte,
2003; Janssen et al., 2017). This is the case despite the evidence for high genetic potential in
using additive effect by genetic selection (Vandeputte et al 2c?4; Kocour et al., 2007;
Vandeputte et al., 2008; Nielsen et al., 2010; Ninh et al., «u’1; Ninh et al, 2013; Hu et al.,
2017; Prchal et al, 2018b). In a previous studv w*h common carp, we investigated
phenotypic and genetic potential of slaughter yield praawctors based on 2D image analysis and
ultrasound measurements, and their use in carn = cerding programs (Prchal et al., 2018a). We
observed a high accuracy of predictors ¢d . favourable genetic relationship to the real yields.
However, digitization of 2D landmaii's requires post processing of images and cannot
measure variation in body width. So, this method is at the same time incomplete and time
consuming, which is a mcior technical limitation for practical breeding programs.
Alternatively, 3D collection ~f body landmarks could speed up digitization of potentially
relevant morphological .euwtors and take into account the variability of carp body width. A
variety of 3D imagery systems have been used in pigs (Tillett et al., 2004), chickens
(Mortensen et al., 2016) and cattle (Cappai et al., 2019; Le Cozler et al., 2019). Moreover, 3D
digitizers like the MicroScribe (Solution Technologies Inc, Oella, MD, USA) are often used
for research related to direct 3D morphological digitization of animal skeletons (Drake, 2011;
Owen et al., 2014; Hanot et al, 2017). However, their potential for real time digitization of

slaughter yield predictors directly on live fish has never been studied.



In the present study, a 3D digitizer was used to collect landmarks on the fish body,
instead of 2D digitizing from post-processing images. Thus, we aimed to i) determine the best
morphological predictors of slaughter vyields using combination of 3D landmarks and
ultrasound imagery, ii) estimate genetic parameters of slaughter yield predictors and their
association to the real yields, and iii) predict and compare expected genetic gain in response
to selection for slaughter yield predictors based on 2D and 3D measurements and their

practical implication in the carp breeding program.

2. Material and Methods
2.1 Ethics statement

The methodological protocol of the c.aret study was approved by the expert
committee of the Institutional Animal Ca:» a'd Use Committee (IACUC) of the University of
South Bohemia (USB), Faculty of Fis..~ries and Protection of Waters (FFPW) in Vodnany
according to the law on the protertior < f animals against cruelty (Act no. 246/1992 Coll., ref.
number 160Z719179/2016-172'4). At market size the fish were humanely euthanized by

trained person for subsequen. nrocessing and slaughter yield evaluation.

2.2 Production and rearing of experimental stock

The fish are the same as those used in Prchal et al. (2018a). In short, an experimental
stock of Amur mirror carp was produced at the Genetic Fishery Centre of University of South
Bohemia (USB) in Ceské Bud&jovice, Faculty of Fisheries and Protection of Waters (FFPW)
in Vodnany, Czech Republic. Twenty dams and forty sires were propagated and crossed in a
partial factorial design with four series of 5 dams and 10 sires. Each parental fish was DNA

sampled (fin tissue) for later parentage assignment of the offspring fish. At the swimming



stage, the experimental stock was created by pooling equal volumes of larvae. These larvae
were released (150,000 larvae. ha™) to the prepared nursery ponds at the Klatovy fish farm
and reared communally in ponds under a semi-intensive culture system typical for Central
Europe. At one-year old, a random sample of 3000 fish from one pond (50% survival, mean
weight £ SD = 15.8 + 4.7 g) was anesthetized with 2-phenoxyethanol (0.5 ml per 1 | of water)
and individually marked by PIT-Tags and DNA sampled for parentage assignment. The fish
were harvested after the second growing period and the second overwintering. In October
2016 the stock (mean weight = 1910 g) was harvested and mwed to a storage pond before
final traits recording at fish slaughter house of USB FFr’ m Ceské Budgjovice, Czech
Republic. A total of 1622 individuals were humanely kil by a hit on the head and bled by
cutting the gills according to the law on the protertic. of animals against cruelty (Act no.

246/1992).

2.3 Final data collection

Briefly, as previously reported (rchal et al., 2018a), 1622 fish were phenotyped for
total length (TL), standard leng:n (So), body length (BL), head length (HL), body height (BH)
and body width (BWI) with cn n-house electronic ruler (to nearest 0.1 mm), and body weight
(BW) was recorded w. ait electronic scale (to nearest 0.1 g). To describe the shape of the
body, the head and the lateral line, a total of 15 coordinates (Figure 1.) of morphological
points were digitized in 3 dimension (X,Y,Z) using a 3D digitizer (MicroScribe G2LX)
connected to a computer, to which raw data were exported and stored in real time with a
home-made software. The 11 landmarks and 4 semi landmarks (point 7, 10, 11 and 13) were
chosen to be both easy to collect based on anatomical features (nose, operculum, fin, anus,

lateral line) and evenly distributed all along the body to describe the whole body shape.



Four muscular thicknesses from anterior (E4), intermediate (E5, E8) and posterior
(E6) were collected using ultrasound imagery (Hospimedi LC1000, 7.5 MHz). For more
details see Haffray et al. (2013) and Vandeputte et al. (2017) that preceded this study.

The total muscle fat content (% Fat) was recorded using a Fish Fatmeter FM 692
(Distell Ltd., UK), using calibration option 'CARP — 1'. Biometrical indicators were calculated
as Fulton’s condition factor: FC = 10° * [BW (g) / SL® (mm)], relative body height: RelBH =
BH / SL, and relative head length: RelHL = HL / SL. After biometric recordings, each fish
was processed and the following body portions were weirheu (to nearest 0.5 @): head,
left fillet, viscera, gonad, left fillet skin, half carcass, le’c et ribs + trimmings, fins and
scales. The weight of slaughter body parts and vertehra, axis was created by combining the
previous body portions: headless carcass weight [h-CaicsW = left fillet + left skin + left ribs
and trimmings + half carcass], fillet weight with “«ir, [FilletW = (left fillet + left fillet skin) *
2]. The slaughter yields expressed in % were calculated as: headless carcass yield % [% hl-
Carss = (hl-CarssW / BW) *100], anu fillet yield [% Fill = (left fillet + left skin) * 2 / BW *
100]. The natural logarithm was ca~'ated for the weight of each slaughtered part and
regressed on the logarithm of hoay weight to obtain growth-independent allometry residuals
in order to provide gereu> and phenotypic parameters giving reasonable estimates of
predicted gains in slauyter yield (Gunsett, 1984, 1987; Vandeputte et al., 2014). Therefore,
for % headless carcass and % fillet yield, the surrogate traits are defined as log-log residuals
(Logr) and termed as Logr_hl-Carss and Logr_Fill, respectively. In addition, logarithm of
weight of all body portions was regressed on the logarithm of body weight to visualize body

allometry (See Supplementary Material in Prchal et al., 2018a).

2.4 3D morphology and prediction models of slaughter yields



The association of the variation in carp morphology to the variation in processing
yields was analysed using the MorphoJ software (Klingenberg, 2011) as described previously
in Prchal et al. (2018a) but using 3D landmarks coordinates instead of 2D. The wireframe
visualization was performed on the side (X and Y) and dorsal (X and Z) view of the fish. The
R Package ‘geometry’ was used to calculate areas and volumes from 3D coordinates raw data.
A multiple linear regression using the reg.best function of the FactoMineR of R software
package was performed using external morphology descriptors, ultrasound measurements and
fat meter value as independent variables and the Logr_hl-Cares cnd Logr_Fill as dependent
variables. List of predictors calculated and initially incluceu n the multiple linear regression
are shown in Supplementary Table S1.

The best prediction model identification correspuds to those with the highest R? and
F-value. The models were used to calculate the ar~dicted yield values for each fish that are
termed as Mod_hl-Carss for headless ce cas. yield and Mod_Fill for fillet yield. Models were
cross validated using the crossval funcu~n of the bootstrap package in R software (Efron and

Tibshirani, 1993).

2.5 Parental allocation

The 60 parents anu 2035 offspring were genotyped with 12 microsatellites loci at
LABOGENA-DNA, the French laboratory for livestock genotyping (ISO 170025 accredited,
Jouy-en-Josas, France). Parental allocation was performed using the AccurAssign software,

applying a maximum- likelihood method (Boichard et al., 2014).

2.6 Estimation of genetic parameters
The data set was checked for potential outliers and the final genetic model was applied

on 1553 individuals assigned to a single parental pair with a complete set of variables.



Heritability (h?), phenotypic and genetic correlations (rp, and ry, respectively) were estimated
in  multivariate mixed models using the restricted maximum likelihood method in DMU
statistical software (Madsen and Jensen, 2013). The univariate (for heritability) and

multivariate analysis (for genetic correlations) were on the following animal model:

Yijk = wit sexjj + animig + eij

Where Yija is the measured phenotypic value of each analyzed trait, pi is the overall
mean for trait i, sex;j is the fixed effect of sex (j = female, male, "nidentified sex) for trait i,
animy. is the random genetic effect of an animal k ‘v pedigree based on parentage
assignment (k = 1, 2, ..., 1553) for trait i, and e is the andom residual. Heritability estimates
were calculated as the ratio of additive genetic varience (V) divided by the total phenotypic
variance (Vp), h*> = Va / Vp. The likelihoou re.o test (LRT) was used for comparing
the goodness of fitof two models (inc’diry vs. excluding the animal genetic effect). The
heritability estimates were considereu significant when the difference of additive genetic
effect in -2Log-likelihood was higher 2.1 the threshold value for p < 0.05 of a y* distribution
with 1 degree of freedom (P: heirc and Bates, 2000). Genetic correlations were considered
significant if [ ry| - 1.96 x S.Z | was higher than zero.

The genetic gam. (AnG) per generation were estimated using the breeder’s equations
from Falconer and McKay (1996) under a mass (MS), full-sib (FSS) and indirect (IS)
selection responses for fillet yields. The theoretical genetic gain under mass selection
(although it cannot be applied in practice) was calculated as AGyw = i h? op, Where i is the
selection intensity and h® and op are the heritability and phenotypic standard deviation of the
trait under selection, respectively. The response to selection of FSS was estimated as AGp¢ =

ixop xR xnxr

Jn(1+m-1t)

correlation between sibs (r = 0.5 for full sibs) and t is the phenotypic intra class correlation (t

, Where n is the number of sibs sampled per family (n = 10), r is the genetic




= rh?). The estimated genetic gain for indirect selection criteria was calculated as AG; = i x h;
X hy X rg x opp, where AG, is the estimated genetic gain on the target trait, hy and h, are the
square roots of heritability of the indirect selection trait (on which selection is applied) and of
the target trait, respectively, rq is the genetic correlation estimated between the indirect trait
and the target trait and op, is the phenotypic standard deviation of the target trait. Finally, the
real genetic gain was scaled back to the percent body weight units by multiplying AG by the
real mean fillet yield in the present experimental stock (50%). The selection intensities were
set up of 10% and 30%, with 10 sibs per family in FSS as the most practical intensities for

potential common carp breeding program.

3. Results

3.1 Representation of families

The 1553 fish used in this study arise fom 197 full-sib families. The number of progeny per
sire varied from 14 to 79, the average v.2s 39. The number of progeny per dam varied from 25

to 128, the average was 78.

3.2 Slaughter yields percen.or,

Percentage of headless carvass was 66% + 2.19 and fillet yield was 50% + 1.95. Such values
were higher than usual values in common carp, most likely due to the specific experimental
processing which was different from the commercial one but more valuable for studying the

variation in the biological characteristics of the traits.

3.3 3D morphology and prediction equations of slaughter yields
A graphical visualization of body and ventral part morphology associated to low (blue

line) and high (red line) yield for Logr hl-Carss and Logr Fill is shown in Fig. 2. The greatest



differences were observed on the abdominal part of the fish and on the head. Fish with higher
yields present a lower ventral area, mainly under the dorsal fin, and also have a smaller head
area.

The most informative morphological predictors (3D_P;.7) included into two prediction
equations (3DMod_hl-Carss and 3DMod_Fill), and their R> and Fisher test values (F) are
listed in Table 1. The selected 3D morphological landmarks (1-15) of carp body are shown on
Figure 1.

Logr_hl-Carss was best predicted with a model combiing five simple predictors
(3D_P, 3D_P3, 3D_ P4, 3D_Ps, 3D _Pg). 3D_P;, = the rauu 91 abdominal fillet thickness (E8)
to height between the lateral line and the aligned ventra! Loint 7-8; 3D_P3; = 3D area between
2-3-7-10-11-6 divided by 3D area 3-4-5-8-9-10-7; 3L_P, = volume between 2-3-7-10-11-6
divided by volume 3-4-5-8-9-10-7, 3D_Ps = 'wm¢h at point 7 divided by width at point 4 and
3D _Ps = width at point 10 divided by wid.n at point 4. 3DMod_hl-Carss explains 59.2%
(R®CV = 58.8%) of total phenotypic va:‘ation in Logr_hl-Carss.

Logr Fill was best predicted b * 4 model combining four predictors. Two of them were
the same as for Logr_hl-Carss 3D_,, 3D_Ps) and the different ones were 3D_P; = 3D head
area divided by total area (e,~ent the 14-15-12-13) and 3D_P; = volume between 6-11-10-7
divided by volume /- 10-3-8. 3DMod _Fill explains 49.6% (R’CV = 49.3%) of total

phenotypic variation of Logr_Fill.

3.4 Heritability estimates and genetic correlations

Heritability estimates of the single predictors (3D_P; — 3D_Py), Logr slaughter yields
(Logr_hl-Carss and Logr Fill) and model-predicted slaughter yields (3DMod_hl-Carss and
3DMod _Fill) are given in Table 2. All heritabilities were significantly different from zero and

achieved moderate to high values in the range of 0.29 — 0.66. Heritability estimates and



genetic correlations of yield-related phenotypes (BW, % Fat, FC, RelBH, RelHL) are detailed
in Prchal et al. 2018a.

The genetic correlations between individual predictors, Logr and 3DMod slaughter
yields are listed in Table 2. 3D_P; was highly negatively correlated to 3D_Pg (ry = -0.70).
3D_P3 and 3D_P4 were highly correlated to each other (0.98) as well as to 3D_P7 (ry = 0.87,
0.85, respectively). Besides, 3D_P3 and 3D_P, were also negatively genetically associated to
3D _Ps and 3D _Ps. Moreover, 3D_Ps and 3D _Pg were in moderately high genetic relationship
(ry = 0.73). Only 3D_P;, 3D_P, and 3D_Ps achieved favrira.'s genetic relationship with
Logr slaughter yields (ry = |0.44 — 0.80[). Likewise, 21 model-predicted slaughter yields
showed high genetic associations to the real yields to be v ~dicted (ry = 0.84 — 0.88). Besides,
residual weights to be predicted (Logr) as well as mou~l-predicted (3DMod) slaughter yields
were highly correlated to each other (r; =0.84 -7 97).

The genetic correlations of yielc-rel.ied phenotypes to the most informative simple
predictors and 3D model-predicted yr's are presented in Table 3. The predictors 3D_P; and
3D _Ps were in absolute values i~ tl~ same genetic pattern to all yield-related phenotypes.
Thus, these predictors were ge:eticaily related to lower BW and FC (low correlation), RelBH
(medium correlation) and ReHL (strong correlation). Oppositely, selecting for such
predictors might leau . a slightly higher muscle fat (ry = |0.31 — 0.37|). 3D_P, was not
significantly correlated to BW, FC and RelBH but was also positively genetically associated
to % Fat and negatively but at the edge of significance with RelHL. Regarding model-
predicted vyields, genetic correlations were similar to 3D _P; and 3D _Pg predictors but
generally stronger for 3DMod_Fill especially in relation to BW, FC (insignificant for

3DMod_hl-Carss) and RelHL (ry =-0.47 vs. -0.67, respectively).

3.5 Expected genetic gain



Expected genetic gains (Table 4.) were calculated for fillet yield and compared among
mass (MS), full-sib (FSS) and indirect selection (IS) scheme using 3D model (3DMod_Fill)
and 3D single predictors (3D_P; — 3D_P7).Genetic gain calculated for hypothetical mass
selection (MS) was 0.70% (10% selection intensity) and 0.46% (30% selection intensity) per
generation. Genetic gain for full-sib selection (FSS) with 10 sibs selected per family (10% and
30% selection pressure) was slightly lower (0.61% and 0.40%) than for MS. Estimated
genetic gain achieved by indirect selection on the 3D model-predicted fillet yields
(3DMod_Fill) was 0.65% and 0.43% for 10% and 30% celkction intensity, respectively.
Genetic gains of the most effective 3D predictors (3D_P., 2 P, and 3D _Pg) ranged from
0.27% to 0.47%. Other predictors showed much lower values (0.01% — 0.19%). Relative
genetic changes of yield-related traits were calculatna *™r fillet yield improvement using 1S

scheme (Supplementary Table S2).

4. Discussion

In the present study, we c<hov o7 i) favourable phenotypic prediction accuracy of real
slaughter vyields, i) moderate ‘1 high heritability estimates of simple 3D predictors and 3D
model-predicted yields; ii) suary genetic correlations of 3D predictors / models with the real
slaughter yields suggesu™a wiat the indirect selection could be strong enough to be used in
genetic improvement of slaughter vyields. Moreover, iv) potential genetic gain based on
indirect selection of the 3D model (3DMod_Fil) was similar to that achieved by previously
developed 2D model (2DMod_Fil) (Prchal et al, 2018a), however, best individual 3D
predictor — 3D _P2 (E8/ 3D height in the ventral part) achieved less favorable genetic
parameters than the same predictor in 2D — 2D_P2 (E8/ 2D height) (Prchal et al., 2018a).
Still, 3D models / predictors have a solid potential for genetic improvement of slaughter

yields in common carp as they are much faster evaluated on live breeding candidates, so that



breeding program would be simple, efficient and sustainable, compared to previously used
methods of external and internal measures (Cibert et al., 1999; Bosworth et al., 2001; Rutten
et al., 2004; Van Sang et al., 2009; Haffray et al., 2013; Vandeputte et al., 2017; Prchal et al.,
2018a).

The 3D model-predicted yields explained 59% of the phenotypic variation in the real
headless carcass yield, and 50% in real fillet yield. Accuracy to predict headless carcass yield
using 3D was slightly lower than the accuracy in a previous study (63%) that used 2D and
ultrasound measurements (Prchal et al., 2018a). Yet, predicu™n accuracy of 3D and
ultrasound values for fillet yield prediction was equal t, 2U and ultrasound recording in
common carp (Prchal et al. 2018a) but higher than in ran.~ow trout (Haffray et al., 2013) and
European sea bass (Vandeputte et al, 2017). So, mcel-predicted yields using 2D or 3D
showed almost similar phenotypic prediction actracy of real slaughter yields in common
carp, explaining 49% — 63% of phenoty »ic variation. Nevertheless, in common carp headless
carcass Yield was only predicted using three simple 2D predictors (Prchal et al., 2018a) but
the best models of headless carcess ied used six predictors in rainbow trout (Haffray et al.,
2013), nine predictors in Eurc;ean sea bass (Vandeputte et al., 2017) and five predictors in
present study. It might have “e.n caused by different digitization procedure between 2D and
3D, as the previous 2L Swuy in carp involved additional landmarks in the caudal part (Prchal
et al, 2018a). So, comparison between 2D and 3D predictions might be affected by the
number of landmarks digitized (15 in 3D vs. 20 in 2D) as more landmarks may lead to more
precise measurements (especially areas) but on the other hand require more time for
acquisition. Yet, the time required for post processing of morphological 2D landmarks and the
lack of information on body width are the main limitations of 2D prediction. Moreover,
Logr_Fill could be predicted only with 4 predictors using 3D instead of 5 2D predictors in

Prchal et al. (2018a) and 6 predictors in Vandeputte et al. (2017), suggesting a simplified



model of fillet yield using 3D digitization. 3D model-predicted yields have generally a strong
prediction accuracy similar to 2D models, but 3D predictions are more practical for using in
the field on a large sample of fish, due to the possibility to acquire data in real time. On the
other hand, the initial cost of 3D digitizer is higher than collection of 2D images by camera
(10,000 € vs 1,000 €). However, when taking into account time required for post processing
by one skilful person (almost one month), the return on this investment and practical use of
such device is fast and clear. Briefly, during own recording it takes about 1.5 min. of skilful
person to get 3D coordinates and no further post-processing is rey.ired. To have 2D picture it
takes about 1 min. (correct positioning of fish to take 7. ormative picture, checking the
result) and further 1 min. to process the image later. So, 2D is about 30 s slower than 3D.
However, the most important is that 3D coordinates w. have immediately and can select the
fish directly during one manipulation, meanwhe w~b:n using 2D we need to manipulate with
all fish again later to select proper canc datrs. It represents further time and more stress for
fish (two manipulations, longer short-te.m storage of fish in tanks). So, being able to select
the fish during one manipulation is a v cial task. However, both 2D and 3D model-predicted
yields rely on precise coefficicts wr linear combination of predictors. So, directly evaluating
the potential of simple preu:~trrs is therefore potentially much simpler for practical indirect
selection.

Heritability estimates of 3D model-predicted yields were high (0.46 for hl-Carss and
0.56 for fillet) and slightly lower than the estimates predicted using 2D digitization (0.48,
0.63, respectively; Prchal et al., 2018a). Yet, the heritability estimates for 3D traits were
higher when compared to other fish species (Van Sang et al., 2012; Haffray et al, 2013;
Vandeputte et al., 2017). Predicted yields of both 2D and 3D models were strongly genetically
correlated to the real yields (0.84 — 0.88), showing their strong potential for indirect selection

to improve edible part yields. It is also necessary to know the genetic correlations between the



selected yield traits with other traits such as growth, body composition and fish welfare traits,
as these traits may be changed indirectly by selection on yield traits. Some examples can be
clearly seen in the previous studies that focused on improvement of yield that would
indirectly lead to degradation of the flesh quality in cattle (Feitosa et al, 2017) and in
common carp (Prchal et al, 2018c), pulmonary disease in broiler chicken (Hocking, 2010;
Muir et al., 2014) or loss of flavour in tomatoes (Tieman etal., 2017).

In this study, we observed that selecting for 3D model-predicted yields would
indirectly lead to several undesirable impacts similarly as in ca.» of 2D-based predictors
(Prchal et al, 2018a). Thus, such selection would mors w-ely increase muscle fat, slightly
decrease body weight and cause fast change to an oblnny like body shape with a limited head
size. A similar negative effect was also observed in rth studies as a genetic consequence of
the selection for improved slaughter yields (Kcco « <t al, 2007; Nguyen et al., 2010; Haffray
et al, 2012; Janhunen et al., 2017; Fras'n e. al., 2018). However, such changes could lead to
negative fitness effects in a long-tern. breeding program (Fraslin et al., 2018). Therefore,
these undesirable genetic relationshins rust be accounted for when breeding goal would be
focused on increased slaughter :‘elas.

Yields predicted bv ~titrait models are constructed from several simple individual
predictors and the culic>tivn of all of them requires time and precision of measurements. Our
results showed that recording of suitable individual predictors seems to be efficient for a
simplified breeding program. Seven individual predictors from which the yield predictors
were estimated achieved moderate to high heritability (0.29 — 0.66). Three of them (3D_P1,
P,, Ps) could be eventually used in a breeding program due to their high heritabilities (h® =
0.44 — 0.66) and significant genetic correlations with the Logr yields (ry = |0.44 — 0.80|). In
addition, 3D P; and 3D P, are the same morphological predictors as the previous 2D

predictors 2D_P; and 2D_P, differing only in a way of digitization (Prchal et al., 2018a).



The best simple predictor seems to be 3D _P, (ratio between abdominal fillet thickness
— E8 and external ventral height measured between points 7-8 in 3D), similar to 2D predictor
P, in Prchal et al. (2018a) and ratio of E8 to E23 (depth of the peritoneal cavity) in rainbow
trout (Haffray et al, 2013). 3D_P, is a highly heritable predictor, has genetic association to
edible part yields showing its strong potential to be used in a breeding program as “quick-to
measure” indirect selection criterion for improvement of yields in common carp. In addition,
selection for that predictor would not lead to such significant decrease on head size and
general body shape as in case of selection on 3D model predi~tey vields. On the other hand,
both yield models and simple predictors are positively renctically correlated to muscle fat.
Hence, a selection program focused on improvement nt _‘aughter yields should check muscle
lipid level and eventual change of feeding strategy wc'ld be necessary to keep high flesh
quality with respect to beneficial fatty acids (Przho« e al., 2018c). 3D_P; as well as 2D_P; are
defined as a ratio between head area to totr« body area with a negative genetic correlation to
the real yields. Nevertheless, 3D P; ha. a higher heritability than 2D _P; (h? = 0.50 vs. 0.34 in
2D) and is also more correlated tr Lo yields (rg = -0.54 — -0.59 vs. -0.52 — -0.57 in 2D).
3D_Ps (width at point 10 diviced Ly width at point 4) was a new simple predictor with very
high heritability (0.66) and fvourable genetic relationship to the slaughter yields (0.44 —
0.58). However, selkecu~n wased on these simple predictors could indirectly lead to several
unwanted changes similarly like in case of selection on 2D/3D vyield models already discussed
above. Therefore, the use of predictors in a selection index including shape and fat content
would be a suitable breeding scenario to avoid a negative impact of indirect selection for fillet
yield on other traits of interest.

The calculations of expected genetic gains showed that 3D model-predicted yields or
simple predictors are interesting candidates for a selection program. The highest genetic gain

in fillet yield was observed by hypothetical mass selection (MS) on real fillet yield (0.70% for



10% selection intensity). Such selection method is typically used as benchmark value to
compare with other selection schemes, though it is not possible in the breeding program.
Slightly lower genetic gain was observed using sib selection (FSS) on real fillet yield, a
typical approach applied for traits requiring destructive recording (slaughter vyields, meat
quality) or disease resistance (Gjedrem, 2010). However, costs for FSS are higher and in our
case cover also parentage assignment and processing costs of sib groups. Thus, our work
confirm that indirect selection may be an interesting alternative to establish a lower cost and
sustainable breeding program. Indeed, indirect selection on 2N model-predicted fillet yields
showed even better genetic progress than FSS. This r.su® was also in accordance with
previous 2D fillet model yields (Prchal el., 2018a) that shicved the same expected response to
selection. However, main limitations of using mode! pi>dicted yields in a breeding program
have been already discussed above. Expectel renetic gains of simple predictors were
generally lower than from 2D or 3D qllet yield models but still significant enough to be
included in a selection program. 3D_F, achieved a better gain than the same predictor in 2D
(0.41% vs. 0.33%). Alternatively, nev' 3D _Pg predictor was better for genetic progress than
3D_P; but these predictors ar> gerctically related to unfavourable consequences that might be
considered as reasonable hic'arical limits in a long-term breeding program. The best genetic
progress using a sinipw piedictor would be obtained by 3D P, (0.48%), similarly to our
previous 2D experiment where the gain was even higher (0.52%) (Prchal et al, 2018a).
Moreover, this predictor is more favourably genetically connected to other phenotypes and
easy and especially quick to record in the field and thus a very practical simple trait for

indirect selection of slaughter yields in common carp.

5. Conclusions



The accuracy of the phenotypic prediction of slaughter yields by 3D models is high
and almost similar to 2D prediction models. Likewise, expected genetic progress to be
obtained by selection on model-predicted yields and on the best individual predictor (3D_P>)
were similar or only slightly lower when compared to the 2D-based models and the best 2D
simple predictor (Prchal et al, 2018). In conclusion, model-predicted yields and especially
simple 3D predictors have a solid potential for genetic improvement of slaughter yields in
common carp. While such predictors are not better than 2D predictors, they are much more
convenient and faster to collect in the field, as they do not irnly nost-processing of images.
These practical aspects should be taken into account in th: i ture carp breeding program and
we expect to verify the applicability of such predicto,> in a practical selection response

experiment.
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Tables

Table 1: Multiple linear regression models to predict Logr headless carcass and Logr fillet
yields in common carp including predictors characteristics, regression statistics R?, F - Fisher
test value and prediction equations.

Headless carcass yield 3D model Predictor characteristics
3D_P, Ratio between E8 and 3D height between points 7-8
3D area between 2-3-7-10-11-6 divided by area 3-4-5-
3D_Ps 8-9-10-7
Volume between 2-3-7-10-11-6 divided by volume 3-
3D_Py 4-5-8-9-10-7
3D_Ps Width at point 7 divided by width at point 4
3D_Ps Width at point 10 divided by width at point 4

Regression statistics: R = 0.59, F = 449.7
3DMod_hl-Carss =-0.18 + 5.88 3D_P, +0.21 3D_P; -
0.13 3D P, -0.02 3D P5 + 0.09 3D Pg

Fillet yield 3D model . “ewctor characteristics
3D head arc~ div ided by total area (except the 14-15-
3D_P; 12-13)
3D_P; Ratic be. veen E8 and 3D height between points 7-8
3D_Ps W .**k at point 10 divided by width at point 4
\olu'.e be.ween 6-11-10-7 divided by volume 7-10-9-
3D_P, 8

Regression statistics: R? = 0.49, F = 381.9
3DMod_Fill =-0.10 - 0.46 3D_P; +5.88 3D_P, +
0.11 3D_Pg + 0.02 3D_P,




Table 2: Heritability (= standard error) estimates (diagonal) in bold, phenotypic (below the diagonal) and genetic correlations + standard error
(above the diagonal) in common carp for simple predictors (3D_P; — 3D_P7), log-log residuals (Logr) of slaughter yields and 3D models (Mod)
to predict slaughter yields.

Logr_hl- . 3DMod_hl- .

3D P, 3D P, 3D P, 3D P, 3D P, 3D_P, 3D P, D0 Logr_Fill  °OXe"" 3DMod Fil

3D P, 0(')5881' 025+015 027+015 038+014 -046+012 -070+008 017 +0.16 '0(')5f1i -0(.)5301 047 +012 072 +0.08
080+ 073+

3D P, 007 044%008 -002+016 -009+016 -025+015 0183015 0123016 oo oe 093002 080006

3D P, 0.15 0.25 039+007 098+001 -039+014 -041+013 08 = % ’0(')1561“ 'Oblfsi 007+016 -0.22+0.15

3D P, 0.17 0.21 0.95 042008 044013 051072 US5005 r® Bt 017:016 -033+015

3D_P, 041 -0.06 017 0.22 048+009 7.7+:008 -0.37 +0.14 'Odollﬁi 06115’-’ 001 +016 023+0.15
044+ 058+

3D_P, 0.49 0.15 -0.16 -0.19 . 56 066009 025015 oy Tiq 049012 069008

3D P, 0.09 0.30 0.63 0.70 0.19 0.02 0.29+0.06 03’?: '06013; 0124016  -001 +0.16
046+ 097+

Logr hl-Carss  -0.23 0.65 0.21 0.4 0.05 023 0.22 oios Con 086004 085005

Logr_Fill 038 054 0.04 001 0.19 038 0.17 0.77 0°0F 084005 0834004

3bMod_hi- 0.18 0.94 0.0 0.20 0.05 018 0.30 0.70 060  046+008 094 +002

3DMod_Fil -0.53 0.83 v.12 0.08 0.26 0.53 0.26 0.66 0.67 0.90 0.56+0.09




Table 3: Genetic correlations = standard error between most informative simple predictors,
3D model-predicted yields and yield-related traits

3D_P, 3D_P, 3D_Ps 3DMod _hl-Carss _ 3DMod_Fil
r,BW  036+013 -010%015 -0.32%0.13 021+ 0.14 030+ 0.14
ry FC 047+011 -0.05+0.14 -0.36%0.12 -0.18 +0.13 -0.30+0.13
r,%Fat -037+013 037+013 0.31+0.13 0.43 +0.13 0.49 +0.11
rRelBH 050+011 -0.13+0.13 -0.51+0.10 -0.31+0.13 -0.43+0.11
rRelHL  0.86+0.04 -0.27+0.13 -0.61+0.08 -0.47 +0.11 -0.67 +0.08




Table 4: Genetic gains (in percent body weight units) per generation with two selection
intensities (% selected — 10%, 30%) using mass (MS), full sib (FSS), and indirect (IS)
selection for fillet yield improvement.

Trait selected Type ofselection Genetic gain (10%) Genetic gain (30%)

Logr_Fill MS 0.70 0.46
Logr_Fill FSS 0.61 0.40
3DMod_Fill IS 0.65 0.43
3D_P; IS 0.41 0.27
3D_P, IS 0.48 0.32
3D_P; IS 0.12 0.08
3D_P, IS 0.19 0.12
3D_Ps IS 0.09 0.06
3D_Ps IS 0.47 0.31
3D_P; IS 0.02 0.01
2DMod_Fill IS 0.66 0.43
2D_P,* IS 0.33 0.22
2D_P,* IS 0.52 0.34

* cited from Prchal et al., (2018a)



Figure Captions
Figure 1: 3D landmarks place on each carp.

1: head extremity; 2: end of the head beginning of the fillet on the back; 3: intersection
between opercula and lateral line; 4: opercula at the maximum length from the landmark 1; 5:
end of the head beginning of the fillet on the ventral part; 6: beginning of the dorsal fin; 7:
intersection between the lateral line and the wvertical of landmark 6; 8: intersection of the
ventral part and the vertical of point 7; 9: beginning of the anal fin; 10: intersection between
lateral line and vertical of point 9 towards the carp back; 11: vertical of point 10 on the back;
12: end of anal fin; 13: intersection of lateral line and vertical of 12; 14: vertical of point 13
on the carp back; 25: end of the caudal fin at the fork.

Figure 2: A graphical visualization of body and ventral =.t 1 0rphology associated to
low (blue line) and high (red line) yield for Logr_hl-Carss ‘A, 3) and Logr_Fill (C, D)
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Figure 2C
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Figure 2D




Highlights

e We studied combination of 3D digitized landmarks and ultrasound measurements
e 3D collection of morphological landmarks do notimply post processing of images
e Geneticparametersof 3D model/simple predictors were solid

e Future carp breedingstrategies have been suggested



