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Highlights: 

● Strategies for future high throughput, non-destructive and cost-efficient measurement of 

plant traits are highlighted. 

● The use of low-cost and DIY approaches in phenomics provides opportunities for rapid 

prototyping and sensor development, but it has to be accompanied by robust protocols, 
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data harmonization and provenance that allow data reuse and cross validation of 

phenotypes 

● Below-ground phenotyping is still a major bottleneck and there is a strong push for 

developing new technologies allowing the measurement of root-related traits 

 

Abstract 

At the 4th International Plant Phenotyping Symposium meeting of the International Plant 

Phenotyping Network (IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to 

consider ways forward with sensors for phenotyping. The increasing number of field 

applications provides new challenges and requires specialised solutions. There are many 

traits vital to plant growth and development that demand phenotyping approaches that are 

still at early stages of development or elude current capabilities. Further, there is growing 

interest in low-cost sensor solutions, and mobile platforms that can be transported to the 

experiments, rather than the experiment coming to the platform. Various types of sensors 

are required to address diverse needs with respect to targets, precision and ease of 

operation and readout. Converting data into knowledge, and ensuring that those data (and 

the appropriate metadata) are stored in such a way that they will be sensible and available to 

others now and for future analysis is also vital. Here we are proposing mechanisms for “next 

generation phenomics” based on our learning in the past decade, current practice and 

discussions at the IPPN Symposium, to encourage further thinking and collaboration by plant 

scientists, physicists and engineering experts. 

 

Keywords: imaging; IPPN; metadata; Next Generation Phenomics; Plant phenotyping; 

sensor development; trait value 
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1. Introduction 

Advances in the ability to quantify the expression of traits on large numbers of plants has 

exceeded expectations in the past decade or two. However, the greater decrease in the cost 

of genotyping has maintained phenotyping as the major bottleneck for gene discovery and 

molecular marker development. Recent progress in phenotyping has been thoroughly 

reviewed [1-6] and the number of papers published describing innovations in sensor 

technologies and phenotyping methods has increased steadily (see citations here and in 

recent reviews, above). At the 4th International Plant Phenotyping Symposium meeting of the 

International Plant Phenotyping Network in 2016 at CIMMYT in Mexico [7], a workshop was 

convened to consider challenges and opportunities, and to explore the way forward with 

sensors for phenotyping. This paper discusses some of the points arising from that 

workshop, but is not a comprehensive treatment of all the current issues in this area. The 

objective here is to highlight a few important matters in the phenotyping community, to 

initiate new thinking and research activity and issue a call for joint community effort across 

disciplines towards next generation phenomics. In addition, a brief review of the phenotyping 

horizon and new-generation sensors provides a glimpse of new tools that may be available 

in the near future. 

 

Sensor-based plant phenotyping is an essential and integral part of a holistic phenomics 

approach to address the complex genotype x environment x management (GxExM) 

interactions in fundamental and applied plant science research, germplasm screening in 
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breeding programs, precision agriculture and digital farming. Phenomics can be integrated 

into a systems biology multi-omics approach [8]. Whereas most non-invasive methods have 

been originally developed for high-throughput phenotyping (HTP) applications under 

controlled conditions, the increasing number of field applications provides new challenges 

and often requires specialised solutions.  

 

There are extensive lists of key phenotypes that must be measured to understand specific 

questions of plant function, or target traits that contribute to improvements in crop yield, yield 

stability, resource capture and use efficiency (e.g. water and nitrogen), quality (or chemical 

composition) of the harvested product, or resistance to abiotic or biotic stresses. 

Furthermore, various mechanisms contribute to multi-genic traits, so the individual 

underlying trait components must be phenotyped. Many plants also exhibit important 

characters that are unique to their species; in brief, there is no shortage of phenotyping 

challenges. Some well-established stories have been around for more than half a century, 

such as assessing vegetation vs. non-vegetation via remote-sensing and using multispectral 

sensors to quantify the dynamics of canopy growth and senescence [9]. The emphasis has 

been rightly placed, as the extent of light capture and utilization by the canopy drives 

productivity. However, there are many other traits that are vital to plant growth and 

development, often requiring measurement at the appropriate temporal and spatial scales. 

These demand HTP phenotyping approaches that are still at early stages of development, or 

elude current capabilities. Examples, discussed further below, include fertility of reproductive 

structures; photosynthetic rate; biomass; growth, water and nutrient uptake activity of roots 

in the field, etc. Thus, complex or mega-traits need to be broken down into component traits 

that can be monitored and quantitatively assessed using the appropriate choice of sensor. 

Table 1 contains a compilation of various agronomically relevant traits related to growth and 

development, morphology, physiology, biotic interactions, and the relevant tissue that need 

to be phenotyped. The currently used methods and their limitations are complemented by 

the technologies under development, which are elaborated in Section 2. The feasibility and 
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impact of these traits on plant biology and crop improvement varies considerably (Fig.1). The 

constraints and demands of current and prospective phenotyping solutions, such as 

development costs and time, need to be taken into account to prioritise the focus for 

improvements, which is addressed in Section 3. 

Sophisticated instrumentation and platforms are being developed to increase throughput (the 

numbers of plants/genotypes that can be phenotyped per experiment or per year). However, 

in many cases costs also increase, putting many of these achievements out of reach for 

researchers or companies with limited budgets. Static or plant-to-sensor facilities (indoor or 

field-based) also have limited capacity, and only a fixed number of projects can be taken into 

the pipeline. Therefore, there is growing interest in low-cost sensor solutions, and mobile 

platforms that can be transported to the plants, rather than the plant to the platform. Also, 

user needs in throughput, cost-efficiency, precision, spatial and temporal resolution, 

accuracy and precision, user friendliness, degree of automatization and complexity of data 

output are very diverse. Thus, various types of sensors are required to address the very 

diverse and objective-bound needs. The number of commercially available sensors provided 

by the industry are currently limited and not able to cover all the diverse and specialised 

needs of scientists and end users. Areas of challenge in coming years are to: scale-up low 

throughput methods; scale-down large or heavy equipment; reduce the cost of expensive 

instruments without extensively compromising precision or reliability; accelerate methods by 

narrowing down to the essentials. Examples of recent developments in low-cost and ‘do-it-

yourself’ (DIY) sensors, and the requisite cautions, are discussed further, below. 

 

One of the hurdles for next generation phenomics is to collect the right data on the right 

target at the right time and under the right conditions to address the right questions. Other 

components are the essential step of converting these data into knowledge, and ensuring 

that these data (and the appropriate metadata) are stored in such a way that they will be 

intuitive and available to others now and for future analysis. 
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2. Next-generation sensors 

Instrumentation capabilities are in constant evolution toward greater scales and throughput, 

aiming to describe more and more complex phenomena. Initially, adapting off-the-shelf 

technologies for phenotyping applications has been the main trend. More recently, greater 

sophistication in adapting acquisition solutions have appeared. Nowadays, the increased 

visibility of the HTP domain, coupled with strong technological investment from scientific 

teams, is driving sensor manufacturers to adapt their products to specific uses for 

measurements of plant traits. For example, industrial Light Detection and Ranging (LiDAR) 

systems working in the red band can be used for spatial distribution of green tissues within a 

canopy [10]. LiDAR provides a detailed 3D reconstruction of the canopy but lacks 

information about the canopy bulk density, which is necessary for estimating actual biomass 

[11]. The estimation of actual biomass could be enhance by several approaches: combining 

the 3D plant reconstruction from LiDAR, aerial imagery, and spectral [12-14] or microwave 

sensing [15]; RGB imaging followed by a void filling process, or adjusting the contrasts 

between dark and light colours [16] . Such fusion of LiDAR and multi-spectral imaging in one 

sensor, which would allow simultaneous retrieval of structural and biochemical traits without 

the limitations of passive remote sensing, has been proposed at different conceptual levels 

[17-21]. This is now available for aerial vegetation mapping and land cover classification [22, 

23]. However, similar modalities for mobile, ground-based imaging are still limited. Such a 

system would accelerate and improve the precision and accuracy of field phenotyping 

enabling applications where the vertical distribution of photosynthetic pigments or nitrogen 

across the canopy could be estimated. Phenospex (The Netherlands) has recently released 

a gantry-type [24] multispectral LiDAR for phenotyping applications (model PlantEye F500). 

With simultaneous 4 spectral channels in 400-900nm and 3D point clouds, this will enable 

new trait discovery in that direction. 

 

Also, methods based on chlorophyll fluorescence are advancing, such as relatively 

inexpensive hand-held instruments designed for collaborative field research 
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(https://photosynQ.org/, Michigan State University, USA); or Multiplex – Force-A, France) 

[25], or Laser-Induced Fluorescence Transient (LIFT) [26, 27] and sun-induced fluorescence 

(SIF) methods [28] that target canopies in the field. 

 

Hyperspectral imaging is rapidly advancing with new high-resolution cameras and scanners 

that cover visible and near infrared (VNIR 400-1.000 nm), short wave infrared (SWIR: 1.000-

2.500 nm) and beyond (e.g. long wave infrared LWIR: 8-15 m). VNIR hyperspectral 

cameras, in particular, are becoming miniaturized and therefore suitable to be mounted on 

UAVs for phenotyping applications. LWIR cameras for infrared thermometry are becoming 

quite common in phenotyping both for manned [29] and unmanned operations [30]. 

However, given the cost and complexity of hyperspectral LWIR cameras, most commercial 

systems are currently based on a single-broadband camera based on uncooled detectors 

(microbolometers). SWIR on the other hand, are becoming an option but still are bulkier and 

more expensive than their VNIR counterpart; therefore, their operation is restricted to 

manned vehicles [31]. These sensors have to be calibrated by screening genotypes at the 

same growth stages and in different environments to detect the slightest variabilities, and 

there are particular challenges for obtaining good data from measurements using aerial [32] 

or ground vehicles [33]. Furthermore, the time of day and other factors affecting light 

intensity and quality should be considered during calibration because spectro-radiometric 

cameras and scanners use natural light conditions or external light sources [34]. These 

powerful cameras and scanners can be useful tools for multi-trait screening, specifically 

monitoring traits under abiotic stress , such as early signs of chlorosis before it is detectable 

by RGB cameras, or plant water status [29, 35]. 

 

Despite the potential of hyperspectral cameras for estimating biochemical composition of 

plants, its applicability to sensing elements and micro-elements is very limited given that they 

do not have specific spectral absorption features. UV fluorescence emission from a material 

could lead to the development of next generation sensitive and inexpensive fluorescence 
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scanners [36] for phenotyping concentration of elements in plants. Through correct design, 

integrated sensors with capacity of strong fluorescence capture are on their way, which may 

be very useful for high-throughput field screening of nutritional components and micro-

elements. Graphene-based plasmonic nano-antenna arrays have been proposed, designed 

and tested for fluorescence sensing [37]. It is clear that among all these emerging 

technologies, there is no universal solution in the horizon, and it is likely to be the synergistic 

combination of different sensor technologies what could overcome some of the limitations of 

specific technologies used in isolation.  

 

Imaging and sensor technologies for future field phenotyping must be designed to 

incorporate metadata from the experiment and at least include plant ID, plot identification, 

plant water status, soil surface correction, soil surface temperature, soil surface water 

content (see section 5). We should also aim to deliver inexpensive, user-friendly, robust and 

fast solutions where that metadata is linked to the sensor data and turned into traits in an 

automatic or semi-automatic way. To develop these tools, the user must be able to also 

manually change the settings for any real-world scenario, which may cause errors in the 

automation. Some examples exist in the literature where pipelines have been described for 

processing field phenomic data for RGB imagery [38-40] thermal [29], LiDAR [11, 41, 42], 

and UAV data [43, 44].  

 

In-field plot segmentation and real time data processing, quantification and analysis is critical 

for end-users and is now partially practical [41] and operational with combination of 

modalities such as LiDAR and visible (RGB) imaging. Although use of LiDAR is a well-

established method for estimation of plant biophysical traits [41, 45-47], and detailed 

characterization of plants in the field  [11, 12, 48-51], the real time data processing and 

analysis with automated and error free plot detection is not universally available yet. Initial 

efforts are very promising [52] but needs support from the farming, seed and breeding 

industries as well as technology development companies to streamline this approach in any 
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future field-based phenotyping. During the workshop and throughout the symposium a 

strong demand for below-ground phenotyping of root traits became evident. Underground 

traits are notoriously more difficult to measure than shoot traits, but x-ray microcomputed 

tomography of roots in soil-filled pipes has opened up new possibilities for non-invasive 

imaging [53, 54]. In the field, non-invasive estimation of root activity is possible via soil drying 

profiles computed using electromagnetic induction or electrical resistance tomography 

methods [55], although computational complexities require further software development 

before EMI is realized as an HTP method. There is potential for further breakthroughs in root 

phenotyping instrumentation to have huge impact on breeding and crop improvement. 

 

Imaging plant components within tissues or soils (‘see-through technologies’) is a field that 

currently needs further development and focus. Ground penetrating radar provides vision for 

sub-surface parts of the plants (roots and tubers) by capturing reflection, refraction, and 

scattering of high-frequency radio waves [56, 57] with its antennae within a certain distance 

from the soil. Further, terahertz (THz) imaging is a progressing technology that detects water 

content of plant tissues with some promising early results in lab experiments [58-61]. 

However, its penetration power is extremely low and its estimates are not consistent with 

field screening data. To improve these methods, lasers and nano-plasmonic light 

concentrators [58] are being combined with this technology, which may result in more 

penetrating power, and hence more resolution when imaging shoots or roots, at least initially 

in the lab. Recent advances have made non-destructive evaluation of ceramic objects 

possible using this technology [62]. This may lead to the use of THz technology for scanning 

roots through dry soil. Another emerging see-through technology is Wi-Fi holography, where 

stray Wi-Fi radiation can be used to construct 3D holographic images of meter-sized objects 

within buildings [63]. Plant scientists can be early adopters of these technologies by 

communicating problems in phenotyping to developers working the fields of physics and 

engineering. 
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Engineers and manufacturers often encounter difficulties in assessing the global market for 

new phenotyping technology and finding fit for purpose data analytics used experimentally 

by researchers. Spin-off ventures from academic research can sometimes help spread 

market opportunity into other, larger sectors, such as precision agriculture. UAVs equipped 

with multispectral cameras are now operated routinely for generating vegetation index maps 

that, at least in principle, could assist agronomists and farm managers to optimize decisions 

such as how much fertilizer should be applied and where. Other technologies such as 

sensor networks or thermal and hyperspectral imaging for monitoring crop water stress have 

also been demonstrated [64-66]. However, the reality is that these technologies seem to be 

far from practical application, and the potential economic success of any one technology is 

difficult to predict. In that regard, phenomics can help to close the gap between ‘pretty 

pictures’ and plant physiology, providing robust yet user-friendly applications of sensor 

technologies. in precision farming. The same algorithms that are currently used to screen 

physiological traits in breeding trials could be translated to the farm scale to provide maps of 

actual crop status, which could be a useful management tool for agronomists. Development 

of new technologies that would benefit the phenotyping and whole plant science 

communities can be facilitated by increasing communication of needs and solutions between 

sensor designers, programmers, and researchers across disciplines: plant biology, 

photonics, physics, engineering, computer science, mathematics, etc. A key challenge is that 

the information desired by the academic sector can be complex, which may not be needed 

by breeding programs, and becomes an obstacle in precision agriculture. Typically, a simple 

yes or no answer is required by farmers for many farm operations (e.g. is the crop at the 

correct growth stage for fungicide application?). For more detailed questions of where and 

how much, automatized variable rate technologies for application of fertilizers, growth 

regulators or pesticides, simple and robust solutions derived from some level of crop 

intelligence are required to implement it them. Making such connections between phenotypic 

data and practical applications will enrich the technological offer for academia and industry. 
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3. Low-cost or DIY phenotyping solutions 

Cutting-edge, disruptive technologies have great potential to revolutionize phenotyping 

capabilities. However, they often come at a cost: technology that has not yet been widely 

commercialised is usually expensive, as production is limited to a small number of units, or it 

is limited to bespoke construction for individual users. Depending on the requirements of the 

experiment, there can be low-cost alternatives to high-end, high resolution instruments, such 

as using laser scanners built for the gaming industry to measure crop architecture features 

[67], and ultrasonic distance sensors for crop height [68], when LiDAR is not affordable or its 

precision is not required.  

 

With the advent of open source software and hardware initiatives, some disruptive projects 

emerged that have enabled a democratization of sensor development, reducing the entry 

barrier in terms of cost and expertise. Platforms such as Arduino (https://www.arduino.cc) or 

Raspberry Pi (https://www.raspberrypi.org), together with strong associated communities 

provide the building blocks for very rapid prototyping of sensor technologies that have been 

fostered by the scientific and academic communities [38, 69]. This is the ethos behind 

organizations such as Public Lab (https://publiclab.org/), which host methods describing DIY 

spectrometers, thermal cameras and multispectral sensors using readily available materials. 

The spectrometer (v 3.0) claims 3 nm wavebands from 400 to 700 nm, built using a webcam 

(e.g. Gumstix, Inc., USA) and a DVD for a diffraction grating and signals processed using 

open source software (https://spectralworkbench.org/). The DIY Plant Analysis Kit ($10, 

Public Lab; Infragram.org) helps users convert a digital camera into a multispectral camera 

by replacing the IR filter and adding a theatre gel blue filter so that the camera’s red channel 

registers mostly near infrared.  A similar attempt has been the construction of multi-spectral 

cameras using Raspberry Pi components and 3D printers for the housing 

(http://www.khufkens.com/projects/tetrapi/).  
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However, the fast adoption of these DIY approaches and novel technologies also poses 

some risks in terms of data quality, the robustness of the data produced and data 

interpretation [70]. For example, the Plant Analysis kit (Infragram.org) claims that the user 

can ‘measure photosynthesis’; most plant scientists will appreciate that estimating 

‘greenness’ does not necessarily equate to photosynthetic rate. NDVI was formulated as the 

normalized ratio of red and NIR reflectance. In most cases of converted cameras, the red 

channel is blocked so it can be used as the source of NIR, replacing the red band in the 

calculation of the NDVI by the blue or green bands. The quantum efficiency of CMOS 

sensors in consumer cameras in the IR bands is generally low, though solutions may be on 

the horizon [71]. Therefore, as the use of DIY multispectral cameras is becoming 

increasingly popular and NDVI maps and figures from these cameras installed in UAVs are 

published online, the information about the specifications of the cameras are often missed or 

vaguely described. Similarly, the miniaturisation and cost reduction of thermal cameras are 

providing popular solutions for mounting these onboard UAVs. Again, the need for sensor 

calibration to provide actual temperature values becomes critical when the application goes 

beyond pretty pictures and the aim is to produce robust quantitative data on the 

physiological traits of interest.  

 

Another generic problem with low-cost or DIY sensors is that the provenance and quality of 

components differs with each unit, making it difficult to share and compare data, unless 

sensors are calibrated according to an internationally accepted standard. Most commercial 

manufacturers would adhere to such standards, so as more DIY sensors come into use for 

research, there should be a recognition that evidence of calibration is required before 

publication. The solution to most of the limitations of these low-cost approaches is to develop 

a stronger community for sharing protocols, for sensor development, calibration and data 

processing. Initiatives such as PublicLab, targeting environmental research, is a good 

example for the phenotyping community looking at developing new technologies in-house. 

As discussed in section 6, know-how sharing initiatives and online platforms should provide 
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an online library of protocols and DIY instrumentation to help others to avoid ‘reinventing the 

wheel’. This co-operation should provide the right mechanisms for producing high-quality 

phenotyping information that is comparable across multiple experiments and environments.  

4. Data processing and handling 

Phenotyping complex traits demands the integration of data on different morphological, 

physiological and environmental variables [7, 72]. Further, there is a need for data with 

higher temporal and spatial resolution for the characterization of the dynamic responses of 

plant function to the fluctuations of the environment. Consequently, the plant phenotyping 

platforms are requesting an increasing number of sensors to generate more complex 

datasets in an automated mode. This has generated an unprecedented, massive amount of 

data that normally exceeds our capacity to analyse it. Research groups often underestimate 

the resource required to store and manipulate terabytes of data. Efforts to optimize the 

automation of the data management and processing are usually overlooked, thus it has 

become a bottleneck within the HTP pipeline. 

 

Measurement data can be classified into non-imaging and imaging, according to the kind of 

sensor used. Non-imaging data correspond to an integrated measurement over the area 

covered by the sensor. Thus, they usually correspond to a single value per variable (except 

in multi- or hyperspectral sensors where there is one value per each waveband), which 

makes the size of the data manageable. This is an advantage when trying to integrate time-

series measurements from different sensors to support fast decision making in platforms for 

plant breeding. Nevertheless, such a system relies on fast data transfer and sensor 

synchronization (usually through a wireless network), technologies that are actively under 

development  [73-75].  

 

Imaging data are a spatial representation of a variable measured by each pixel in the 

detector array. Imaging sensors provide the opportunity to obtain spatial and temporal 

information of plant traits while reducing the acquisition time and errors associated with the 
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data collection. However, the size and complexity of the data generated by such sensors 

greatly undermine the possibility to use them in HTP platforms. While in greenhouses 

images are usually transferred in real time to a server, the possibility of doing so becomes 

more limited in the field, especially using aerial platforms where the amount of data collected 

can be in the order of gigabytes, and therefore is limited by the on-board storage capacity. In 

some rural settings, sufficient network signal strength can be problematic. The retrieval of 

meaningful data from imaging sensors usually involves some degree of pre-processing. 

Among them we can find: calibrations, geo-referencing, orthorectification, pattern 

recognition, 3D reconstruction and machine learning [36-39]. Images collected from aerial 

platforms require geometric and radiometric correction. The automation and speed of these 

steps depends on the image quality, the complexity of the algorithms used and the available 

computing power. Advances in this matter have been achieved for screening in batch mode 

structural traits such plant height, leaf area, biovolume and leaf angles of thousands of 

plants per day under greenhouse conditions [76-78]. Under field conditions, the challenge is 

the automation of the aerial data processing. Few software are available that automate 

image calibration and correction, obtaining good field maps of the studied variable. 

Furthermore, new developments aim to do real-time processing on-board in aerial platforms, 

delivering almost instantaneous maps of spectral indices such as NDVI. Despite these 

advances, there are intermediate steps that require some level of manual interaction, which 

slow the process, such as the identification of geodetic ground control points for geo-

referencing, defining individual plot boundaries and retrieving plot-level data. Computing 

power can be a limiting factor in processing image data. For small to medium datasets, 

working with local desktop PCs are sufficiently fast to access and analyse the data. 

However, as the size and amount of data grow, this option can become expensive; thus, for 

big data cloud processing becomes an excellent option, which can increase computing 

power and storage capacity. There are an increasing number of cloud service providers, 

ensuring accessible prices and flexibility to process data.  

5. Harmonising data 
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Phenotyping techniques developed during recent years have permitted the massive 

acquisition of datasets containing information originating from different sensors (e.g. RGB 

and hyperspectral cameras, see Table 1) at different scales (e.g. field and controlled 

conditions) and levels of organisation (e.g. canopy and leaf level). These datasets are 

unique resources, containing insightful information on a number of traits describing plant 

function and form (see Table 1). If made available to scientific community, these datasets 

can be further mined or combined in meta-analyses to generate new insight; for example on 

crop adaptation to multiple stresses and to accelerate breeding [2, 79]. However, making 

them available is a major challenge for the plant phenomics community.  

 

The first problem arises from the necessity to handle the huge amount of data generated by 

phenotyping facilities and devices. Whereas most informatics solutions accompanying high-

throughput techniques have focused on the development of specific image analysis tools 

[80, 81], little attention has focused on the development of information systems to handle, 

integrate and analyse the massive amount of sensor-derived data, with the added 

complexity of its heterogeneous nature originating from multiple sources [82]. This 

complexity is the challenge of big data [83, 84], which can be described by: (i) the Volume, 

given the exponential increase of data acquired by phenotyping techniques at high spatial 

and temporal resolution; (ii) the Variety of data due to the multiplicity of data sources, the 

growing availability of sensors, and the need for the integration of metadata and knowledge 

(e.g. annotated data in lab books, protocols, manual measurements); (iii) the Velocity, given 

by the necessity to provide scientists with fast and powerful visualisation and analysis tools 

to inspect and handle the large amounts of experimental data acquired and analysed in real 

time; (iv) the Value, as phenomic experiments are expensive and nearly impossible to 

reproduce exactly (especially under field conditions) because of differences in environmental 

conditions; and (v) the Veracity, related to the necessity to track provenance data such as 

the successive steps, calibration of sensors, parameter settings, and methods that have 

been used to produce a given result. 
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The second problem is related to the necessity to enable interoperability between datasets 

and infrastructures, and issues surrounding Open Data are being actively discussed 

internationally. Initiatives such as the IAA (International Agroinformatics Alliance), a coalition 

of public and private institutions hosted at the supercomputing facility at the University of 

Minnesota, USA [85], and the farmer-oriented Open Ag Data Alliance (openag.io) are steps 

in this direction, enabling interoperability of data, while also respecting security and privacy. 

Similarly, a number of initiatives in the context of European plant phenotyping (EPPN2020 

(http://eppn2020.plant-phenotyping.eu/), Trans-PLANT (http://transplantdb.eu/), ELIXIR-

EXCELERATE (https://www.elixir-europe.org/excelerate/plants), EMPHASIS 

(http://emphasis.plant-phenotyping.eu/), among others) have tackled these issues by 

developing standardized protocols [83, 86, 87] and software frameworks for phenotyping 

experiments [82, 88] following the FAIR data principles (Findable, Accessible, Interoperable 

and Reusable)[89]. These initiatives, such as MIAPPE (http://www.miappe.org/) and the ISA-

Tab framework [81] (isa-tools.org) have established a list of attributes to fully describe 

phenotyping experiments and comprehensive metadata descriptions using standards and 

ontologies. More recently, the ontology-driven PHIS Information System (www.phis.inra.fr) 

has been proposed as an open-source solution for integrating, managing and sharing multi-

source and multi-scale data in plant phenomics experiments for both controlled and field 

conditions [82]. Ontologies are powerful tools for formalising the different relationships 

established between the different objects involved in phenotyping experiments (e.g. plants, 

plots, sensors), and to enable the interconnection with other available biological databases 

and resources [90, 91]. The Planteome project (http://www.planteome.org) gathers a suite of 

reference and species-specific ontologies [92], including the Crop Ontology 

(http://cropontology.org/) [93] and Plant Ontology (http://plantontology.org/) [94]), which 

provide relevant terms and concept hierarchies related to the anatomy, structure and 

phenotype of crops. However, because plant phenotyping is by essence multi-source and 

multi-scale, new ontologies are needed to fulfil the necessary concepts in phenotyping 
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experiments, and thus to enable full interoperability between datasets. It is recognized that 

many alternative terminologies for traits exist in local usage, and while these may never be 

replaced by official Ontological terms for everyday use, they can easily translate to and map 

onto accepted ontologies when data are uploaded into a database. Taken together, these 

new opportunities in data management may help the assembly of datasets originating from 

multiple sources, resulting in unprecedented amount of information that can be re-used, 

combined and re-analysed to generate new knowledge. 

6. Sharing know-how 

Websites and online consultable databases with methods and protocols have been 

established to share phenotyping know-how. A major objective of the EU-funded DROPS 

project was to train scientists and disseminate know-how in the use of up-to-date methods of 

plant measurement and principles of breeding for tolerance to water deficit via training 

courses and a website (https://www6.inra.fr/dropsproject/). The CGIAR Centres regularly 

host training phenotyping workshops for researchers around the world. Another helpful 

resource is a crowd-sourced database to access and share protocols in plant eco-physiology 

(http://prometheuswiki.org). The Index Database collates information on remote sensing 

indices, sensors and applications (http://www.indexdatabase.de/). Online courses and 

webinars such as the ‘Plant Phenomics Phridays’ series (https://bigdata.unl.edu/fall-seminar-

series-plant-phenomics-phridays) help share the latest developments. To foster 

development of computer vision for phenotyping, an expanding image database is available 

(plant-phenotyping.org) and the plant-image-analysis.org database (http://www.plant-image-

analysis.org) provides and extensive and curated list of existing plant image analysis 

software tools for users and developers [95]. There is a need for greater international co-

ordination and centralized collation of methods, and perhaps a publishing house may wish to 

host a website for phenotyping protocols. Transferring methodological and technological 

progress from research to operative breeding is one goal of the community. However, its 

ACCEPTED M
ANUSCRIP

T



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Roitsch, T., Cabrera-Bosquet, L., Fournier, A., Ghamkhar, K., Jiménez-Berni, J., Pinto, F.,

Ober, E. S. (2019). Review: New sensors and data-driven approaches—A path to next generation
phenomics. Plant Science, 282, 2-10. , DOI : 10.1016/j.plantsci.2019.01.011

18 
 

adoptability will rely on making methods and instruments simple, fast, inexpensive, and 

demonstrating that phenotyping can increase genetic gain in breeding programmes. 

7. Conclusion 

While substantial advances have been made in molecular breeding techniques, phenotyping 

throughput and costs remain the bottleneck to breeding progress. Further advancement in 

high-throughput screening is essential to take full advantage of genomic resources to dissect 

the genetic control of quantitative traits, particularly those related to yield components and 

stress tolerance.  

High-throughput phenotyping technologies have been originally developed for the 

greenhouse and the development of technologies for field applications  lacking behind. While 

environmentally controlled conditions allow high precision measurements, field phenotyping 

is posing various different challenges and limitations due to the determination of traits in a 

multifactorial environment. This classical dichotomy is currently further expanded by 

establishing phenotyping facilities with field like growth conditions in combination with 

extensive environmental control. 

Many of the issues we discuss in the plant phenotyping community have been, and are 

continuing to be discussed in other sectors, and there can be benefit in learning how others 

approach these challenges, for instance in murine phenotyping [96]. Genotypic data are now 

handled and shared in ways that set a precedent for phenotypic data, although connecting 

genomic and phenomic datasets remains challenging [97]. Integration of these data into 

simulation models to predict trait value is of increasing importance [2, 98]. We can envision 

that eventually genotypic, phenotypic, environmental and agronomic/plant management data 

will be harmonised on an international scale, but significant hurdles remain before that is 

achieved. Along the way, it is vital that the accessibility, integrity and veracity of the data that 

are being collected are maintained so that they retain value over time. Calibration of 

sensors, particularly low-cost or DIY sensors is of particular importance. Universal 

standardisation of experimental protocols may not be achieved quickly, but transparent 

quality control, documentation according to minimum reporting standards and ways to store 

annotation and metadata are required.  

 

The availability of appropriate and novel sensors is key to realize urgent technological 

development needs. Likewise, innovations in specialized solutions for image pre-processing, 
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analyses and data management are needed. Development of sophisticated or low cost, 

user-friendly sensor solutions for specialized uses will require close interactions across 

disciplines and active engagement of engineers and manufacturers. Sensor and image data 

need to be integrated with other multi-omics data to create a holistic, second generation 

phenomics approach.  

8. Abbreviations 

CGIAR: Consultative Group for International Agricultural Research 

CMOS: Complementary Metal-Oxide-Semiconductor 

DIY: Do It Yourself 

EMI: Electromagnetic Induction 

FAIR: Findable, Accessible, Interoperable and Reusable  

HTP: High-throughput phenotyping 

IPPN: International Plant Phenotyping Network 

IR: Infrared 

LiDAR: Light Detection And Ranging 

LIFT: Laser-Induced Fluorescence Transient  

MIAPPE: Minimum Information About a Plant Phenotyping Experiments 

MWIR: Mid-wavelength infrared 

NDVI: Normalised Difference Vegetation Index 

RGB: Red-green-blue 

RUE: radiation use efficiency 

SIF: Sun-induced fluorescence  

SWIR: Short-wavelength infrared 

UAV: Unmanned Aerial Vehicle 

WUE: water use efficiency 
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Fig. 1. Impact vs feasibility analysis for the estimation of agronomic traits by sensor and 

imaging technologies. See List of Abbreviations. 
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Table 1. Current challenges for the determination of some agronomically relevant crop traits by 
sensor-based techniques and technical solutions under development. *See "Technology Readiness 

Levels (TRLs) in the Project Lifecycle" http://tinyurl.com/y7gbf28c 

Target Trait Scale Current limitations Current 
method 

Technologies under 
development (TRL)* 

1. Growth, 
morphology 

    

Heading and 
maturity 

Plant Resolution; accurate 
feature detection 

Visual scoring Cereal spike counts 
from images (7) 

Winter hardiness, 
plant establishment 

Plant/plot Image pre-
processing and 
automated analysis  

Visual counting Plant counts from 
images (7) 

Biomass Plant, canopy Estimation of bio-
volume vs actual 
weight 

Fresh and 
oven dry 
weight 

LIDAR (5) 
SWIR (5) 

Lodging Plant Subjective  Visual scoring Video imaging to 
measure plant oscillation 
(5); ultrasonic distance 
sensors (5); force 
transducer (6) 

Root development Plant slow, laborious 
manual methods 

Soil coring; 
excavations; 
rhizotrons 
(controlled 
environment) 

Ground penetrating 
radar (4); 
Electromagnetic 
induction(4); 
Tomographic root 
imaging 

2. Physiology     

Water use efficiency  Plant, canopy Measurement of 
water use and 
biomass slow, often 
only indirect 
estimations; scaling 
from tissue to crop 

Destructive 
and 
gravimetric;  
estimation via 
C and O 
isotopic ratios  

LWIR, NIR (7); Thermal 
imaging (7); Fusion of 
chlorophyll fluorescence 
and thermal imaging (6) 

Photosynthesis, 
transpiration 

Leaf, plant, 
canopy 

Upscaling, model 
specificity 

Gas exchange; 
estimation via 
fluorescence at 
low O2, O 
isotopic ratio 

Sun-induced chlorophyll 
fluorescence (6); 
LIFT (6) 
 

Leaf water status Leaf Slow, destructive, 
Low precision 

gravimetric, 
psychrometry 

Leaf clip SWIR (4); THz 
sensing 

Nitrogen uptake 
efficiency 

Plant Indirect estimation 
of N 

Isotopic tracer 
15N tracers 

Hyperspectral imaging 
for N concentration (6) 

Shoot Nitrogen 
content 

Plant Indirect estimation 
of N (chlorophyll as 
surrogate), not 
accounting for grain 
N 

Destructive 
and wet 
chemical 
analysis 

Estimation via multi-

spectral LiDAR (5); 

Hyperspectral imaging 

Stem carbohydrates  Stem Assays slow; cannot 
resolve fructan 
species; low 
precision via NIR 

Colorimetric  
assays; HPLC, 
NIR 

Hyperspectal detection 
(5) 

Grain protein content Grain Specificity; 
application of 
harvested grain, not 
proven on intact 
organs 

NIRs,  
wet chemistry? 

Hyperspectral sensing 
(6) 

3. Biotic 
Interactions 

    

Pathogen infection Organ Sensitivity, Visual scoring, Hyperspectral imaging 
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specificity at the 
level of  
species/pathotype 

multispectral; 
computer 
vision 

(4);  

Pre-symptomatic 
detection of 
pathogens 

Organ Sensitivity, 
specificity 

Immuno- or 
DNA/RNA-
based methods 

Hyperspectral (4); 
Fluorescence (4); 
Thermography (4) 

Weed detection Plant, canopy Resolution; accurate 
feature detection; 
speed 

Computer 
vision 

Hyperspectral imaging 
(4); image feature 
recognition(5) 

4. Development     

Growth stage 
determination 

Plant Slow Manual; some 
dissection to 
visualize 
internal 
structures 

In-field x-ray 
tomography (4) 

Tuber development Plant Slow Destructive 
harvest 

In-field x-ray 
tomography (4) 

Senescence Plant Specificity, 
sensitivity 

Visual scoring Hyperspectral imaging 
(5); 
LiDAR (red light) (5) 
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