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Abstract  

Fungal communities associated with plants and soil influence plant fitness and 

ecosystem functioning. They are frequently studied by metabarcoding approaches 

targeting the ribosomal internal transcribed spacer (ITS), but there is no consensus 

concerning the most appropriate bioinformatic approach for the analysis of these data. 

We sequenced an artificial fungal community composed of 189 strains covering a wide 

range of Ascomycota and Basidiomycota, to compare the performance of 360 software 

and parameter combinations. The most sensitive approaches, based on the 

USEARCH and VSEARCH clustering algorithms, detected almost all fungal strains but 

greatly overestimated the total number of strains. By contrast, approaches using 

DADA2 to detect amplicon sequence variants were the most effective for recovering 

the richness and composition of the fungal community. Our results suggest that 

analyzing single forward (R1) sequences with DADA2 and no filter other than the 

removal of low-quality and chimeric sequences is a good option for fungal community 

characterization. 
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Introduction 

Fungal communities associated with soil and plant tissues have a significant impact on 

plant fitness and ecosystem function (Dighton et al. 2005; Buée et al. 2009a; Rodriguez 

et al. 2009; Hacquard and Schadt 2015; Vandenkoornhuyse et al. 2015; Vacher et al. 

2016a; Baldrian 2017). Identification of the fungal species present is a prerequisite for 

understanding these complex communities, but this task is challenging, due to the 

cryptic nature, microscopic characters and morphological variability of many fungal 

species (Hibbett and Taylor 2013; Yahr et al. 2016). Sequence-based taxonomic 

identification of fungal community members, or metabarcoding, has been the standard 

technique for the last 10 years (Buée et al. 2009b; Hibbett et al. 2009; Jumpponen and 

Jones 2009; Öpik et al. 2009; Cordier et al. 2012; Hibbett & Taylor 2013; Schmidt et 

al. 2013; Hibbett et al. 2016). The internal transcribed spacer (ITS) region is now 

recognized as the universal barcode for fungi (Schoch et al. 2012), and is 

conventionally used to sequence fungal communities (Lindahl et al. 2013; Bálint et al. 

2014), in combination with large taxonomic reference databases, such as UNITE 

(Abarenkov et al. 2010; Kõljalg et al. 2013). 

Despite their widespread use, metabarcoding approaches suffer from various biases 

due to the sampling process, molecular biology steps and bioinformatic analyses used 

(Lindahl et al. 2013; Schmidt et al. 2013; Bálint et al. 2016; Sommeria-Klein et al. 2016; 

Palmer and Jusino et al. 2018). These biases can prevent accurate recovery of the 

fungal community. For instance, the fungi identified may differ according to the barcode 

region chosen and the primers used for its amplification (Tedersoo et al. 2015), the 

sequencing platform (Motooka et al. 2017), the method used to assemble reads 

(Nguyen et al. 2015), the sequence clustering method (Cline et al. 2017; Halwachs et 



al. 2017) and the filters subsequently applied to the operational taxonomic unit (OTU) 

table (Bokulich et al. 2013; Brown et al. 2015). Fungal ecologists thus face difficult 

decisions at every stage in metabarcoding studies (Alberdi et al. 2018). 

Many pipelines have been developed that can be used for processing fungal ITS 

sequence data. These pipelines include MOTHUR (Schloss et al. 2009), QIIME 

(Caporaso et al. 2010), SCATA (Durling et al. 2011), CLOVR-ITS (White et al. 2013), 

VSEARCH (Rognes et al. 2016), FROGS (Escudié et al. 2017), PIPITS (Gweon et al. 

2015) and DADA2 (Callahan et al. 2016). However, the variable length of fungal ITS 

sequences between taxa and high levels of sequence variability render analysis and 

interpretation of the data particularly difficult (Tedersoo et al. 2015; Halwachs et al. 

2017; Palmer and Jusino et al. 2018). Fortunately, comprehensive guidelines have 

been developed, to help fungal community ecologists to make the most appropriate 

choices (Lindahl et al. 2013; Bálint et al. 2014; Bálint et al. 2016). These guidelines 

suggest, for example, that sequence clustering yields the best results with ITS 

extraction tools such as ITSx (Bengtsson-Palme et al. 2013; Lindahl et al. 2013; Bálint 

et al. 2014). The removal of rare OTUs, which may be artifacts, is also generally 

recommended (Bálint et al. 2016), but there is no consensus concerning the threshold 

number of sequences below which an OTU can be considered rare. The proposed 

thresholds range from 1 to 10 sequences (Brown et al. 2015) or depend on the relative 

abundance of OTUs (Bokulich et al. 2013). Fungal mock communities have also 

recently been used for the development of guidelines (Nguyen et al. 2015; Cline et al. 

2017; Bakker 2018). Nguyen et al. (2015) showed, for example, that single forward 

reads could be used to recover all of the 25 well-amplified species of their mock 

community, whereas only 23 of these species were recovered with assembled paired-

end reads. The clustering algorithm of USEARCH (Edgar 2010) has also been 



recommended, based on the demonstration that it recovered the expected number of 

mock species (Cline et al. 2017).  

There is currently no clear consensus in the scientific community concerning the most 

appropriate bioinformatic approach for analysis of the fungal ITS regions sequenced 

on Illumina MiSeq platforms. We aimed to fill this gap, by creating and sequencing a 

mock community of 189 Dikarya strains commonly found in agricultural and forest soils 

and in plant tissues. As advised by Nguyen et al. (2015), this mock community had a 

large taxonomic breadth and some genera were represented by several closely related 

strains (Fig. 1). We compared the ability of 360 combinations of bioinformatic softwares 

and parameters to recover the fungal strains present in this mock community, in the 

expected proportions. In particular, we investigated whether clustering-free software 

packages that identify exact sequence variants of amplicons (ASVs) rather than 

clustering similar sequences into OTUs (Callahan et al. 2016) outperformed 

conventional clustering approaches, by fully exploiting molecular barcode resolution 

(Callahan et al. 2017). We also tested novel post-clustering curation tools (Frøslev et 

al. 2017). We provide new guidelines, based on our results, for researchers using 

metabarcoding approaches for the analysis of fungal community richness and 

composition. 

Materials and methods 

Fungal mock community 

The mock community consisted of an equimolar mixture of DNA extracted from 189 

pure fungal strains isolated from soils, sporocarps or plant tissues. All the strains 

belonged to the superkingdom Holomycota (Tedersoo et al. 2018): 87 Ascomycota 



strains, 99 Basidiomycota strains and 3 Mucoromycota strains, corresponding to 181 

different species, 97 genera, 67 families, 30 orders and 11 classes. Altogether, 30 

genera were represented by several species and 4 species were represented by 

several strains (Fig. 1 and Table S1).  

Fungal DNA was obtained from the inner flesh of sporocarps, or from aerial mycelium 

scraped aseptically from the surface of pure cultures grown on PDA (Potato Dextrose 

Agar), MA (Malt Agar) or Pachlewski’s medium (Martin et al. 1983). The mycelium was 

lyophilized for 24 h in an Edwards Modulyo 4K lyophilizer (Edwards, United Kingdom) 

and 100 mg of lyophilized mycelium was then placed in a Fast-Prep tube (2 mL) 

containing 130 mg glass beads (4.5 mm in diameter; Dutscher, France) and ground 

with a FastPrep® machine (MP Biomedicals, France) for 30 s at maximum shaking 

frequency. DNA was extracted with a DNeasy Plant Minikit (Qiagen, France), in 

accordance with the manufacturer’s instructions, except that the incubation time was 

extended to 1 h at 65°C, and the volumes of buffers AP1 and P3 were doubled. DNA 

from all strains was quantified with a Qubit® 2.0 Fluorometer (Life Technologies, USA) 

and pooled in an equimolar mixture. Pooling was performed three times (replicates A, 

B and C). The fungal ITS1 region was amplified from each replicate with the ITS1F (5’-

CTTGGTCATTTAGAGGAAGTAA-3’, Gardes and Bruns 1993) and ITS2 (5’-

GCTGCGTTCTTCATCGATGC-3’, White et al. 1990) primers. These primers are 

considered as universal fungal primers and are commonly used in fungal community 

analyses (Buée et al. 2009b; Cordier et al. 2012; Nguyen et al. 2015; Palmer and 

Jusino et al. 2018). They are known to amplify Ascomycota, Basidiomycota and 

Mucoromycota (Bellemain et al. 2010; Schoch et al. 2012). PCR was performed with 

a GeneAmp PCR System 2700 (Applied Biosystems, USA). The reaction mixture (20 

µL final volume) consisted of 1x of PCR buffer, 0.56 mg mL-1 of bovine serum albumin 



(A2153-10G, Sigma, USA), 0.2 mM of each dNTP, 0.2 µM of each primer, 0.05 U µL-1 

Taq DNA polymerase (D1806, Sigma-Aldrich) and 5 ng of DNA template. The following 

cycling parameters were then used for amplification: enzyme activation at 94°C for 3 

min; 35 cycles of denaturation at 94°C for 30 s, annealing at 53°C for 30 s, extension 

at 72°C for 45 s, and a final extension at 72°C for 10 min. The quality of the PCR 

products was checked by electrophoresis on 2% agarose gels. PCR products were 

purified (CleanPCR, MokaScience), multiplex identifiers and sequencing adapters 

were added, and library sequencing on an Illumina MiSeq platform (v3 chemistry, 

2x250 bp) and sequence demultiplexing (with exact index search) were performed at 

the Get-PlaGe sequencing facility (Toulouse, France).  

Full-length ITS sequences were also obtained by Sanger sequencing for the 189 fungal 

strains. PCR was performed with the ITS1F and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’, White et al. 1990) primers, with the same PCR 

mixture as described above. The PCR program consisted of an initial denaturation at 

95°C for 3 min, followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 

55°C for 30 s, and elongation at 72°C for 45 s. Sequencing reactions were performed 

by Genewiz (Takeley Essex, UK) and sequences from both strands were assembled 

with MultAlin (Corpet 1988) and manually curated.  

Bioinformatic approaches  

We analyzed the MiSeq sequences with 360 combinations of bioinformatic softwares 

and parameters (referred to hereafter as bioinformatic approaches). These 

approaches differed in (1) the paired-end read assembly algorithm used (Assembly), 

(2) the fungal ITS1 extraction method (Extraction), (3) the method of sequence 

variation analysis (Variation), (4) the treatment of chimeric sequences (Chimeras) and 



(5) the final filtering of the community (Filtering). The various steps of the bioinformatic 

analyses are described below and in Figure 2. 

(1) Paired-end read assembly algorithm (Assembly)  

Two paired-end read assembly algorithms were compared (Fig. 2). Paired-end 

sequences were joined with the FASTQ-JOIN function of QIIME v1.8.0 

(Assembly=FASTQ-JOIN_OL) or with PEAR v0.9.10 (Assembly=PEAR_OV) 

(Caporaso et al. 2010; Zhang et al. 2014). For each algorithm, three minimum 

overlapping lengths (OLs) between forward and reverse sequences were tested (50 

bp, 100 bp and 150 bp). For the FASTQ-JOIN algorithm, no mismatch was allowed in 

the overlap region. We also considered the use of single forward (R1) sequences 

(Assembly=QUALITY_R1) (Fig. 2).  

(2) Fungal ITS1 extraction (Extraction) 

The ITS1 region was either extracted (Extraction=YES) from the high-quality 

sequences with ITSx v1.0.10 (Bengtsson-Palme et al. 2013), or not extracted 

(Extraction=NO) (Fig. 2). ITSx uses an alignment of conserved ribosomal genes to 

identify and delineate highly variable regions, such as the ITS1 region, accurately. The 

minimum length of the region between the binding sites for the ITS1F-ITS2 primers is 

about 100 bp (Motooka et al. 2017; Palmer and Jusino et al. 2018), but the ITS1 region 

sensu stricto (as defined by ITSx) is shorter, as it does not include portions of the 18S 

and 5.8S flanking regions. We thus discarded sequences of less than 100 bp in length 

in cases in which the ITS1 region was not extracted, or 50 bp in cases in which it was 

extracted. 

(3) Sequence variation analysis (Variation) 



Two clustering algorithms were compared (Fig. 2). Fungal ITS1 sequences displaying 

more than 97% similarity were clustered into OTUs with the popular USEARCH v7.0 

program (Variation=USEARCH) (Edgar 2010) or with the open-source alternative 

VSEARCH v2.5.2 (Variation=VSEARCH) (Rognes et al. 2016). A similarity threshold 

of 97% was chosen as this threshold is commonly used in fungal metabarcoding 

studies (e.g. Bakker 2018; Durand et al. 2017) and has been shown to perform well on 

a mock community (Tedersoo et al. 2015), despite its tendency to aggregate closely 

related species (Ryberg 2015; Bálint et al. 2016). All other settings were left to default. 

Sequences with a Phred score greater than 30 over 75% of the read length were 

included in the clustering process. Quality filtering was performed with the QIIME script 

split_libraries_fastq.py (Fig. 2).  

We also used the R package DADA2 (Callahan et al. 2016) to correct sequencing 

errors and to infer exact amplicon sequence variants (Variation=DADA2) (Fig. 2). We 

retained only reads with less than one expected error (given the quality scores; Edgar 

and Flyvbjerg 2015). Quality filtering was performed with the fastqFilter function. 

Quality data were lost during the extraction step. We therefore applied DADA2 only to 

the fungal ITS1 sequences not extracted with ITSx. This analysis strategy is different 

from that recommended in the DADA2 tutorial 

(http://benjjneb.github.io/dada2/tutorial.html). We, therefore, also included an 

approach adhering to the strategy described in the tutorial 

(Assembly=CUTADAPT_MERGED) (Fig. 2). Primers were removed from both forward 

and reverse reads, with Cutadapt v1.13 (Martin 2011). The forward and reverse reads 

were then truncated (at 200 bp and 180 bp, respectively) and we retained only reads 

with fewer than two expected errors (as in the default parameters of the filterAndTrim 



function). Reads were merged after the inference of sequence variation as described 

in the tutorial. 

(4) Treatment of chimeric sequences (Chimeras) 

The chimeric sequences identified were either removed (Chimeras=Removed) or 

retained in the dataset (Chimeras=Retained) (Fig. 2). Detection with QIIME script 

identify_chimeric_seqs.py was performed on the demultiplexed reads before 

USEARCH clustering (Fig. 2), as recommended in the QIIME tutorial 

(http://qiime.org/scripts/identify_chimeric_seqs.html). Following VSEARCH clustering, 

we combined de novo and reference-based strategies for chimera detection. The de 

novo strategy used the UCHIME (Edgar et al. 2011) algorithm implemented in 

VSEARCH. The reference-based strategy used the ITS1-only UNITE-UCHIME dataset 

v7.2 (as of 2017-10-10) as a reference (Nilsson et al. 2015). Following DADA2 

sequence variation analysis, chimeric sequences were removed with the 

removeBimeraDeNovo function, using the consensus option. 

(5) Final filtering of the community (Filtering) 

Finally, we filtered the OTU and ASV tables (Fig. 2). Five filtering methods were 

compared: Filtering=1 involved removing OTUs (or ASVs) composed of a single 

sequence; Filtering=10 involved removing OTUs (or ASVs) for which less than 10 

sequences were obtained when all three replicates were considered; Filtering=RA 

involved removing OTUs (or ASVs) with a relative abundance lower than 0.005% of 

the total number of sequences; Filtering=LULU used the LULU curation algorithm 

(Frøslev et al. 2017) to collapse erroneous OTUs (or ASVs) into their parent OTUs; 

Filtering=All involved keeping all OTUs or ASVs, regardless of the number of 

sequences obtained. Representative sequences were assigned to taxa with the QIIME 



script assign_taxonomy.py, with BLAST v2.2.22 (Altschul et al. 1990) and default 

QIIME parameters (e-value < 0.001; identity ≥ 90%) against the local database of 

Sanger sequences for the fungal strains of the mock community. The LULU curation 

algorithm was applied with both default settings and a set of parameters adjusted to 

the features of the mock community. Three parameters can be tuned in LULU: the 

minimum sequence similarity between a ‘potential daughter’ and its ‘potential parent’ 

(default 84%), the minimum ratio of parent OTU abundance to daughter OTU 

abundance in all samples (default 1) and their minimum co-occurrence rate across 

samples (default 95%). Increasing the first parameter is only advised when the barcode 

region has little variation or when few PCR and sequencing errors are expected, and 

changing the second parameter is generally not recommended (Frøslev et al. 2017). 

Therefore we tuned the third parameter. We lowered its value to 66.6% to account for 

the small number of samples in our study (3 replicate samples per bioinformatic 

approach).  

Comparison criteria 

We defined three criteria for comparisons of the ability of the bioinformatic approaches 

to recover the mock community: sensitivity, precision and compositional similarity. 

Sensitivity and precision were defined as the true positive rate TP/(TP+FN) and the 

positive predictive value TP/(TP+FP), respectively, where TP is the number of true-

positive OTUs (or ASVs), FN is the number of false-negative OTUs (or ASVs) and FP 

is the number of false-positive OTUs (or ASVs). True-positive OTUs corresponded to 

fungal strains present in the mock community and identified by the bioinformatic 

approach considered. False-negative OTUs corresponded to fungal strains present in 

the mock community but not detected by the bioinformatic approach considered. False-



positive OTUs corresponded to all other OTUs. If several OTUs were assigned to the 

same fungal strain of the mock community (i.e. ‘split’ OTUs), only the most abundant 

was considered to be a true-positive OTU, the others being considered false-positive 

OTUs. Compositional similarity was defined as the Bray-Curtis similarity (Odum 1950) 

between the community recovered and the mock community. It was calculated as 1-

BC, where BC is the Bray-Curtis dissimilarity obtained from the vegdist function of the 

R vegan package (Oksanen et al. 2017), assuming a uniform distribution of sequences 

between the fungal strains in the mock community. The expected number of 

sequences per fungal strain in the mock community was calculated for each replicate 

and each bioinformatic approach as the total number of high-quality sequences 

(obtained after the Filtering step) divided by the total number of fungal strains in the 

mock community. Ribosomal RNA gene copy number information was not available 

for each strain and was not used to adjust the expected number of sequences. 

All three criteria theoretically range between 0 and 1. They equal 1 when the algorithm 

successfully identifies all members of the mock community. However, maximum 

sensitivity may be below 1 if the sequences of some fungal strains are absent from the 

raw Illumina dataset. We, therefore, estimated the total number of strains present in 

the raw dataset, by aligning the forward and reverse MiSeq sequences with the ITS1 

Sanger sequences, with a similarity threshold of 100% and an alignment length 

threshold of 90% of the length of the shorter sequence. Alignments were performed 

with VSEARCH (--usearch_global) (Rognes et al. 2016), using the following 

parameters: --id 1 –userout --userfields query+target+qcov+tcov+id --maxaccepts 20 

–top_hits_only.  

Results 



Assessment of maximum sensitivity 

The manually curated Sanger database contained the ITS1 sequences of the 189 

fungal strains of the mock community (Fig. 1 and Table S1). Several strains had 

identical Sanger sequences for ITS1: two strains from the genus Alternaria, six from 

the genus Botrytis (B. calthae, B. pseudocinerea, B. ranunculi and three strains of B. 

cinerea), two strains from two different species of Colletotrichum (C. destructivum and 

C. higginsianum), two strains of Craterellus cornucopioides, four pairs of strains from 

the genus Fusarium (F. acuminatum and F. avenaceum, F. langsethiae and F. 

sporotrichioides, F. oxysporum and F. commune, F. verticillioides and another species 

of the F. fujikuroi species complex), two strains from two different species of Lepista 

(L. irina and L. nuda) and two strains from the genus Zymoseptoria. The Sanger 

database, therefore, contained 175 unique ITS1 sequences. 

Only 160 of these 175 unique ITS1 sequences were detected in the raw Illumina MiSeq 

dataset (Table S1), suggesting that the other 15 strains were either not amplified by 

the ITS1F-ITS2 primer pair, not sequenced or were sequenced with errors. Eleven of 

these strains were detected in the Illumina data when the similarity threshold between 

Sanger and Illumina sequences was lowered to 93.5% (Table S1), suggesting that their 

apparent absence was caused by mismatches between the Sanger sequence and the 

Illumina sequences. Four of these eleven strains had ambiguous bases in the Sanger 

sequence, preventing a perfect match with Illumina sequences. These ambiguous 

bases might be due to the within-strain polymorphism of the ITS region that exists for 

some fungi (Fiers et al. 2011). The other four ITS1 sequences absent from the raw 

Illumina dataset came from the following species: Lepiota clypeolaria, Mycena 

abramsii, M. galopus and Panellus stipticus. The first species was successfully 



amplified with the ITS1F-ITS4 primer pair before Sanger sequencing and possessed 

the exact sequence of the ITS2 primer, suggesting that its absence from the Illumina 

dataset was caused by DNA pooling biases rather than lack of amplification. In 

contrast, the sequence of the ITS2 primer was detected with some mismatches for the 

three last species. Their absence could be due to a lack of amplification by the ITS1F-

ITS2 primer pair (Table S1). The maximum sensitivity attainable by any bioinformatic 

approach (that is, the maximum proportion of fungal strains that could actually be 

found) therefore ranged from 84.7% to 90.1%. The lower bound was obtained by 

considering that the raw Illumina dataset contained the ITS sequences of 160 strains 

(of 189), while the upper bound also took into account the nine strains sequenced with 

some errors. 

Influence of Assembly, Extraction, Variation, Chimera and Filtering 

on sequencing data 

(1) Influence of Assembly 

In total, we obtained 143873 paired-end Illumina reads of 250 bp each (Table S2). We 

obtained 43352, 56406 and 44115 sequences for the three replicates. The mean 

quality of the forward (R1) reads was slightly higher than that of the reverse (R2) reads 

(35.59 versus 34.31, respectively) (Table S2). 

The choice of paired-end read assembly algorithm strongly influenced the number, 

length and quality of the consensus sequences (Table S2 and Figure S1). FASTQ-

JOIN retained on average 53.1% of the raw reads (whatever the minimum overlapping 

length), whereas PEAR retained on average 96.3% of the raw reads (Table S2). Mean 

sequence quality was also higher for PEAR than for FASTQ-JOIN (Table S2 and 

Figure S1). More than 90% of assembled reads passed the quality filter, whatever the 



assembly algorithm used (Table S3). Thus, PEAR generated twice as many high-

quality assembled reads as FASTQ-JOIN (Table S3).    

(2) Influence of Extraction 

The extraction of the ITS region with ITSx (Bengtsson-Palme et al. 2013) retained 97% 

to 99% of the assembled reads, but only 59% of the forward reads (Table S4). Reads 

were 118 nucleotides shorter, on average, after extraction. Most reads were between 

200 and 300 bp long before extraction (Table S2), versus 100 to 200 bp after extraction 

(Table S4).  

(3) Influence of Variation and Chimera 

The total number of OTUs (or ASVs) varied by several orders of magnitude, depending 

on the method used to analyze sequence variation. For example, USEARCH identified 

878 non-chimeric OTUs and 71 chimeric OTUs on average with the following 

parameters, Assembly=QUALITY_R1 and Extraction=No. VSEARCH identified 577 

non-chimeric OTUs and 315 chimeric OTUs with the same parameters. DADA2 

identified 157 non-chimeric ASVs and 40 chimeric ASVs. These striking differences 

were found for all mock replicates (Figure S2).  

(4) Influence of Filtering 

The final filtering step also strongly influenced the number of OTUs. For instance, 

removing OTUs with less than 10 sequences (Filtering=10) reduced the number of 

non-chimeric OTUs identified by USEARCH from 878 to 329, and the number of non-

chimeric OTUs identified by VSEARCH from 577 to 257, for Assembly=QUALITY_R1 

and Extraction=No. The LULU curation algorithm reduced even more the number of 

non-chimeric OTUs but, in contrast to other filtering methods, it did not lose any 



sequence (Table S5).  ASV tables were more robust than OTU tables to variations in 

the filtering methods (Table S5).    

Comparison of the bioinformatic approaches on the basis of 

sensitivity, precision and compositional similarity criteria 

Bioinformatic analyses generated 360 matrices containing the number of sequences 

per OTU (or ASV) for the three replicates (Fig. 2). The matrices differed considerably. 

For example, the mean number of OTUs (or ASVs) per replicate ranged from 57 to 

1562, depending on the bioinformatic approach used (Table S6). Sensitivity, precision 

and compositional similarity values were calculated at replicate level. The ranking of 

approaches according to these criteria differed between the three mock replicates 

(Table S6), but the approaches that performed very well according to a given criterion 

for one replicate generally also performed well for the other two replicates. We, 

therefore, used the mean value of the criteria over the three replicates to rank the 

bioinformatic approaches.  

The sensitivity of the 360 bioinformatic approaches ranged from 22% to 87% (Table 

S6). The 10 most sensitive approaches are listed in Table 1. All used USEARCH or 

VSEARCH to cluster sequences into OTUs and did not extract the fungal ITS1 region 

with ITSx. All these approaches produced very large numbers of OTUs, up to seven 

times more than the actual number of fungal strains in the mock community (Table 1 

and Fig. 3A). They, thus, recovered most of the fungal strains of the mock community 

but also generated many false-positive OTUs (Fig. 3B). The precision of these 

approaches was, therefore, very low (Fig. 4). However, they displayed a high degree 

of compositional similarity to the mock community despite the large number of false-

positive OTUs (Table 1).  



Precision (the proportion of OTUs (or ASVs) corresponding to true strains), ranged 

from 9% to 98% (Table S6). The 10 most precise approaches are listed in Table 2. All 

used DADA2 to identify amplicon sequence variants (Fig. 4), did not extract the ITS 

region with ITSx and used the LULU curation algorithm. The 8 first approaches used 

assembled reads as input data (Table 2). Removing chimeras with DADA2 before 

LULU curation appeared to be unfavourable, as it slightly reduced the sensitivity of all 

these top-ranking approaches (Table 2). Adjusting the minimum co-occurrence 

threshold of the LULU algorithm did not influence the results (data not shown). Unlike 

the most sensitive approaches, the most precise approaches yielded fewer ASVs than 

there were fungal strains in the mock community (Table 2) and produced very few 

false-positive ASVs (Fig. 3B). However, they did not recover all mock strains. The most 

precise approach, P1, recovered only 36% of the fungal strains of the mock community 

(Table 2 and Fig. 3B).  

Compositional similarity to the mock community ranged from 0.15 to 0.396 (Table S6). 

The 10 best approaches according to this criterion are listed in Table 3. Like the most 

precise approaches, these 10 approaches used DADA2 to identify amplicon sequence 

variants (Fig. 2) and did not extract the ITS region with ITSx. However, unlike the most 

precise approaches, most used non-assembled reads as input data and they did not 

use the LULU curation algorithm. The approach with the best performance according 

to the similarity criterion (Si1) used R1 reads as input data, retained chimeras and 

applied no filters to the final ASV table. This approach recovered 77.4% of the fungal 

strains from the mock community but had a relatively low precision (Table 3). In 

contrast, the Si5 approach, which used the same options but with the removal of 

chimeras, had a precision increased by 17%. This is because chimera removal 

efficiently discarded false positive ASVs, lowering their number from 51 to 13 (Fig. 3B). 



As a side effect, chimera removal triggered the loss of 3 true positive ASVs, slightly 

reducing the sensitivity of the Si5 approach (Fig. 3B). The removal of primers (as 

recommended in the DADA2 tutorial) did not improve the performance of these two 

top-ranking approaches. It slightly lowered the precision of the Si1 approach (Table 

S7). The compositional similarities of the Si1 and Si5 approaches were 0.396 and 

0.393, respectively (Table 3). These values were among the highest obtained, but were 

far from the maximal value of 1 indicating an exact match between the observed and 

expected community. This difference resulted from the huge variability in the number 

of sequences per ASV, contrasting with the expected uniform distribution of reads 

between fungal strains (Fig. S3). The expected number of reads for each fungal strain 

was then multiplied by the number of fungal strains with an identical ITS1 sequence 

(Fig. S3), which increased compositional similarity values (Table S6) but did not 

change the ranking of the bioinformatic approaches (Spearman ρ = 0.99; p < 2.2e-16).  

Finally, comparison of the bioinformatic approaches revealed that some steps that are 

commonly recommended, such as ITS extraction and chimera removal, can have 

positive effects but also negative ones. For instance, the extraction of the ITS1 region 

with ITSx before USEARCH and VSEARCH clustering increased significantly precision 

but it decreased sensitivity (Fig. S4), suggesting that ITS extraction discarded some 

false-positive OTUs but also some true-positive OTUs. Similarly, bioinformatic 

approaches that kept chimeras after DADA2 sequence correction (Si1-Si4 in Table 3) 

were slightly more sensitive than approaches that remove chimeras (Si5-Si8 in Table 

3), indicating that chimera removal discarded some true-positive OTUs. This negative 

effect of chimera removal also occurred in the USEARCH and VSEARCH pipelines, 

but to a lower extent (Fig. S2).  



Discussion 

Metabarcoding approaches have revolutionized fungal ecology over the last decade 

(Hibbett et al. 2009) and have become the gold standard for describing the richness 

and composition of communities and the networks of associations between community 

members (Bálint et al. 2016). They have been so successful that fungal ecologists are 

struggling to cope with the boom in sequencing platforms, bioinformatic pipelines, 

taxonomic databases and community analysis tools. Benchmark studies and 

methodological reviews are required to help them make the most appropriate choices 

(e.g. Lindahl et al. 2013; Bálint et al. 2016; Weiss et al. 2016; Pollock et al. 2018). In 

this study, we focused on one aspect of the metabarcoding approach, bioinformatic 

analysis, assessing its effect on the recovery of community richness and composition. 

We compared the ability of 360 bioinformatic approaches to recover a mock community 

of fungal strains commonly found in soils and plants and including 97 genera from 

subkingdom Dikarya. This mock community was much larger than the fungal mock 

communities analyzed in previous studies (Amend et al., 2010; Ihrmark et al., 2012; 

Nguyen et al. 2015; Taylor et al., 2016; Cline et al. 2017; Bakker 2018) and covered 

both the Ascomycota and Basidiomycota clades (Fig. 1).  

We selected three criteria for comparing bioinformatic approaches: sensitivity, 

precision and compositional similarity to the mock community. The first two criteria are 

related to the number of OTUs (or ASVs) recovered and are commonly used in 

benchmark studies (see Weiss et al. 2016). The third takes relative abundance into 

account and has been used by Bakker (2018). We believe that this third criterion is 

very important, particularly if the fungal metabarcoding data are to be used to 

reconstruct fungal association or interaction networks for biocontrol (Poudel et al. 



2016; Vacher et al. 2016b; Hassani et al. 2018) or biomonitoring applications (Bohan 

et al. 2017; Karimi et al. 2017; Derocles et al. 2018). Indeed, network inference requires 

the most accurate possible recovery of microbial species and their abundances (Faust 

and Raes 2012; Friedman and Alm 2012; Berry and Widder 2014; Weiss et al. 2016).  

Our comparison revealed huge discrepancies between bioinformatic approaches, 

thereby confirming the importance of carefully selecting the most appropriate method 

for the analysis of fungal metabarcoding data (Nguyen et al. 2015; Cline et al. 2017; 

Anslan et al. 2018). The number of operational taxonomic units (OTUs) or amplicon 

sequence variants (ASVs) identified by the bioinformatic approaches compared ranged 

from 57 to 1562, even though there were only 189 strains in the mock community. 

These results confirm that fungal community analyses should not focus on absolute 

values of richness estimated from metabarcoding data, but rather on the relative 

changes in richness between samples (Cline et al. 2017). The percentage of fungal 

strains recovered by the bioinformatic approaches ranged from 22% to 87.5%. This 

second value may be considered a very good result, because we estimated the 

maximum sensitivity attainable by a bioinformatic approach, given our data, at 90.1%. 

Indeed, not all the strains in the mock community could be distinguished on the basis 

of their ITS1 sequences, and several strains were either not amplified at all or not 

accurately amplified. Our analyses revealed that four fungal species (Lepiota 

clypeolaria, Mycena abramsii, M. galopus, and Panellus stipticus) were absent from 

the sequence dataset (Fig. 1), suggesting a lack of amplification by the so-called 

“universal” primers (Bellemain et al. 2010; Tedersoo and Lindahl 2016) or a 

sequencing failure (Nguyen et al. 2015; Palmer and Jusino et al. 2018).  

DADA2, a clustering-free software package (Callahan et al. 2016), effectively 

recovered the composition of the mock community. The top ten bioinformatic 



approaches in terms of performance for the compositional similarity criterion all used 

DADA2 to identify amplicon sequence variants. The total number of ASVs generated 

by these 10 approaches ranged from 148 to 197, which was therefore of the same 

order of magnitude as the total number of strains in the mock fungal community (i.e. 

189). We highlighted several options for increasing the efficiency of DADA2 for fungal 

metabarcoding datasets. Firstly, our results confirm that the use of single forward (R1) 

reads as input data is a good option (Nguyen et al. 2015). This made it possible to 

ensure that strains with longer ITS regions (such as those of the genus Cantharellus, 

for instance; Feibelman et al. 1994) were not excluded. Based on our results, we also 

recommend retaining the primers for fungal communities amplified with the ITS1F-ITS2 

primer pair. Indeed, we found that primer removal did not improve the recovery of mock 

community composition. These findings may be accounted for by the absence of 

degenerate nucleotides in the ITS1F-ITS2 primer pair. Primer retention may be 

relevant in this case, because non-degenerate primers have no impact on the 

denoising step of DADA2. The merging of reads after sequence variation inference, as 

recommended in the DADA2 tutorial (http://benjjneb.github.io/dada2/tutorial.html), did 

not improve the recovery of the mock community either.  

The Si5 approach represented one of the best trade-offs between the three selection 

criteria among the 360 bioinformatic approaches compared. The Si5 approach used 

single forward (R1) reads as input. Quality filtering, sequence variation analysis and 

chimera removal were performed with DADA2 (Callahan et al. 2016). ITS1 extraction 

(Bengtsson-Palme et al. 2013) and downstream OTU table filtering were not required. 

The Si5 approach recovered the ITS1 regions of 80 out of 87 Ascomycota strains, 83 

out of 99 Basidiomycota strains and all 3 Mucoromycota strains (Fig. 1), suggesting 

that there was no detection bias against Ascomycota strains despite the intron insert 



downstream of the ITS1F primer binding site that might impair their amplification (see 

Taylor et al. 2016). We recommend the use of this simple bioinformatic approach in 

ecological studies of fungal communities, for the following reasons: (i) it did not 

overestimate the number of fungal strains, (ii) it was among the ten best bioinformatic 

approaches in terms of recovery of the composition of the mock community and (iii) it 

performed very well according to the two other criteria used for comparison (precision 

and sensitivity). Based on these results, the Si5 approach appears to be an appropriate 

bioinformatic approach for studies involving whole-community profiling and network 

inference. 

By contrast, the clustering algorithms of USEARCH (Edgar 2010) and VSEARCH 

(Rognes et al. 2016) should be favored in studies in which species detection is the 

main goal. These clustering algorithms generally overestimated the actual number of 

fungal strains, but were able to retrieve almost all detectable strains. Their sensitivity 

was close to the maximum value. The most sensitive approach, Se1, used single 

forward (R1) reads as input and clustered them with the VSEARCH algorithm. ITS1 

extraction (Bengtsson-Palme et al. 2013), chimera removal and downstream OTU 

table filtering were not required. In general, our comparison revealed that the steps of 

ITS extraction and chimera removal can eliminate fungal strains that are actually 

present in the community and should not be systematically used. The second most 

sensitive approach, Se2, used the USEARCH clustering algorithm. These two highly 

sensitive bioinformatic approaches are potentially useful for the early detection of 

invasive species (Comtet et al. 2015), including fungal pathogens (Munck and Bonello 

2018), for the detection of emerging pathogens accounting for the decline or death of 

host populations (Ricciardi et al. 2017), and for exploring environmental reservoirs of 

pathogens (Agtmaal et al. 2017). On the other hand, if the purpose of a study is to 



focus only on fungal species present with high certainty (i.e. on a precise but 

incomplete community), then DADA2 and LULU (Frøslev et al. 2017) should be 

combined and applied to assembled sequences. The Pi3 approach, that merges reads 

after sequence variation inference as recommended in the DADA2 tutorial, seems to 

be a good compromise in this case.  

Overall, our study highlights the importance of carefully selecting the bioinformatic 

approach to be used according to the objective of the metabarcoding study. Indeed, 

the ability of bioinformatic approaches to recover fungal strains and the relative 

abundances of the strains recovered varied greatly. Some approaches detected almost 

all strains of the mock community but overestimated community richness, whereas 

others retrieved the actual richness and composition of the mock community more 

accurately. The former are more appropriate for the detection of target species, 

whereas the latter are more appropriate for community ecology studies. However, 

none of the bioinformatic approaches compared recovered the mock community 

perfectly. In particular, none of the approaches found the expected distribution of 

sequences between fungal strains. This may be due to differences in the number of 

ribosomal RNA gene repeats between fungal species (Ganley and Kobayashi 2007), 

and imperfections in equimolar pooling of DNA samples, together with biased 

amplification for pooled species (Palmer and Jusino et al. 2018). Because of these 

biases, current fungal community analyses should not focus on the within-sample 

distribution of taxa abundance, but rather on the changes in taxa abundance between 

samples. Future methodological developments should focus on reducing biases 

caused by molecular biology steps (Nichols et al. 2018; Porter and Hajibabaei 2018)  

and on improving the bioinformatics pipelines to better recover the abundances of 

fungal strains. Our comparison of bioinformatics approaches could be extended, since 



the 360 bioinformatic approaches compared here constitute only a small fraction of the 

approaches that could be used to analyze fungal metabarcoding data. Other 

approaches may give better results, and their ranking may vary with sequence data 

quality (Nguyen et al. 2015). Future bioinformatic approach comparisons should 

therefore be based on multiple mock communities sequenced independently. They 

could also include error-correction methods alternative to that of DADA2, such as 

UNOISE2 (Edgar 2016), or recent clustering approaches, such as OptiClust (Westcott 

and Schloss 2017) or SeekDeep (Hathaway et al. 2018), or consider reference-based 

clustering approaches (Cline et al. 2017; Halwachs et al. 2017; but see Westcott and 

Schloss, 2015). All the data required for the extension of our methodological 

comparison are provided.  

Data Availability 

The raw sequence data were deposited in Dataverse and are available in the FASTQ 

format at https://doi.org/10.15454/8CVWRR. The code is available as an archive at 

https://doi.org/10.15454/VKTWKR. 
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Figure Legends 

Figure 1 – Taxonomic composition of the artificial fungal community. The terminal 

nodes of the tree are the ITS1 sequences (n = 175) of the fungal strains (n = 189) that 

constitute the mock community. The ITS1 sequences that were not present in the raw 

Illumina dataset are indicated with a cross and those that were recovered by the 

recommended bioinformatic approach (Si5, Table 3) are indicated with a black circle.  

Figure 2 – Overview of the 360 bioinformatic approaches compared in this study. The 

Illumina MiSeq sequences were (1) assembled with FASTQ-JOIN (Caporaso et al. 

2010) or PEAR (Zhang et al. 2014) with three minimum overlapping lengths (50 bp, 

100 bp or 150 bp), or not assembled. In this latter case, single forward (R1) reads were 

used. After quality filtering, (2) the ITS1 region was extracted from the reads with ITSx 

(Bengtsson-Palme et al. 2013), or not extracted. (3) Sequence variations were then 

analyzed with DADA2 (Callahan et al. 2016), USEARCH (Edgar 2010) or VSEARCH 

(Rognes et al. 2016) and (4) chimeras were either retained or removed. (*: for 

USEARCH, chimera detection was performed before clustering). Finally, (5) the 

datasets were either filtered by removing rare or erroneous OTUs (or ASVs), or left 

unfiltered. Filtering thresholds (T) were based on the number of sequences per OTU, 

or on their relative abundance (RA), or OTU curation was performed using the LULU 

algorithm (Frøslev et al. 2017). §: When DADA2 was used, an alternative method of 

read processing (CUTADAPT_MERGED) was included. 



Figure 3 – Richness estimates for the top four approaches. (A) Total number of OTUs 

(or ASVs) retrieved by the most sensitive approach (Se1; Table 1), the most precise 

approach (P1; Table 2), the approach with the best performance in terms of 

compositional similarity to the mock community (Si1; Table 3) and the bioinformatic 

approach recommended in this study (Si5; Table 3). The black horizontal line indicates 

the expected richness. (B) Total number of OTUs (or ASVs) per bioinformatic approach 

depending on OTU (or ASV) category. TP = true positives, FN = false negatives and 

FP = false positives. Results were averaged over the three replicates and rounded for 

clarity. 

Figure 4 – Values of precision and (A) sensitivity or (B) compositional similarity to the 

mock fungal community, for all 360 bioinformatic approaches. Each dot corresponds 

to the mean value obtained for an approach over the three replicates. The methods 

used to analyze sequence variation (DADA2, USEARCH or VSEARCH) are 

highlighted with different colors and symbols. Se1 (Table 1), P1 (Table 2) and Si1 

(Table 3) correspond to the most sensitive approach, the most precise approach and 

the approach with the best performance in terms of compositional similarity to the mock 

community, respectively. The bioinformatic approach recommended in this study is Si5 

(Table 3). 

 











Table 1 – List of the 10 most sensitive approaches. Sensitivity, precision and similarity 

values were averaged over the three replicates for each bioinformatic approach. 

Richness is defined as the mean number of OTUs identified by the bioinformatic 

approach. 

Approach Assembly Extraction Variation Chimeras Filtering Richness Sensitivity Precision Similarity 

Se1 QUALITY_R1 No VSEARCH Retained All 892 0.875 0.186 0.362 

Se2 QUALITY_R1 No USEARCH Removed All 878 0.873 0.188 0.360 

Se3 QUALITY_R1 No USEARCH Retained All 949 0.871 0.174 0.3608 

Se4 QUALITY_R1 No VSEARCH Removed All 577 0.871 0.286 0.366 

Se5 PEAR_50 No USEARCH Retained All 1410 0.869 0.117 0.354 

Se6 PEAR_100 No USEARCH Retained All 1413 0.866 0.116 0.355 

Se7 PEAR_50 No VSEARCH Retained All 1257 0.866 0.131 0.357 

Se8 PEAR_100 No VSEARCH Retained All 1246 0.862 0.131 0.357 

Se9 PEAR_50 No USEARCH Removed All 1287 0.861 0.127 0.354 

Se10 QUALITY_R1 No VSEARCH Retained 1 612 0.861 0.266 0.364 

 

 



Table 2 – List of the 10 most precise approaches. Sensitivity, precision and similarity 

values were averaged over the three replicates for each bioinformatic approach. 

Richness is defined as the mean number of ASVs. LULU was applied with default 

settings. 

Approach Assembly Extraction Variation Chimeras Filtering Richness Sensitivity Precision Similarity 

P1 PEAR_150 No DADA2 Retained LULU 69 0.358 0.976 0.215 

P2 PEAR_150 No DADA2 Removed LULU 67 0.347 0.976 0.212 

P3 CUTADAPT_MERGED No DADA2 Retained LULU 100 0.515 0.973 0.271 

P4 CUTADAPT_MERGED No DADA2 Removed LULU 98 0.504 0.973 0.268 

P5 FASTQJOIN_150 No DADA2 Retained LULU 61 0.312 0.973 0.187 

P6 FASTQJOIN_150 No DADA2 Removed LULU 59 0.302 0.972 0.182 

P7 PEAR_100 No DADA2 Retained LULU 96 0.49 0.969 0.251 

P8 PEAR_100 No DADA2 Removed LULU 94 0.48 0.968 0.249 

P9 QUALITY_R1 No DADA2 Retained LULU 107 0.547 0.966 0.278 

P10 QUALITY_R1 No DADA2 Removed LULU 105 0.536 0.965 0.275 

 



Table 3 – List of the 10 approaches with the best performances in terms of 

compositional similarity to the mock community. Sensitivity, precision and similarity 

values were averaged over the three replicates for each bioinformatic approach. 

Richness is defined as the mean number of ASVs. The bioinformatic approach 

recommended in this study (Si5) is shown in bold. 

Approach Assembly Extraction Variation Chimeras Filtering Richness Sensitivity Precision Similarity 

Si1 QUALITY_R1 No DADA2 Retained All 197 0.774 0.743 0.396 

Si2 QUALITY_R1 No DADA2 Retained 1 197 0.774 0.743 0.396 

Si3 QUALITY_R1 No DADA2 Retained RA 192 0.758 0.75 0.396 

Si4 QUALITY_R1 No DADA2 Retained 10 187 0.739 0.751 0.396 

Si5 QUALITY_R1 No DADA2 Removed All 157 0.758 0.915 0.395 

Si6 QUALITY_R1 No DADA2 Removed 1 157 0.758 0.915 0.395 

Si7 QUALITY_R1 No DADA2 Removed RA 152 0.743 0.921 0.395 

Si8 QUALITY_R1 No DADA2 Removed 10 148 0.723 0.924 0.394 

Si9 PEAR_50 No DADA2 Retained All 212 0.765 0.684 0.391 

Si10 PEAR_50 No DADA2 Retained 1 212 0.765 0.684 0.391 

 




