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Abstract

Plants actively perceive and respond to perturbations in their cell walls which arise during

growth, biotic and abiotic stresses. However, few components involved in plant cell wall

integrity sensing have been described to date. Using a reverse-genetic approach, we identi-

fied the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regu-

lator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed,

loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jas-

monic acid production and lignin deposition. MIK2 has both overlapping and distinct func-

tions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity

sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown

on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been cor-

related recently to mild salt stress tolerance, which we could confirm using our insertional

alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes

observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is re-

quired for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data

identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a

nexus linking cell wall integrity sensing to growth and environmental cues.
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Author summary

Plants are constantly exposed to external stresses of biotic and abiotic nature, as well as

internal stresses, resulting from growth and mechanical tension. Feedback information

about the integrity of the cell wall can enable the plant to perceive such stresses, and

respond adequately. Plants are known to perceive signals from their environment through

receptor kinases at the plant cell surface. Here, we reveal that the Arabidopsis thaliana
receptor kinase MIK2 regulates responses to cell wall perturbation. Moreover, we find

that MIK2 controls root growth angle, modulates cell wall structure in the root tip, con-

tributes to salt stress tolerance, and is required for resistance against a root-infecting path-

ogen. Our data suggest that MIK2 is involved in sensing cell wall perturbations in plants,

whereby it allows the plant to cope with a diverse range of environmental stresses. These

data provide an important step forward in our understanding of the mechanisms plants

deploy to sense internal and external danger.

Introduction

Plant cells are surrounded by a thick cell wall that is composed primarily of complex carbohy-

drates [1]. The cell wall plays a pivotal role in plants, as it provides the mechanical strength

that allows the plant to resist both external and internal (turgor) pressure, protects the cell

from biotic and abiotic stresses, and forms the interface between neighbouring cells [1]. The

main load-bearing elements of the cell wall are cellulose microfibrils, which are interconnected

with a matrix consisting of hemicelluloses, pectins, and a small amount of structural proteins

[1]. To allow cell expansion and growth as well as to provide protection against biotic and abi-

otic stress, the plant requires the ability to adjust the chemical and mechanical properties of

the cell wall, for which it requires feedback information about wall integrity. Yeast cells possess

an active cell wall integrity (CWI) maintenance mechanism that monitors the status of the cell

wall and activates compensatory responses upon damage [2]. Evidence is emerging that plants

also have an active CWI sensing mechanism [1, 3–8]. In plants, cell wall damage can be

induced in a controlled manner through pharmacological or genetic inhibition of the cellulose

synthase complex [1, 3, 5]. Disruption of CWI through inhibition of cellulose biosynthesis

results in activation of several stress responses including production of reactive oxygen species

[9], jasmonic acid (JA), salicylic acid (SA), and ethylene [10, 11], changes in cell wall composi-

tion including lignin deposition [12, 13], callose deposition [13], and alterations in pectin

methyl-esterification status [14–16], and finally swollen roots and growth inhibition [17].

Interestingly, these stress responses are reminiscent of the plant’s defence reaction to patho-

gens and insects [1, 3, 5, 6, 18].

The initiation of the plant’s defence response against pathogens requires perception of path-

ogen-associated molecular patterns or damage-associated molecular patterns through plasma

membrane-localized receptor kinase (RK) proteins [19]. These RK proteins contain an extra-

cellular ligand binding domain, a single-pass transmembrane domain, and an intra-cellular

kinase domain [20]. Analogous to their role in pathogen recognition, RKs could be ideal can-

didates as sensors of CWI, as they allow signal transmission from the external environment to

the inside of the cell. In the model plant Arabidopsis thaliana (At, hereafter referred to as Ara-

bidopsis), the family of RKs contains over 400 members [21]. Several RKs have been identified

as putative CWI sensors [1, 4–8, 22], among them the cell surface-localized RK THESEUS1

(THE1) [23]. THE1 was identified in a screen for suppressors of prc1-1, a mutant in the
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cellulose synthase subunit CesA6 [23], and belongs to the malectin-like Catharanthus roseus
Receptor-Like Kinase 1-like (CrRLK1L) family [4]. While the cellulose-deficient mutant prc1-1
displays constitutive growth inhibition and lignin deposition, these phenotypes were partially

relieved in the prc1-1 the1-1 double mutant [23]. As the1-1 does not impact cellulose biosyn-

thesis in prc1-1 mutant background, it was suggested that THE1 functions as a CWI sensor

[23].

The CrRLK1L family contains 17 members in Arabidopsis, and besides THE1, includes

FERONIA/SIRENE (FER/SRN), HERCULES1 (HERK1), HERCULES2 (HERK2), ANXUR1

(ANX1), ANXUR2 (ANX2), ERULUS/[CA2+]CYT-ASSOCIATED PROTEIN KINASE 1

(ERU/ CAP1) and CURVY (CVY1) [4, 6–8]. The extracellular portion of CrRLK1L proteins

shows homology to the animal Malectin protein that has putative carbohydrate binding capac-

ity [24]. The above listed CrRLK1L proteins play roles in diverse environmental contexts, pos-

sibly linked to CWI sensing [4, 6–8]. THE1, FER and HERK1/2 were found to be required for

cell elongation during vegetative growth [25]. FER and ERU have been implicated in polar

growth of root hairs [26–28], and CVY1 was found to control leaf cell morphology and actin

cytoskeleton organization [29]. Importantly, FER was recently identified as the receptor for

the endogenous peptides RAPID ALKALINIZATION FACTOR 1 (RALF1) and RALF23 that

control cell elongation inhibition and immune signaling, respectively [27, 30]. Furthermore,

FER was identified as a key regulator in mechano-sensing, as fer mutant plants show impaired

mechanically-induced changes in Ca2+ signalling, transcription and growth [31]. FER was ini-

tially implicated in pollen tube reception in the female gametophyte. In fer mutant ovules, pol-

len tubes do not burst to release the sperm, but instead continue to grow [32–34]. The related

ANX1 and 2 are also involved in pollen tube discharge, yet opposite to fer pollen tubes, anx1/2
pollen tubes burst prematurely [35–37]. Finally, fer mutants display enhanced resistance to the

powdery mildew Golovinomyces orontii [38], and the fungus Fusarium oxysporum [39], which

may reflect a role of FER in fungal haustorium formation, while fer mutants are also affected in

flg22-induced signalling and are more susceptible to the bacterium Pseudomonas syringae pv.

tomato DC3000 [30]. In addition to CrRLK1Ls, another RK subfamily of interest in the con-

text of CWI sensing is the family of wall-associated kinases (WAKs). WAKs can bind pectin

[40, 41], and WAK1 is involved in the perception of oligogalacturonides (OGAs) [42], which

are breakdown products of pectin that can elicit defence responses [43]. In addition, WAKs

have been shown to be required for normal cell elongation [44]. Moreover, leucine-rich repeat

receptor kinases (LRR-RKs) have also been associated with CWI sensing [45]. For example,

loss-of-function of the LRR-RK-encoding genes FEI1 and FEI2 results in hypersensitivity to

inhibition of cellulose biosynthesis, high sucrose and high salt, and disrupts anisotropic cell

expansion and synthesis of cell wall polymers [45].

However, the CrRLK1L THE1 is so far the only RK that was shown to be required for

responses to cellulose biosynthesis inhibition. In this study, we expand our understanding

of CWI sensing by identifying the recently characterised LRR-RK MALE DISCOVERER

1-INTERACTING RECEPTOR LIKE KINASE 2/LEUCINE-RICH REPEAT KINASE FAM-

ILY PROTEIN INDUCED BY SALT STRESS (MIK2/LRR-KISS; hereafter referred to as

MIK2) [46, 47] as being required for responses to cellulose biosynthesis inhibition. MIK2

shows overlapping as well as distinct functions with THE1 in response to cellulose biosynthesis

inhibition. In addition, we find that MIK2 is required for control of normal root growth direc-

tion and salt tolerance in a THE1-dependent manner. Moreover, MIK2 plays a role in immu-

nity as it is required for resistance to the fungal root pathogen Fusarium oxysporum. We thus

propose that MIK2 is involved in CWI sensing and regulates several aspects of growth, as well

as responses to abiotic and biotic stresses.
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Results

The LRR-RK MIK2 is an important regulator of responses triggered by

cellulose biosynthesis inhibition

An overlap exists between responses activated upon disruption of CWI and the ones triggered

by perception of microbes [9, 48] suggesting that CWI signalling and immune signalling

might be part of a general ‘danger’ perception system in which loss of CWI would be sensed as

‘altered self’. Consistently, we observed that treatment with isoxaben (ISX), a chemical widely

used to disrupt CWI in a controlled manner via the inhibition of cellulose biosynthesis [1, 3,

13], induced the expression of the genes FRK1, At1g51890 and CYP81F2 in Arabidopsis, which

are commonly used immunity marker genes [49] (Fig 1A). While this increased expression

was visible in wild-type Col-0 at 6 and 9 h after treatment, it was absent in the ISX-insensitive

mutant ixr1-1 [50] (Fig 1A). Moreover, treatment with other cellulose biosynthesis inhibitors,

such as 2,6-di-chlorobenzonitrile (DCB) [51] and thaxtomin (TXT) [52, 53], also induced

Fig 1. Inhibition of cellulose biosynthesis induces immune marker gene expression. (A,B) Immune marker gene expression in 13-day-old Arabidopsis

seedlings determined by qRT-PCR. (A) Seedlings were mock- or ISX-treated (0.6 μM) for the indicated periods. (B) Seedlings were mock treated, or treated

with 0.6 μM ISX, 6 μM DCB, 0.4 μM TXT, or 400 mM Mannitol (Man) for 9 h. (A,B) Expression of the immune marker genes FRK1, At1g51890, and CYP81F2

was normalized relative to U-box expression values. Depicted is the fold change in expression relative to time point t = 0h (A), or relative to mock treatment

(B). Error bars represent standard error of three technical replicas. Experiments were repeated at least three times with similar results.

https://doi.org/10.1371/journal.pgen.1006832.g001
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expression of the same genes (Fig 1B). Mild hyper-osmotic stress triggered by mannitol treat-

ment did not activate, but rather seemed to repress the expression of these genes (Fig 1B),

revealing that the response observed upon treatment with cellulose biosynthesis inhibitors dif-

fers from the response to hyper-osmotic stress. Given the load-bearing role of cellulose in

plant cell walls, its loss/reduction may lead to mechanical disruption of cell wall and mem-

brane integrity, the release of cell wall components (such as carbohydrates or proteins), or the

active production/secretion of endogenous peptides in response to cell wall damage. Such mol-

ecules or mechanical signals might then act as triggers for cell surface RKs.

To test this hypothesis, we sought to identify RKs that are required for ISX-induced re-

sponses and may therefore represent potential components involved in CWI sensing. Towards

this end we tested the ISX response of Arabidopsis T-DNA mutants available in our laboratory

with insertions in RK-encoding genes. As a result, we identified two independent homozygous

insertion alleles in the gene At4g08850 that displayed reduced ISX-induced immune marker

gene expression (Figs 2A and S1A–S1C). This gene encodes a LRR-RK recently characterized

as MIK2/LRR-KISS [46, 47]. We found that mik2-1 was also compromised in DCB- and TXT-

induced gene expression (Fig 2A). In addition, mik2-1 was tested for the previously reported

ISX-induced JA and SA accumulation, as well as lignin deposition [3, 9], and the mutant was

found to be impaired in ISX-induced JA accumulation and lignin deposition, but not in ISX-

induced SA accumulation (Fig 2B–2E). Together, these data demonstrate that MIK2 is an

important regulator of responses triggered by cellulose biosynthesis inhibition.

MIK2 contains an extracellular domain consisting of 24 LRRs, a single-pass transmembrane

domain, and an intracellular kinase domain (S1D Fig). In accordance with its predicted sub-

cellular localization, MIK2-GFP localized to the plasma membrane (S1E Fig).

MIK2 is part of the sub-family XIIb of LRR-RKs [54, 55] and has a close homolog (60%

amino acid identity), At1g35710, that we named MIK2-LIKE (S2A Fig). When compared with

LRR-RKs encoded by the rice, tomato, poplar, grapevine and soybean genomes, AtMIK2 is

more similar to AtMIK2-LIKE than to any of the rice, tomato, poplar, grapevine or soybean

sequences [55–58]. On the other hand, in the Brassicaceae species Arabidopsis lyrata and Bras-
sica rapa, MIK2 and MIK2-LIKE paralogs clearly exist (S2A Fig). AtMIK2 and AtMIK2-LIKE
are expressed throughout the plant, in young as well as in mature tissues (S3 Fig). To investi-

gate the potential redundant role of MIK2-LIKE in responses to cellulose biosynthesis inhibi-

tion, two T-DNA insertion alleles for MIK2-LIKE (mik2-like-1 and mik2-like-2; S2B and S2C

Fig), and mik2-1 mik2-like-1 and mik2-1 mik2-like-2 double mutants were tested for ISX-

induced responses. Unlike mik2-1, mik2-like-1 was not impaired in ISX-induced gene expres-

sion, JA accumulation or lignin deposition (S2D–S2F Fig). The mik2-1 mik2-like-1 and mik2-1
mik2-like-2 double mutants showed a phenotype similar to the mik2-1 single mutant (S2D–

S2F Fig). Thus, despite their close homology, our data suggest that MIK2-LIKE does not fulfil

the same function as MIK2 in responses to cellulose biosynthesis inhibition.

The LRR-RK MIK2 and CrRLK1L THE1 are major regulators of

responses to cellulose biosynthesis inhibition

A prominent CWI sensor candidate is the CrRLK1L THE1, which is required for cellulose

biosynthesis inhibition responses in prc1-1, a mutant in the cellulose synthase subunit CesA6

[23]. Like MIK2, THE1 is expressed throughout the plant, in young as well as in mature tissues

(S3 Fig). We tested if MIK2 and THE1 play similar roles in responses to cellulose biosynthesis

inhibition. We found that both mik2-1 and the1-1, as well as the double-mutant mik2-1
the-1 were impaired in the ISX-induced expression of the immune marker genes FRK1 and

At1g51890 (Fig 2A). However, while mik2-1 and mik2-1 the1-1 were also impaired in the ISX-

Cell wall integrity sensing through the receptor kinase MIK2/LRR-KISS
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Fig 2. The LRR-RK MIK2 and CrRLK1L THE1 are major regulators of responses triggered by cellulose biosynthesis

inhibition. (A) Immune marker gene expression in 13-day-old Arabidopsis seedlings determined by qRT-PCR. Seedlings

Cell wall integrity sensing through the receptor kinase MIK2/LRR-KISS
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induced expression of CYP81F2, the1-1 was not (Fig 2A). Interestingly, immune marker gene

expression in response to DCB was also compromised in mik2-1, the1-1, and mik2-1 the1-1
(Fig 2A). In contrast, immune marker gene expression in response to TXT was only impaired

in mik2-1 and mik2-1 the-1, but not in the1-1 (Fig 2A), suggesting that MIK2 and THE1 might

function in the activation of responses to cellulose biosynthesis inhibition through different

mechanisms. More in depth knowledge on the difference between ISX-, and TXT-mode-of-

action will however be required to gain further insight in the different mechanisms by which

MIK2 and THE1 might operate.

ISX-induced JA accumulation was more strongly attenuated in the1-1 and mik2-1 the1-1
than in the mik2-1 single mutant (Fig 2B). ISX-induced SA accumulation was also impaired

in the1-1 and mik2-1 the1-1, but not in mik2-1 (Fig 2C). ISX-induced lignin deposition was

impaired to a similar level in mik2-1, the1-1, and mik2-1 the1-1 (Fig 2D and 2E). However,

unlike THE1, MIK2 is not required for the cellulose biosynthesis inhibition response in the

CesA6 mutant prc1-1, as loss-of-function of MIK2 did not rescue the shortened dark-grown

hypocotyl phenotype in prc1-1 plants, while loss-of-function of THE1 partially did (S4 Fig).

In addition to the above described responses, ISX was previously shown to induce rapid

internalization of the cellulose synthase complex and accumulation of the complex in microtu-

bule-associated cellulose synthase compartments (MASCs) in the cell cortex [59–61]. Neither

loss-of-function of MIK2 nor of THE1 interfered with ISX-induced GFP-CESA3 internaliza-

tion (S5A–S5C Fig), indicating that MIK2 and THE1 must function either downstream, or

independent of cellulose synthase complex internalization.

In all assays, the mik2-1 the1-1 double mutant displayed the same phenotype as either one

of the mik2-1 or the1-1 single mutants (Fig 2A–2E), demonstrating that loss-of-function of

both MIK2 and THE1 does not have an additive effect. From a classical genetics point-of-view

this would suggest that the two RKs could function in the same pathway; however, clear differ-

ences exist in amplitude as well as type of responses that MIK2 and THE1 regulate (Fig 2A–2E;

S4 Fig), indicating that they might also regulate different aspects of the CWI maintenance

response.

MIK2 controls root angle in a THE1- and cellulose synthase-dependent

manner

It is hypothesized that proper CWI sensing is important for optimal plant growth or develop-

ment. Interestingly, when grown vertically on MS agar plates, mik2-1 and mik2-2 plants dis-

played left-ward root skewing, while the1-1 and the1-4 did not (Fig 3A, S1F Fig, S6A Fig). This

effect was previously observed in certain Arabidopsis ecotypes, but is minimal in Col-0 [62].

Surprisingly, this effect was abolished in the mik2-1 the1-1 double mutant (Fig 3A). Further-

more, we observed that the presence of ISX or DCB in the growth medium impaired root

skewing in mik2-1 (Fig 3B and 3C). The root skewing phenotype of mik2-1 was also attenuated

in the prc1-1 genetic background (Fig 3D). Thus, these results indicate that MIK2 controls

root angle in a THE1- and cellulose synthase-dependent manner.

were mock treated, or treated with 0.6 μM ISX, 6 μM DCB, or 0.4 μM TXT for 9 h. Expression of the immune marker genes

FRK1, At1g51890, and CYP81F2 was normalized relative to U-box expression values. Depicted is the fold change in

expression relative to mock treatment. Error bars represent standard error of three technical replicas. (B-E) JA (B) and SA

production (C) and lignin-deposition (D,E) in 6-day-old Arabidopsis seedlings, mock treated or treated with 0.6 μM ISX for 7 h

(B,C) and 12 h (D,E). Error bars represent standard error of n = 4 (B,C) or n = 20 (E) biological replicas. (B) The upper and

lower panel display the same data, yet in the lower panel, the y-axis has been adjusted to visualize the JA levels in mock-

treated samples. (D) The size bar represents 100 μm. (A-E) Asterisks indicate a statistically significant difference relative to

Col-0, as determined by a two-tailed Student’s T-test (p < 0.05). Experiments were repeated at least three times with similar

results.

https://doi.org/10.1371/journal.pgen.1006832.g002
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Fig 3. MIK2 controls root angle in a THE1- and cellulose synthase complex-dependent manner. (A-D) Nine-day-old Arabidopsis seedlings

grown in an upright position (under a 10˚ angle relative to the direction of gravity) on MS agar medium with 1% sucrose. Pictures were taken from the
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Although MIK2-LIKE did not fulfil the same function as MIK2 in responses to cellulose

biosynthesis inhibition (S2D–S2F Fig), mik2-like-1 and mik2-like-2 displayed a trend towards

enhanced root skewing (S2G Fig). However, the enhanced root skewing was only found to be

statistically significant in 3 out of 6 experiments. Thus, MIK2-LIKE might contribute to the

control of root growth angle, yet not to the same extent as MIK2. Surprisingly, the mik2-1
mik2-like-1 and mik2-1 mik2-like-2 double mutants displayed a trend towards enhanced root

skewing similar to mik2-like-1 and mik2-like-2 single mutants, yet reduced compared to the

mik2-1 single mutant. Future work is needed to unravel the genetic relatedness between MIK2
and MIK2-LIKE with respect to control of root growth angle (S2G Fig).

To analyse the potential mechanism underlying the root skewing phenotype of mik2
mutants, we investigated if roots of mik2-1 mutants are affected in cellulose microfibril orien-

tation or cell wall structure. Root tips of mik2-1, the1-1, and mik2-1 the1-1, did not display

altered cellulose microfibril orientation compared to Col-0 (S7A Fig). Fourier-transform infra-

red (FT-IR) spectroscopy revealed small differences in the cell wall structure in the root tip of

mik2-1 plants compared to Col-0 (S7B and S7C Fig). The cell wall structure in the root tips of

the1-1 plants was also significantly different from Col-0, yet showed absorption spectra differ-

ent from mik2-1 (S7B and S7C Fig), suggesting distinct cell wall modifications. The absorption

spectra in the mik2-1 the1-1 double mutant followed a pattern that was more similar to the1-1
than mik2-1 (S7B and S7C Fig), suggesting that the effect of the1-1 on the cell wall is dominant

over the effect of mik2-1. Root tip morphology was comparable between mik2-1 and the1-1 sin-

gle mutants, and the mik2-1 the1-1 double mutant (S8 Fig). Thus, the distinct influences of

mik2-1 and the1-1 on cell wall structure in the root tip might underlie the observed root skew-

ing, or lack thereof, in the mik2-1 single mutant and the mik2-1 the-1 double mutant, respec-

tively. However, biochemical analysis of cell walls from whole roots did not reveal any

significant changes in cellulose, hemicellulose or pectin content in the single mutants nor in

the mik2-1 the1-1 double mutant (S9 Fig). The observed cell wall defects in mik2-1 and the1-1
are therefore suggestive of subtle, local changes in the root tip, which would need to be con-

firmed in future, more detailed studies.

MIK2 is required for salt stress tolerance in a THE1-dependent manner

Recently, natural variation in MIK2 was found to be linked to shoot growth under salt stress

conditions in a study in which it was named LRR-KISS [47]. Accessions with MIK2 expression

higher than in Col-0, such as Cen-0, were less sensitive to salt stress, while accessions with

MIK2 expression lower than Col-0, such as HR-5, were more sensitive to it [47]. We were thus

curious to test the effects of salt stress on mik2 insertional mutant plants in the Col-0 back-

ground. In line with a previous report [63] we observed that when grown on MS medium con-

taining 75 mM NaCl, Col-0 roots display a mild skewing response to the right, when seen

from the front (Fig 4A). In support with the proposed role for MIK2 in salt stress signalling

[47], mik2-1 plants showed a strongly increased right-ward skewing on medium containing 75

mM NaCl, while not on MS medium containing 150 mM sorbitol (Fig 4A). Unlike mik2-1,

the1-1 and the1-4 were not affected in NaCl-induced changes in root growth direction com-

pared to Col-0 (Fig 4A, S6B Fig). The enhanced NaCl-induced right-ward skewing of mik2-1
roots was abolished in mik2-1 the1-1 roots (Fig 4A). In support with these observations, we

front of the plate. (A-C) The growth medium contained DMSO (mock) (A), 2 nM ISX (B), or 25 μM DCB (C). (A) The white arrow indicates skewing of

mik2-1 roots relative to the vertical growth axis. (A-D) Root angle was quantified; a positive value indicates skewing to the left, while a negative value

indicates skewing to the right. Error bars represent standard error of n = 15 biological replicas. Different letters indicate statistically significant

differences between genotypes (ANOVA and Holm-Sidak test (p < 0.05)). The experiments were repeated at least three times with similar results.

https://doi.org/10.1371/journal.pgen.1006832.g003
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found that NaCl-induced reduction in dry weight of mature plants was enhanced in mik2-1
compared to wild-type Col-0, while the1-1 and the1-4 single and mik2-1 the1-1 double mutants

were not affected in the NaCl-induced decrease of dry weight (Fig 4B, S6C Fig). However, of

note is that untreated mik2-1 the1-1 plants show a slight reduction in dry weight (S10 Fig), sug-

gesting that loss of both MIK2 and THE1 impairs biomass assimilation under basal conditions.

Nevertheless, altogether these data show that MIK2 is required for salt stress tolerance in a

THE1-dependent manner.

MIK2 is required for resistance to the fungal root pathogen Fusarium

oxysporum in a THE1-independent manner

Given that cellulose biosynthesis inhibition leads to the induction of MIK2-dependent

responses that are similar to those caused upon perception of microbes or wounding, we

were curious to test whether MIK2 could play a role in disease resistance. Interestingly,

mik2-1 plants displayed enhanced susceptibility to the root-infecting fungus Fusarium oxy-
sporum isolate Fo5176 (Fig 5A–5C). A similar trend was observed in the1-1 plants, yet was

only found to be statistically significant in 4 out of 7 experiments (Fig 5A–5C, S6D and S6E

Fig). Mutant the1-4 plants did not display such an enhanced susceptibility phenotype (Fig 5A–

5C, S6D and S6E Fig). The mik2-1 the1-1 double mutant plants exhibited a phenotype similar

to mik2-1 (Fig 5A–5C). Thus, while MIK2 is required for salt stress tolerance in a THE1-de-

pendent manner, the role of MIK2 in resistance against Fusarium oxysporum isolate Fo5176

does not depend on THE1. As we obtained discrepant results with the different alleles for

THE1, the exact role of THE1 in resistance to Fusarium oxysporum isolate Fo5176 remains to

be elucidated.

Fig 4. MIK2 is required for salt stress tolerance in a THE1-dependent manner. (A) Ten-day-old Arabidopsis seedlings were

grown in an upright position on½MS agar medium without sucrose, supplemented with or without 75 mM NaCl or 150 mM sorbitol.

Depicted is the change in the angle of the root after NaCl or sorbitol treatment compared to mock treatment; the negative value

indicates a change to the right. Error bars represent standard error of n = 20 biological replicas. The experiment was repeated three

times with similar results. (B) Dry weight of NaCl-treated plants as percentage of the dry weight of untreated plants. (Absolute dry

weight is depicted in S10 Fig). One week after germination, plants were transferred to pots with soil watered from below with or

without 75 mM of NaCl in rainwater. After 4 weeks of treatment the rosettes were cut, and dry weight was determined. The

experiment was repeated three times with similar results, data were pooled and the average is depicted. Error bars represent the

standard error of n = 60 plants. (A,B) Different letters indicate statistically significant differences between genotypes (Kruskal-Wallis

ANOVA on ranks followed by Dunn’s multiple comparison procedures (p <0.05)).

https://doi.org/10.1371/journal.pgen.1006832.g004

Cell wall integrity sensing through the receptor kinase MIK2/LRR-KISS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006832 June 12, 2017 10 / 27

https://doi.org/10.1371/journal.pgen.1006832.g004
https://doi.org/10.1371/journal.pgen.1006832


Discussion

In this study, we have identified the LRR-RK MIK2 as an important regulator of responses to

cellulose biosynthesis inhibition, as evidenced by the impaired gene expression, JA accumula-

tion and lignin deposition triggered by chemical inhibition of cellulose biosynthesis observed

in mik2 mutant plants (Fig 2). This finding suggests a role for MIK2 in transmission of bio-

chemical or physical signals directly derived from the cell wall or indirectly produced/secreted

upon cell wall damage triggered upon cellulose biosynthesis inhibition.

In addition, we found that MIK2 plays a role in control of root growth angle (Fig 3). Differ-

ent Arabidopsis ecotypes are known to display different degrees of left-ward root skewing, yet

the molecular basis of root skewing is not well understood [62, 64, 65]. Mechano-sensing,

microtubule organization and cell wall composition are suggested to be linked to this phenom-

enon [62, 64, 65]. Mutants in the CrRLK1L FER are impaired in mechano-sensing and display

increased right-handed skewing [31]. The hard agar surface of the growth medium imposes a

Fig 5. MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum in a THE1-independent

manner. (A,B) Percentage of chlorotic leaves per plant (A), and percentage of decayed plants (B) after infection of the roots

with F. oxysporum isolate Fo5176. (A) The percentage of chlorotic leaves per plant was counted 10 days after inoculation

with F. oxysporum spores. (B) The number of decayed plants was counted 3 weeks after inoculation with F. oxysporum

spores. (A,B) The bars represent the average of four independent experiments, each consisting of n = 20–40 plants per

genotype. Error bars represent the standard error of n = 4 experiments. Different letters indicate statistically significant

differences between genotypes (ANOVA and Holm-Sidak test (p < 0.05)). No disease symptoms were observed on mock-

inoculated plants for any of the genotypes (n = 10). (C) Representative pictures of the different genotypes in (A) and (B) after

F. oxysporum infection.

https://doi.org/10.1371/journal.pgen.1006832.g005
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mechanical barrier; the right-ward root skewing in fer might thus be a consequence of im-

paired mechano-sensing. Moreover, fer mutants are cellulose deficient [66] and this cell wall

deficiency could potentially underlie the mechano-sensing defect in fer. Here, loss of MIK2

seems to lead to small, local cell wall defects as well as root skewing (Figs 3 and S7), suggesting

that MIK2 could also be involved in mechano-sensing. Interestingly though, fer mutant roots

skew right-ward, while mik2 mutant roots do so left-ward, suggesting that different cell wall

defects may translate into different root growth angles. Root skewing has also been previously

reported in microtubules mutants [67–69]; however, we could not detect any difference in the

orientation of cellulose microfibrils (S7A Fig), which align with the underlying cortical micro-

tubules [59, 70–73], indicating that the root skewing phenotype observed in mik2 plants is

more complex. Future work should therefore address the molecular mechanisms underlying

the observed root skewing.

Additionally, we found that mik2 shows increased salt sensitivity (Fig 4). Mutants with

altered cell wall composition or structure were previously shown to display enhanced NaCl

sensitivity [74, 75]; the increased salt sensitivity of mik2 mutants might thus be connected to

its cell wall defects. In addition, we observed that mik2 mutants display increased susceptibility

to the hemi-biotrophic root pathogen F. oxysporum (Fig 5), while not to Arabidopsis leaf path-

ogens, such as the hemi-biotrophic bacterium Pseudomonas syringae pv. tomato DC3000, the

obligate biotrophic oomycete Hyaloperonospora arabidopsidis Noco-2, or the necrotrophic

fungus Plectosphaerella cucumerina BMM (S11A–S11C Fig). In addition, it was previously

found that mik2 mutant plants are not affected in resistance against the powdery mildew spe-

cies Golovinomyces orontii and Erysiphe pisi [76]. We speculate that the role of MIK2 in F. oxy-
sporum resistance is linked to a specific function in the root, which is possibly connected to

CWI sensing.

Altogether, our results indicate that MIK2 is involved in a diverse array of biological pro-

cesses in different tissues, similar to the candidate CWI sensor CrRLK1L FER that plays a role

in cell elongation, mechano-sensing, pollen tube reception and immunity [8]. In all these pro-

cesses, feedback information from the cell wall could play a potential important role. It is thus

tempting to speculate that these diverse phenotypes of mik2 and fer mutants are linked to a

role in cell wall integrity sensing.

Up to now, one of the strongest candidate CWI sensors is the CrRLK1L THE1, as it is so far

the only RK that displays impaired responses to cellulose biosynthesis inhibition [23]. FER and

other malectin-like CrRLK1L family members have been proposed to play a role in CWI sens-

ing based on the putative carbohydrate-binding capacity of their malectin domains, their

structural resemblance to THE1, and their role in regulation of cell growth in diverse contexts

[4, 6, 8]. In this study, we compared the phenotype of mik2-1 with that of the1-1, and found

that both RKs are required for responses to cellulose biosynthesis inhibition. However, differ-

ences exist in the extent to which these RKs regulate activation of immune marker genes and

defence hormone production (Fig 2), suggesting these RKs might fulfil different functions.

However, the function of MIK2 and THE1 seems to be linked, as the left-ward root skewing as

well as enhanced salt sensitivity in mik2-1 are abolished in the1-1 genetic background (Figs 3

and 4). Intriguingly, mik2-1 and the1-1 seem to have distinct effects on cell wall structure in

the root tip (S7 Fig), which could potentially underlie the observed root skewing and salt sensi-

tivity in mik2-1 and absence of thereof in mik2-1 the1-1. Loss of a cell wall sensor disrupts a

cell wall-to-cell feedback loop; if such feedback information is lost, one could envision com-

pensatory changes in cell wall composition and properties. Changes in non-cellulosic compo-

nents can change the physical properties of the cell wall, and might thus affect the interaction

between the root surface and the agar (e.g. the extent to which the root can resist the physical

pressure of the agar could be different). This could subsequently influence the skewing angle
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under which the root grows, as well as its responses to external factors. We therefore hypothe-

size that loss of MIK2 results in mis-regulation of CWI sensing leading to local changes in cell

wall composition that impact on root skewing and salt sensitivity. It is tempting to speculate

that THE1 is required for these processes through sensing of a (cell wall-derived) signal in

mik2. Alternatively, the lack of root skewing and salt sensitivity phenotypes in mik2-1 the1-1
might result from changes in cell wall composition caused by loss of THE1 that overrule

changes caused by loss of MIK2. Of note is that cell wall disruption by inhibition of the cellu-

lose synthase complex interfered with the root skewing response in mik2-1 (Fig 3), which

strengthens the hypothesis that root skewing is connected to cell wall changes. On the other

hand, the observed effects of mik2-1 and the1-1 mutations on root growth direction, salt sensi-

tivity, and cell wall structure could be consequences of another, potentially common, underly-

ing cause. To distinguish between the different possibilities, additional insight into the type of

cell wall changes that seem to occur in mik2 versus the1 mutant plants could prove useful.

However, biochemical analysis of cell walls from whole roots did not reveal any significant

changes in cell wall composition in the mutants compared to Col-0 (S9 Fig). The observed cell

wall defects in mik2-1 and the1-1 might thus be subtler, local changes in the root tip, and will

therefore be more difficult to detect in biochemical analysis.

Previously, LRR-RLKs FEI1 and FEI2 have been associated with CWI sensing [45]. How-

ever, opposite to mik2, the fei1 fei2 double mutant shows increased sensitivity to inhibition of

cellulose biosynthesis. Moreover, fei1 fei2 is hypersensitive to high sucrose and high salt, and is

disrupted in anisotropic cell expansion as well as in the synthesis of cell wall polymers [45].

These findings strengthen the suggestion that responsiveness to cellulose biosynthesis, cell wall

composition and salt sensitivity are connected, and form another example of the involvement

an LRR-RK in CWI sensing. However, the opposite effects of cellulose biosynthesis inhibition

on mik2 mutants compared with fei1 fei2 suggest distinct roles for these proteins in CWI

sensing.

Interestingly, we found that MIK2 is required for resistance against the root pathogen F.

oxysporum, yet this role of MIK2 does not require THE1 (Fig 5). The effect of THE1 on F. oxy-
sporum resistance seems therefore distinct from its effect on root growth direction and salt

sensitivity. The exact role of THE1 in resistance to F. oxysporum remains to be determined, as

we found discrepant results with two different alleles (Fig 5, S6D and S6E Fig). Of note is that

the1-4 has recently been suggested to be a gain-of-function, rather than a loss-of-function

allele, which might explain the observed discrepancy [77]. Additional alleles would thus need

to be tested. If THE1 is involved in resistance against F. oxysporum, MIK2 and THE1 might

play a role through separate mechanisms. However, loss-of-function of both MIK2 and THE1
did not have an additive effect (Fig 5), suggesting that the two RKs could function in the same

pathway. The putative role of THE1 in F. oxysporum resistance is clearly distinct from the

related CrRLK1L FER, as an Arabidopsis mutant defective in FER has recently been shown to

display enhanced resistance to F. oxysporum, most likely because FER is required for the per-

ception of the secreted fungal RALF peptide that contributes to F. oxysporum virulence [39].

Excitingly, MIK2 was recently identified as part of the receptor complex for the female

gametophyte-secreted peptide AtLURE1 that functions as a pollen tube attractant [46]. More-

over, mik2 mutant plants displayed defects in male reproductive transmission and pollen tube

guidance [46]. AtLUREs are part of a 6 gene-large species-specific cluster of defensin-like

genes in Arabidopsis, expressed in the female gametophyte [78]. The Arabidopsis defensin-

like gene family comprises 317 members [79]. Although other members of the AtLURE-recep-

tor complex, MIK1, MALE DISCOVERER (MDIS) 1 and MDIS2, were not found to be

involved in responses to ISX or in root skewing (S12 Fig), AtLUREs or related defensin-like

peptides might be interesting ligand candidates for MIK2 during CWI, yet their role in CWI
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remains to be determined. It will be interesting to assess whether such peptides can be

secreted/produced in response to cellulose biosynthesis inhibition, activate cellulose biosyn-

thesis inhibition responses, and/or play a role in the control of root growth direction, salt toler-

ance and F. oxysporum resistance in an MIK2-dependent manner.

Materials and methods

Plant material

All Arabidopsis thaliana lines used in this study were in the Col-0 ecotype genetic background.

The following mutants and transgenic lines were used: ixr1-1 [50], mik2-1 (SALK_061769),

mik2-2 (SALK_046987), mik2-like-1 (SALK_112341C), mik2-like-2 (GK-031G02-014862),

mik2-1 mik2-like-1, mik2-1 mik2-like-2, the1-1 (outcrossed from prc1-1 the1-1 [23]), the1-4
[25], mik2-1 the1-1, GFP-CESA3 cesa3je5 [82], GFP-CESA3 cesa3je5 mik2-1, GFP-CESA3 cesa3je5

the1-1, prc1-1 [83], mik2-1 prc1-1, the1-1 prc1-1, mik1 [46], mdis1-2 [46], mdis2 [46], and

mdis1-2 mdis2 [46].

Genotyping

The following primers were used for genotyping of mik2-1, mik2-2 and mik2-like-1:

mik2-1 (SALK_061769) LP: 5’-AACGGATCGATTCCTTCTGA-3’

mik2-1 (SALK_061769) RP 5’-TTTTGCCTGATAGCCGATTC-3’

mik2-2 (SALK_046987) LP: 5’-GGAATCAGACTCTTAACCAA-3’

mik2-2 (SALK_046987) RP: 5’-ACCCGACCCGACCATAACCG-3’

mik2-like-1 (SALK_112341C) LP: 5’-CCACTCACTGGTATCATCCAAAACA-3’

mik2-like-1 (SALK_112341C) RP: 5’-TCCGGTTAAGTGATTTGTGGA-3’

LBb1.3: 5’-ATTTTGCCGATTTCGGAAC-3’

Genotyping of the1-1, prc1-1, and cesa3je5 was performed by PCR amplification with the fol-

lowing primers:

THE1 LP: 5’-AGCTTTTGGGTTTTCTTCGTTTTCC-3’

THE1 RP: 5’-CTGTTTTGGAAAGTTATGTTTTGTGAGGAT -3’

the1-1 LP: 5’-AGCTTTTGGGTTTTCTTCGTTTTCC-3’ (Same as THE1 LP)

the1-1 RP: 5’-CTGTTTTGGAAAGTTATGTTTTGTGACTAG-3’

PRC1 LP: 5’-ATCGAAGAGGGCCGCGTCA-3’

PRC1 RP: 5’-ACTGCCCAAATTTCTTCTCCAACTTCAATT-3’

cesa3je5 LP: 5’-CAGGTTTGACACCTCTCTCT-3’

cesa3je5 RP: 5’-GTCCGGTTCTGTCGACCCAT-3’

Next, PCR products were digested with BamHI (Invitrogen, Carlsbad, CA, USA) (cuts

THE1), SpeI (Roche, Basel, Switzerland) (cuts the1-1), MfeIHF (New England Biolabs, Ipswich,

MA, USA) (cuts PRC1), and HphI (New England Biolabs) (cuts cesa3je5) for 4 h at 37˚C follow-

ing manufacturer’s instructions. Digested PCR products were separated on a 3% agarose gel in

TBE (for THE1/the1-1 and PRC1/prc1-1) or 1% agarose in TBE (for CESA3/cesa3je5).
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Cloning

The MIK2 coding sequence was amplified from Col-0 cDNA using the primers 5’-CACCAT

GAACAAAACAAACCCAG-3’ and 5’-AGAAAAGGCAGTGGAGATAGAGAGC-3’. The

corresponding amplicon was cloned into pENTR/D-TOPO using the pENTR Directional

TOPO Cloning Kit (Invitrogen, CA, USA). The insert was then transferred into the Gateway-

compatible binary vector pEarleyGate103 [84] using GATEWAY LR CLONASE II enzyme

(Invitrogen). The final construct was electroporated into Agrobacterium tumefaciens strain

GV3101 [85].

RNA extraction and qPCR analysis

For gene expression analysis, seeds were sown on full strength Murashige and Skoog (MS)

medium (4.41 g/L; including vitamins; Duchefa, Haarlem, The Netherlands) and 1% sucrose

supplemented with 0.8% agar. The seeds were stratified for 2 days at 4˚C, and incubated for 5

days at 22˚C under a 16-h photoperiod. Seedlings were then transferred to liquid MS medium

with 1% sucrose, and grown for another 7 days, after which the growth medium was refreshed.

Next day, plants were mock treated, or treated with 0.6 μM isoxaben (ISX) (Sigma-Aldrich,

St. Louis, MO, USA), 6 μM 2,6-dichlorobenzonitrile (DCB) (Sigma-Aldrich), 0.4 μM thaxto-

min (TXT) (Sigma-Aldrich), or 400 mM mannitol as indicated in the figures. ISX and DCB

were added from respectively 1.2 mM and 12 mM stocks in DMSO; TXT was added from a

800 μm stock in 100% ethanol. All treatments contained equal amounts of DMSO and ethanol.

Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufacturer’s

instructions. RNA samples were treated with Turbo DNA-free DNase (Ambion/Thermo fisher

Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. RNA was quan-

tified with a Nanodrop spectrophotometer (Thermo fisher Scientific). cDNA was synthesized

from 5 μg RNA using SuperScript III Reverse Transcriptase (Invitrogen/Thermo fisher Scien-

tific) according to the manufacturer’s instructions. cDNA was amplified by quantitative PCR

using SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich) and the PTC-200 Peltier Ther-

mal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). The relative expression values were

determined using U-box as reference and the comparative Ct method (2-ΔΔCt). The following

primers were used for quantitative RT-PCR:

U-box (At5g15400) LP: 50-TGCGCTGCCAGATAATACACTATT-30 [86]

U-box (At5g15400) RP: 50-TGCTGCCCAACATCAGGTT-30 [86]

MIK2.1 (At4g08850.1) LP: 5’-CTATGTTGCTCCAGAACTAG-3’

MIK2.1 (At4g08850.1) RP: 5’-GTTCCGGTAGCCGGTGGTCG-3’

MIK2.2 (At4g08850.2) LP: 5’-CTATGTTGCTCCAGgtacg-3’

MIK2.2 (At4g08850.2) RP: 5’-ACCCGACCCGACCATAACCG-3’

MIK2-LIKE (At1g35710) LP: 5’-CAACGTTTCGAAAAGCAACA-3’

MIK2-LIKE (At1g35710) RP: 5’-TGCCATTTTTCTTCGGTTTC-3’

FRK1 (At2g19190) LP: 50-ATCTTCGCTTGGAGCTTCTC-30 [49]

FRK1 (At2g19190) RP: 50-TGCAGCGCAAGGACTAGAG-30 [49]

At1g51890 LP: 50-CCAGTTTGTTCTGTAATACTCAGG-30 [49]

At1g51890 RP: 50-CTAGCCGACTTTGGGCTATC-30 [49]
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CYP81F2 (At5g57220) LP: 50-AATGGAGAGAGCAACACAATG-30 [49]

CYP81F2 (At5g57220) RP: 50-ATACTGAGCATGAGCCCTTTG-30 [49]

Quantification of JA, SA and lignin deposition

Arabidopsis seedlings were grown in liquid culture as described in [9]. Six day-old seedlings

were brought into new flasks with growth medium supplemented with either DMSO (mock)

or 0.6 μM ISX. At 7 h after treatment, seedlings were harvested in liquid N2 and JA and SA

were extracted and measured as described [87]. At 12 h after treatment, seedlings were har-

vested in 70% EtOH and stained for lignification using phloroglucinol-HCl as described in [9].

For determination of lignin deposition in the root elongation zone, pictures were taken with a

Zeiss Axio Zoom.V16 stereo microscope. Phlorogucinol-stained areas were quantified using

ImageJ software and normalized to the total root area photographed, while the root length was

kept equal in all images. The ratios obtained are plotted as fold change compared to Col-0.

Hypocotyl growth elongation assays

Seeds were sown on square plates with full strength MS medium (4.41 g/L; including vitamins;

Duchefa) and 1% sucrose supplemented with 0.8% agar. The seeds were stratified for 2 days at

4˚C, and incubated for 5 days at 22˚C in the dark, in an upright position.

Root skewing assays

Seeds were sown on square plates with full strength MS medium (4.41 g/L; including vitamins;

Duchefa) and 1% sucrose supplemented with 0.8% agar. Where indicated in the figures,

growth medium contained DMSO (mock), 2 nM ISX (Sigma-Aldrich), or 25 μM DCB (Sigma-

Aldrich). ISX and DCB were added from respectively 80 μM and 1 mM stocks in DMSO. All

treatments contained equal amounts of DMSO. The seeds were stratified for 2 days at 4˚C, and

incubated for 9 days at 22˚C under a 16-h photoperiod, in an upright position under a 10˚

angle relative to the direction of gravity.

Biochemical analysis of the cell wall

Seeds were sown on full strength MS medium (4.41 g/L; including vitamins; Duchefa) and 1%

sucrose supplemented with 0.8% agar. The seeds were stratified for 2 days at 4˚C, and incu-

bated for 5 days at 22˚C under a 16-h photoperiod. Seedlings were then transferred to liquid

MS medium with 1% sucrose, and grown for another 2 days, after which the plants were mock

treated, or treated with 0.6 μM ISX (Sigma-Aldrich) for 5 h. ISX was added from a 1.2 mM

stock in DMSO. Mock and ISX treatment contained an equal amount of DMSO. Seedlings

were harvested in 100% ethanol. Root and shoot tissue was separated, 100 roots were used per

sample. Root tissue was washed once in ethanol and twice in acetone, and roots were dried

overnight.

Galacturonic acid content of a Homogalacturonan enriched fraction was determined by

incubation of the roots with 100 μL 1% ammonium oxalate (pH 5) for 2 h at 80˚C, shaking at

300 rpm. The supernatant was collected, samples were diluted 10 times, and sulfuric acid was

added (1.5 mL sulfuric acid per 250 μL sample in glass tubes). Samples were incubated for 15

min at 100˚C, kept on ice for 5 minutes. Galacturonic acid content was then measured follow-

ing the method described in [88], adapted from [89]. A standard range of galacturonic acid

(0–0.1 g/L) was included to calculate uronic acid concentration. Cellulose and monosaccharide

levels were determined as described [90].
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Fourier-transform infrared (FT-IR) spectroscopy

Seedlings were grown and treated as described under “Biochemical analysis of the cell wall”.

Seedlings were harvested in ethanol. One day prior to measuring, ethanol was replaced by

milliQ water. Seedlings were mounted on gold coated glass slides (Thermo fisher Scientific)

and dried for 20 min at 37˚C. Per root, 20 adjacent areas of 40 μm by 40 μm along the lowest

800 μm of the root, on the side of the central cylinder were selected for spectra collection. Per

sample 4 roots were measured, and the experiment was repeated 4 times. Spectra were col-

lected and normalized as described [91]. Statistical analysis was performed using a Student’s

T-test with “R” software as described [92].

Imaging of MIK2-GFP in N. benthamiana

A. tumefaciens strains carrying MIK2-GFP (pEarleyGate103/35S::MIK2-GFP-6xHis) was used

for transient expression in N. benthamiana. Transient expression and imaging was realized as

described [93]. Cell plasmolysis was induced by treatment with 1 M NaCl for 20 min.

Imaging of GFP-CESA3

Seeds were sown on square plates with full strength MS medium (4.41 g/L; without vitamins;

Duchefa) and 1% sucrose supplemented with 0.8% agar. The seeds were stratified for 2 days at

4˚C, and plates were incubated in an upright position for 4 days at 22˚C under a 16-h photope-

riod. Seedlings were transferred to liquid MS medium with 1% sucrose, and were mock

treated, or treated with 0.1 μM ISX (Sigma-Aldrich) for 2 h. ISX was added from a 0.1 mM

stock in DMSO. Mock and ISX treatment contained an equal amount of DMSO. GFP-CESA3

was imaged as described previously [94].

Imaging of cellulose microfibrils

Seedlings were grown as described under “Imaging of GFP-CESA3”, yet here seedlings were

grown for 7 days. Pontamine Fast Scarlet 4B staining was performed as described in [94], with

some modifications. Seedlings were fixed under vacuum in 4% paraformaldehyde in 0.5 X

MTSB buffer with 0.1% Triton for 1 h. Seedlings were washed in 1 X PBS, and incubated over-

night at room temperature in 0.003% Pontamine Fast Scarlet 4B (Sigma-Aldrich) in 1 X PBS.

Next, seedlings were washed with 1 X PBS, mounted in 20 μg/mL citifluor/DAPI, and imaged

using the 514-nm laser line of a SP5 confocal laser scanning microscope (Leica, Solms, Ger-

many) equipped with an argon laser, as described in [94]. The orientation of cellulose microfi-

brils relative to the direction of cell elongation was quantified using ImageJ software. Values

from 3 independent experiments were combined; per genotype values of 10 roots were col-

lected, and per root a minimum of 12 cells were measured.

Imaging of root tip cells stained with propidium iodide

Imaging of root tip cells stained with propidium iodide was performed as described [95].

Salt tolerance assays

The change in root angle in response to salt or sorbitol was determined in seedlings grown on

agar plates under a 16-h photoperiod. Plants were germinated on ½ MS medium without

sucrose. After 4 days, plants were transferred to new medium with 0 mM or 75 mM of NaCl,

or 150 mM of sorbitol (comparable in osmolarity to 75 mM of NaCl). Six days after transfer

(10-day-old seedlings), plates were scanned with an Epson scanner from below. Roots were

traced with SmartRoot (plugin in ImageJ software) and the directionality output was used to
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determine the angle of the root (after transfer). The experiment was repeated three times with

similar results.

For determination of salt tolerance, plants were grown in pots under an 11-h photoperiod,

at 22 degrees and 70% humidity. One week after germination, plants were transferred to pots

which were saturated with 4 L of either 0 or 75 mM of NaCl solution. During the experiment,

all plants were watered with rainwater from below. Conductivity measurements confirmed

that salt levels stayed stable during the experiment. After 4 weeks of treatment, plants were cut

off and dried in an oven on 68 degrees for 1 week to determine dry weight. Plants were rando-

mised over trays using a randomized block design. Randomisation was similar for each treat-

ment. The experiment was repeated three times with similar results.

Infection experiments

F. oxysporum (strain Fo5176; originally isolated by Queensland Plant Pathology Herbarium,

Queensland Department of Primary Industries and Fisheries, Brisbane, Australia) was grown

on Czopek-Dox-Agar medium. To obtain spores, an agar plug was added to liquid medium

consisting of 3% sucrose, 100 mM KNO3 and 0,17% yeast nitrogen base and incubated on a

shaker for 3 days. Spores were harvested by filtrating through miracloth, washed and diluted

with water. 2-week-old Arabidopsis plants were inoculated by pipetting 750 μL spore solution

(107 spores/ml) 1–2 cm deep into the soil, directly next to a plant. Subsequently plants were

grown in a climate chamber at 11-hour light/ 13-hour dark cycle, 28˚C and 80% relative

humidity. The number of chlorotic leaves was counted 12 days post inoculation, and the num-

ber of decayed plants estimated 3 weeks post inoculation.

Pseudomonas syringae pv. tomato DC3000 infections were carried out on 4-week-old plants.

Overnight bacterial culture was pelleted and resuspended in 10 mM MgCl2 to an OD600 of

0.02 in presence of 0.02% (v/v) Silwet L-77. Bacteria were sprayed onto leaf surfaces, and plants

were maintained covered. Two days post-inoculation, leaf discs were sampled and ground in

10 mM MgCl2. After dilution and plating on Luria-Bertani agar with appropriate selection,

plates were incubated at 28˚C and colonies were counted 2 days later.

P. cucumerina BMM inoculation was carried out on 18-day-old soil-grown plants by spray-

ing a suspension of 4x106 spores/mL of the fungus. Disease progression in the inoculated

plants was estimated by an average disease symptom (0–5) as previously described [96].

Inoculations with spore suspensions of Hyaloperonospora arabidopsidis Noco2 isolate

(5x104 spores/mL) were performed on 11-day-old seedlings grown under short day conditions.

Progression of the infection was scored after 7 days as previously described [97].

Supporting information

S1 Fig. Characterization of MIK2. (A) Gene models for MIK2 indicating the positions of the

T-DNA insertions (yellow triangles), and the primers (green arrows) used for detection of

MIK2.1 and MIK2.2. (B,C) MIK2.1 and MIK2.2 (B) and immune marker gene (C) expression

in 13-day-old Arabidopsis seedlings determined by qRT-PCR. MIK2.1 is the more abundant

splice form; in whole seedlings it is 8–50 fold higher expressed than MIK2.2. (C) Seedlings

were mock treated or treated with 0.6 μM ISX for 9 h. (B,C) Error bars represent standard

error of three technical replicas. The experiments were repeated three times with similar

results. Asterisks indicate a statistically significant difference relative to Col-0, as determined

by a two-tailed Student’s T-test (p< 0.05). (D) Protein model for MIK2.1. (E) Confocal images

of MIK2.1-GFP in N.benthamiana. MIK2.1-GFP localizes to the plasma membrane before (left

panel) and after plasmolysis induced by treatment with 1 M NaCl for 20 min (right panel). (F)

Nine-day-old Arabidopsis seedlings grown in an upright position (under a 10˚ angle relative
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to the direction of gravity) on MS agar medium with 1% sucrose. Root angle relative to the ver-

tical growth axis, and root length were quantified. Error bars represent standard error of

n = 15 biological replicas. The experiment was repeated three times with similar results. Differ-

ent letters indicate statistically significant differences between genotypes (ANOVA and Holm-

Sidak test (p< 0.05)).

(TIF)

S2 Fig. The role of MIK2-LIKE in responses triggered by cellulose biosynthesis inhibition

and control of root growth angle. (A) Phylogenetic tree based on homology in the C-terminal

domain of MIK2 proteins in Arabidopsis thaliana (A.t.), Arabidopsis lyrata (A.l.) and Brassica
rapa (B.r.). Regions homologous to Arabidopsis thaliana MIK2 amino acids 620–1045 were

aligned, and a tree was drawn using CLC Main Workbench 7.0.3 software. (B) Gene model for

MIK2-LIKE indicating the position of the T-DNA insertions (yellow triangles), and the prim-

ers (green arrows) used for detection of MIK2-LIKE. (C,D) MIK2-LIKE (C) and immune

marker gene (D) expression in 13-day-old Arabidopsis seedlings determined by qRT-PCR.

(D) Seedlings were mock treated, or treated with 0.6 μM ISX for 9 h. Expression of the immune

marker gene CYP81F2 was normalized relative to U-box expression values. Depicted is the fold

change in expression relative to mock treatment. (C,D) Error bars represent standard error of

three technical replicas. (E,F) JA production (E) and lignin-deposition (F) in 6-day-old Arabi-

dopsis seedlings, mock treated or treated with 0.6 μM ISX for 7 h (E) and 12 h (F). Error bars

represent standard error of n = 4 biological replicas. (E) The upper and lower panel display the

same data, yet in the lower panel, the y-axis has been adjusted to better visualize the JA levels

in mock-treated samples. (F) The average of 4 independent experiments is shown. In each

experiment lignification values in Col-0 were set at 1. (C-F) Asterisks indicate a statistically sig-

nificant difference relative to Col-0 (p< 0.05 (C,D,F)), or a near significant difference p = 0.06

(E)), as determined by a two-tailed Student’s T-test (G) Nine-day-old Arabidopsis seedlings

grown in an upright position (under a 10˚ angle relative to the direction of gravity) on MS

agar medium with 1% sucrose. Root angle relative to the vertical growth axis was quantified.

Error bars represent standard error of n = 15 biological replicas. Different letters indicate sta-

tistically significant differences between genotypes (ANOVA and Tukey HSD test (p< 0.05)).

(C-G) The experiments were repeated at least three times with similar results.

(TIF)

S3 Fig. MIK2, MIK2-LIKE and THE1 expression in different organs. Expression of MIK2,

MIK2-LIKE, and THE1 in different organs [80].

(TIF)

S4 Fig. MIK2 is not required for hypocotyl growth reduction in prc1-1 genetic background.

Five-day-old seedlings grown in an upright position in the dark on MS agar medium supple-

mented with 1% sucrose. Hypocotyl length was quantified. Error bars represent standard error

of n = 18 biological replicas. Different letters indicate statistically significant differences

between genotypes (ANOVA and Tukey HSD test (p<0.05)). The experiment was repeated

six times with similar results.

(TIF)

S5 Fig. ISX-induced CESA3 internalization in mik2-1 and the1-1 mutant background. (A,

B) Confocal images of GFP-CESA3 in cesa3je5, cesa3je5 mik2-1, or cesa3je5 the1-1 genetic back-

ground. Four-day-old Arabidopsis seedlings were mock treated or treated with 0.1 μM ISX for

2 h. Panel A displays the cell surface, while panel B displays a cross section through the cells.

ISX treatment results in internalization of GFP-CESA3; GFP-CESA3 accumulates in microtu-

bule-associated cellulose synthase compartments (MASCs) in the cell cortex. In panel A the
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red arrows indicate GFP-CESA3 in MASCs. In panel B the yellow arrows indicate the position

of the plasma membrane, which is rich in GFP-CESA3 signal upon mock treatment and

depleted of GFP-CESA3 after ISX treatment. The large circular fluorescent organelles are

GFP-CESA3 signal in the Golgi apparatus. The size bars represent 10 μm. (C) Quantification

of the surface particles depicted in (A). Asterisks indicate a statistically significant difference as

determined by a two-tailed Student’s T-test (p< 0.05). Error bars represent the standard error

of n = 80 measurements in 15 seedlings. The particle density analysis was performed as

described [81].

(TIF)

S6 Fig. The role of THE1 in control of root growth angle, salt tolerance and resistance to F.

oxysporum. (A) Nine-day-old Arabidopsis seedlings grown in an upright position (under a

10˚ angle relative to the direction of gravity) on MS agar medium with 1% sucrose. Root angle

relative to the vertical growth axis, and root length were quantified. Error bars represent stan-

dard error of n = 15 biological replicas. (B) Ten-day-old Arabidopsis seedlings were grown in

an upright position on ½ MS agar medium without sucrose, supplemented with or without 75

mM NaCl or 150 mM sorbitol. Depicted is the change in the angle of the root after NaCl or

sorbitol treatment compared to mock treatment; the negative value indicates a change to the

right. Error bars represent standard error of n = 20 biological replicas. (C) Dry weight of

NaCl-treated plants as percentage of the dry weight of untreated plants. Plants were treated as

described in Fig 4. Error bars represent the standard error of n = 20 plants. An asterisk indi-

cates a significant difference from Col-0 according to a linear mixed model (p< 0.05) (D,E)

Percentage of chlorotic leaves per plant (D), and percentage of decayed plants (E) after infec-

tion of the roots with F. oxysporum isolate Fo5176. The experiment was performed as de-

scribed in Fig 5. The bars represent the average of three independent experiments, each

consisting of n = 20–40 plants per genotype. Error bars represent the standard error of n = 3

experiments. No disease symptoms were observed on mock-inoculated plants for any of the

genotypes (n = 10). (A,B,D,E) Different letters indicate statistically significant differences

between genotypes (ANOVA and Tukey HSD test (p< 0.05)). The experiments were repeated

at least three times with similar results.

(TIF)

S7 Fig. Mik2 and the1 have distinct effects on cell wall structure in the root tip. (A) Quanti-

fication of the orientation of cellulose microfibrils relative to the direction of cell elongation in

root tips of 7-day-old Arabidopsis seedlings. Values of 3 independent experiments were com-

bined. Error bars represent standard error of n = 10 roots. (B,C) FT-IR spectroscopy of root

tips of 7 days-old Arabidopsis seedlings. Absorption spectra were collected along 800 μm of

the root tip, spanning the elongation zone and the beginning of the differentiation zone.

Absorption spectra of 4 independent experiments were combined and spectra of mik2-1, the1-
1, and mik2-1 the1-1 were compared with Col-0. (B) T-test values for the indicated compari-

sons. T-test values above 2 or below -2 (marked by red lines) indicate statistically significant

differences (p< 0.01). (C) Average absorbance spectra. Wavenumbers of the main 4 peaks are

indicated in black. (B,C) Asterisks high-light points were mutants differ significantly from

Col-0; corresponding wavenumbers are indicated in red.

(TIF)

S8 Fig. Root tip morphology in mik2-1, the-1 and mik2-1 the1-1. mik2-1, the1-1 and mik2-1
the1-1 mutants do not display any apparent defects in phloem continuity or root meristem

morphology. (A) Confocal microscopy pictures of the root meristem of 7-day-old seedlings of

the indicated genotypes stained with propidium iodide (red). Protophloem is visible as a
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bright, uninterrupted strand within the stele. (B) Cross sections of the root meristem of 5-day-

old seedlings of the indicated genotypes, stained with toluidine blue. The number of cell files

in the stele is quantified in (C) (n�14; the mutant values are not significantly different from

the Col-0 control [student’s t-test]).

(TIF)

S9 Fig. Biochemical analysis of cell wall composition in Col-0, mik2-1, the1-1, and mik2-1
the1-1 plants. Levels of cellulose, pectin (galacturonic acid (GA)), and monosaccharides

derived from hemi-cellulose or pectin, in roots of 7-day-old Arabidopsis seedlings. Values are

expressed per mg root tissue. Depicted is the average of four independent experiments, and

error bars represent standard error. Different letters indicate a statistically significant differ-

ence between genotypes (ANOVA followed by Tukey HSD test (p< 0.05)).

(TIF)

S10 Fig. Dry weight of mik2-1, the1-1 and mik2-1 the1-1 after mock or NaCl treatment. Dry

weight of Arabidopsis plants treated with or without NaCl, as described in Fig 4B. Different

letters indicate statistically significant differences between genotypes (Left panel: ANOVA and

Holm-Sidak test (p< 0.05), right panel: Kruskal-Wallis ANOVA on ranks followed by Dunn’s

multiple comparison procedures (p<0.05)).

(TIF)

S11 Fig. Assessment of susceptibility of the mik2-1 mutant to bacterial and fungal patho-

gens. (A) Growth of Pseudomonas syringae pv. tomato DC3000 in Col-0 and mik2-1 mutant

plants. The hypersusceptible mutant fls2c was included as a control. Plants were sprayed with a

P. syringae bacterial suspension (OD600 = 0.02), and material was harvested two days later for

quantification of bacterial growth. (B) Plant disease rating at different days post inoculation

(dpi) with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). Three-week-

old Arabidopsis Col-0 plants, the mik2-1 mutant, and the irx1-6 and agb1-1 mutants, included

as resistant and hypersusceptible controls, respectively, were inoculated with 4 x 106 spores/

mL of PcBMM. Quantification of fungal growth was estimated by visual evaluation of the

plant disease symptoms (from 0 to 5) and average disease rating was determined. Values are

means ± standard deviation (n = 10). (C) Resistance to the biotrophic pathogen Hyaloperonos-
pora arabidospsidis (Hpa). Two-week-old plants of the indicated genotypes and the Hpa hyper-

susceptible eds1-2 mutant were inoculated with 5 x 104 spores/mL Hpa. Fungal growth in

leaves was determined 7 dpi by measuring Hpa sporulation (Hpa spores/mg plant fresh weight

(fw)). Values are means ± standard deviation (n = 10). (A-C) The experiments were repeated

at least three times with similar results. Statistically significant values (�) that differ from those

of wild-type plants were determined by Student’s T-test (p< 0.05).

(TIF)

S12 Fig. The role of atlure receptor complex components in response to cellulose biosyn-

thesis inhibition and control of root growth angle. (A) Immune marker gene expression in

13-day-old Arabidopsis seedlings determined by qRT-PCR. Seedlings were mock treated, or

treated with 0.6 μM ISX for 9 h. Expression of the immune marker gene CYP81F2 was normal-

ized relative to U-box expression values. Depicted is the fold change in expression relative to

mock treatment. Error bars represent standard error of three technical replicas. The asterisk

indicates a statistically significant difference relative to Col-0, as determined by a two-tailed

Student’s T-test (p< 0.05). (B) Nine-day-old Arabidopsis seedlings grown in an upright posi-

tion (under a 10˚ angle relative to the direction of gravity) on MS agar medium with 1%

sucrose. Root angle relative to the vertical growth axis was quantified. Error bars represent

standard error of n = 15 biological replicas. Different letters indicate statistically significant
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differences between genotypes (ANOVA and Tukey HSD test (p< 0.05)). (A,B) The experi-

ments were repeated at least three times with similar results.

(TIF)
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