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Breakthrough Technologies

The extraction of desirable heritable traits for crop improvement from high-throughput phenotyping (HTP) observations remains challenging. We developed a modeling workflow named Digital Plant Phenotyping Platform, D3P, to access crop architectural traits from HTP observations. D3P couples the ADEL (architectural model of development based on L-systems) wheat (Triticum aestivum) model, that describes the time course of the three-dimensional architecture of wheat crops, with simulators of images acquired with HTP sensors. We demonstrated that a sequential assimilation of the green fraction derived from RGB (Red Green Blue) images of the crop into D3P provides accurate estimates of five key parameters (phyllochron, lamina length of the first leaf, rate of elongation of leaf lamina, number of green leaves at the start of leaf senescence and minimum number of green leaves) of the ADEL-Wheat model that drive the time course of green area index and the number of axes with more than three leaves at the end of the tillering period. However, leaf and tiller orientation and inclination characteristics were poorly estimated. D3P was also used to optimize the observational configuration.

The results, obtained from in silico experiments conducted on wheat crops at several vegetative stages, showed that the accessible traits could be estimated accurately with observations made at 0° and 60° zenith view inclination with a temporal frequency of 100 °Cd. This illustrates the potential of the proposed holistic approach that integrates all the available information into a consistent system for interpretation. The potential benefits and limitations of the approach are further discussed.

One sentence summary

The D3P Digital Plant Phenotyping Platform can be used to design and interpret phenotyping measurements for structural or functional trait extraction.

Introduction

Crop genetic improvement consists in selecting or creating the best performing genotypes under a set of environmental and management conditions (Bustos-Korts, 2017). Performances are mainly based on the quantity and quality of the harvested organs. Yield results from complex interactions between the genotype and the environment which makes direct selection based on yield very inefficient. It is preferred to identify an ensemble of structural and functional traits that are less dependent on the environment, explain part of the yield, and are strongly related to the genome [START_REF] Hammer | Models for navigating biological complexity in breeding improved crop plants[END_REF][START_REF] Tardieu | Dissection and modelling of abiotic stress tolerance in plants[END_REF][START_REF] Rutkoski | Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat[END_REF]Bustos-Korts, 2017). High-throughput phenotyping (HTP) is expected to provide such structural traits over a large collection of genotypes under contrasting climate and management scenarios. Further, the non-invasive nature of high-throughput phenotyping techniques allows repeat observations over time to possibly access functional traits.

High-throughput phenotyping [START_REF] Paproki | A novel mesh processing based technique for 3D plant analysis[END_REF] accesses structural traits including lamina shape in wheat (Triticum aestivum) (Dornbusch and Andrieu, 2010), plant height [START_REF] Hartmann | HTPheno: an image analysis pipeline for high-throughput plant phenotyping[END_REF]Madec et al., 2017), leaf angle (Cabrera Bosquet et al., 2016), plant density (Liu et al., 2016), ear density (Madec et al., 2019) or leaf area index [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. Three-dimensional (3D) reconstruction of the canopy may provide more details to access canopy structural traits and the functioning of the canopy (Gibbs et al., 2016). This technique has been applied on individual plants under well controlled illumination conditions by Duan et al. (2016), who used multi-view images to reconstruct 3D wheat structure at early stages and extract morphological traits. Its transposition to field conditions, where observations are generally only possible from the top, is still challenging as they provide an incomplete description of the 3D plant structure because of the occlusions inherent to vision techniques (Gibbs et al., 2016). A detailed and explicit description of the characteristics of each organ to better understand the crop functioning is still a pending question. Nevertheless, monitoring the plants from the top would allow to progressively build a description of the whole plant and infer the whole plant or stand characteristics. A dynamic plant architecture model will be very useful to keep a high degree of consistency between multidate observations, while providing sound assumptions on the fate of the organs at the bottom of the canopy that are partly occluded.

Functional Structural Plant Models (FSPMs) describe the detailed evolution of plant architecture with relatively simple environmental inputs, mainly air temperature and sowing patterns and a set of www.plantphysiol.org on September 23, 2019 -Published by Downloaded from

Copyright © 2019 American Society of Plant Biologists. All rights reserved.

Comment citer ce document : Liu, S., Martre, P., Buis, S., Abichou, M., Andrieu, B., Baret, F. (2019). Estimation of plant and canopy architectural traits using the D3P Digital Plant Phenotyping Platform. Plant Physiology, 181 (3), 881-890. , DOI : 10.1104/pp.19.00554 5 parameters describing organ size, extension rate and topology [START_REF] Vos | Functional-structural plant modelling: a new versatile tool in crop science[END_REF]. They can be coupled to radiative transfer models (RTM) such as Raytran [START_REF] Govaerts | Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media[END_REF] or

LuxCoreRender (https://luxcorerender.org/) to simulate the corresponding 2D images acquired under a given observational geometry and waveband. The 3D nature of the FSPMs allows also simulating accurately the LiDAR (Light Detection And Ranging) signal. The FSPMs are thus able to link 2D

(camera) or 3D (LiDAR) measurements by HTP techniques with plant level architectural traits corresponding to FSPM parameters. These parameters are expected to be more strongly associated to genomic regions than direct HTP measurements. This approach applied to single date observations corresponds to an advanced radiative transfer model inversion (Baret and Buis, 2008). It has been applied by [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF] to estimate the GAI (Green Area Index) over wheat crops from the combination of RGB (Red Green Blue) cameras and LiDAR observations. However, it did not exploit the temporal dimension that is described within FSPMs. Alternatively, comprehensive exploitation of multidate and/or multisensor observations to access FSPM parameters corresponds to a data assimilation approach that has been successfully applied to satellite observations [START_REF] Moulin | Combining agricultural crop models and satellite observations: from field to regional scales[END_REF][START_REF] Weiss | Coupling canopy functioning and canopy radiative transfer models for remote sensing data assimilation[END_REF]Bacour et al., 2015;[START_REF] Zhang | Estimating wheat yield by integrating the WheatGrow and PROSAIL models[END_REF]. Data assimilation allows to integrate consistently into a single modeling workflow all information available including the phenotyping observations, environmental variables and the knowledge on the physical and biological processes integrated into FSPM and RTM. This approach benefits from the use of accumulated observations from several sensors and dates, which adds constraints in the parameter estimation process to get the set of optimal values (Combal et al., 2003;Baret and Buis, 2008). Consequently, more parameters of the FSPM can be estimated with increased accuracy. The resulting estimated parameters can then be used to derive emerging properties of the plant or the canopy such as the radiation interception efficiency.

The objective of this paper is to describe the potentials of such an assimilation approach for retrieving detailed plant and canopy characteristics from multidate observations of the GF (Green Fraction) that can be measured from RGB or multispectral imageries. The study focuses on wheat crops monitored from emergence to the end of the tillering period and is based on in silico experiments to demonstrate the feasibility of the proposed approach, avoiding possible limitations due to the realism of the models used, particularly the FSPM. It is based on the digital plant phenotyping platform (D3P) that was [START_REF] Fournier | ADEL-wheat: a 3D architectural model of wheat development[END_REF] to the RTM, Persistence of Vision Raytracer (POV-Ray, Version 3.7). The D3P is first presented and then exploited to assimilate GF observations made at several dates and under several view directions to estimate 10 parameters of ADEL-Wheat. Finally, the approach is repeated for several temporal and directional samplings to select the optimal measurement configuration.

Results

Assimilation of green fraction into the Digital Plant Phenotyping Platform

In silico experiments were conducted using five view directions and five dates before tillering to estimate the five parameters of ADEL-Wheat (, 𝐿,  𝑙𝑒𝑎𝑓 , φ, and ) (Table 1) and GAI. We obtained very good estimates of  and 𝐿, even considering a noise of 10% on GF (Fig. 1 and Fig. 2).

Parameter  𝑙𝑒𝑎𝑓 was retrieved with acceptable performances (Fig. 2). However, leaf orientation and inclination described by φ and  appeared difficult to retrieve from the dynamics of the directional GF before tillering (Fig. 1 and Fig. 2). φ determines the clumping of neighboring leaves with potentially substantial impact on the canopy light interception (Maddonni et al., 2001). The three first leaves are very small with little interactions between leaves of the same plant and almost no interactions between neighboring plants. This may explain why the azimuthal orientation pattern of leaves is not accessible from observations at the canopy scale during this early development phase.

The good retrieval performances of parameters driving the development of leaf area (, 𝐿, and  𝑙𝑒𝑎𝑓 ) explains the good estimation of GAI (Fig. 1). The retrieval performance of GAI is little affected by the noise associated with GF observations.

The sequential assimilation scheme proposed exploits observations before and during the tillering period to estimate five new parameters (𝑁 sen , 𝑁 min , 𝑁 til ,  til , and α til ) (Table 1) while refining the five parameters estimated before tillering (, 𝐿,  𝑙𝑒𝑎𝑓 , φ, and ) (Table 1). Results show that adding the five observation dates during the second sub-period improves substantially the estimation of the first set of parameters (Fig. 3). The improvement was very large for  and α 𝑙𝑒𝑎𝑓 . For the parameters describing canopy architecture (φ, and ), the rRMSE (relative Root Mean Squared Error) was also drastically improved, particularly for the larger noise levels, but it was still higher than Comment citer ce document : Liu, S., Martre, P., Buis, S., Abichou, M., Andrieu, B., Baret, F. (2019). Estimation of plant and canopy architectural traits using the D3P Digital Plant Phenotyping Platform. Plant Physiology, 181 (3), 881-890. , DOI : 10.1104/pp.19.00554 7 0.5. The improvement was marginal for 𝐿, which was already well estimated using the first five dates before tillering. The impact of noise affecting GF observations on rRMSE for the first set of parameters was much reduced (Fig. 3). This was probably due to the multiplicity of the observations (10 dates, five directions) that smoothed out the random noise associated with GF.

Among the second set of parameters, 𝑁 𝑠𝑒𝑛 that drives leaf senescence dynamics was relatively well estimated with rRMSE < 0.1 (Fig. 3). Conversely, 𝑁 min was more difficult to retrieve accurately with rRMSE  0.2 (Fig. 3). This can be explained by the fact that the influence of 𝑁 min on the dynamics of leaf senescence does not show up until the end of the tillering period, when the size of tillers is relatively small and partly hidden by the first leaves. The parameters driving the orientation of tillers ( tiller , α tiller ) were not retrieved accurately (Fig. 3). These parameters apply on tillers that are relatively small and partly hidden by the older leaves of the main stem. GAI was very well estimated, in agreement with the observations before tillering. In addition, 𝑑 3𝑙 was very well estimated.

Optimization of measurement configuration

The optimal measurement configuration is defined by the combination of dates and directions that provides the best retrieval performances for the three parameters (, 𝐿, and α leaf ) accessible before tillering in addition to GAI. Results showed that the average rRMSE on parameters (, 𝐿, and α leaf ) varies between 0.23 for GF observations from a single direction on a single date, down to 0.09 for the most comprehensive set of observations including the five dates and the five directions (Fig. 4). Best performances were obtained when at least three observation dates were used and when they were sufficiently distinct in time with the optimal case being dates [50,150,250] °Cd after crop emergence (Fig. 4). The multiplication of observation directions improved marginally the estimation of the parameters. For these early stages, Baret et al. (2010) already demonstrated that GF observed under 57°

zenith angle provides an accurate estimate of GAI. Our results agree well with these findings, the best configurations always including a GF measurement at 60° zenith angle. The improvement when adding more directions might be mainly due to the reduction of the noise associated to the GF pseudo-measurements. Optimal performances were obtained when using two directions (0° and 60°)

and three dates evenly distributed during the tillering period (Fig. 4). Adding more dates or directions improved only marginally the retrieval performances. The green fraction is one of the most common canopy properties that can be derived from several high-throughput phenotyping sensors including RGB high resolution cameras [START_REF] Guo | Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model[END_REF], multispectral cameras based on vegetation indices (Comar et al., 2012), and radiative transfer model inversion [START_REF] Li | A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements[END_REF], as well as LiDAR systems [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. These devices can be installed aboard a range of possible vectors including fixed sensors at the ground level [START_REF] Guo | Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model[END_REF], semi-automatic light carts [START_REF] White | A Flexible, Low-Cost Cart for Proximal Sensing[END_REF] or tractor based systems (Comar et al., 2012), fully automatic rover robots (Madec et al., 2017) running on the ground with active measurements, and unmanned aerial vehicles [START_REF] Schirrmann | Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery[END_REF]. Our results clearly demonstrated that the assimilation of GF observations provide accurate estimates of the few ADEL-Wheat parameters that drive the dynamics of GAI: the phyllochron, , the lamina length of the first leaf, 𝐿, the rate of elongation of leaf lamina, α leaf , the number of green leaves at the start of leaf senescence, 𝑁 sen , and the minimum number of green leaves, 𝑁 min . The phyllochron that varies among cultivars [START_REF] Hay | Convergence and synchrony-a review of the coordination of development in wheat[END_REF][START_REF] He | Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat[END_REF] is of high interest. The phyllochron describing leaf appearance rate responds non-linearly to multi-environmental factors. When it is modeled using only temperature, residual environmental-effects are often observed (Cao and Moss, 1989;Baumont et al., 2019). This can be partly removed using the photothermal time corresponding to temperatures accumulated during the light time period only [START_REF] Masle | Foliar stage in wheat correlates better to photothermal time than to thermal time[END_REF]. Environmental factors may have also substantial effects on the final length of leaves, 𝐿. Therefore, the influence of the environmental conditions on  and 𝐿 should be explicitly modeled into ADEL-Wheat to characterize the early plant vigor that is a very pertinent trait to be selected (Edmeades, 1996;[START_REF] Monneveux | Phenotyping for drought adaptation in wheat using physiological traits[END_REF]. Parameter α leaf that drives the lamina length of successive leaves may be also a good proxy of the early plant vigor. Parameters 𝑁 sen and 𝑁 min are traits of potential interest for drought tolerance (Araus et al., 1997;[START_REF] Hafsi | Leaf senescence and carbon isotope discrimination in durum wheat (Triticum durum Desf.) under severe drought conditions[END_REF]. Conversely, parameters related to leaf or tiller orientation were poorly retrieved either because they vary within relatively narrow ranges or because they apply to organs with limited area or hidden by other organs. Nevertheless, the good estimates of (, 𝐿,  𝑙𝑒𝑎𝑓 , 𝑁 sen , and 𝑁 min ) parameters that drive the dynamics of GAI allows simulating accurately GAI continuously with a rRMSE < 0.05. 2010) demonstrated that GAI could be estimated with an rRMSE of 0.12 using single green fraction measurements from 57.5° zenith angle when leaves are assumed randomly distributed in the canopy. The improved performances shown here comes from the additional information used in the assimilation scheme, with more directions and more dates of observations. Further, our assimilation method ensures to get a consistent time course of GAI before tillering using the temporal constraints provided by the dynamic ADEL-Wheat model. In addition to GAI, 𝑑 3𝑙 , the number of axes with more than three leaves, was accurately computed from the estimated parameters (, 𝐿,  𝑙𝑒𝑎𝑓 , 𝑁 sen , and 𝑁 min ). This trait is commonly used as a proxy of ear density and thereby of potential yield as tillers having three leaves at the start of stem elongation continue to grow and generally complete their development and produce an ear [START_REF] Nerson | Effects of population density and number of ears on wheat yield and its components[END_REF][START_REF] Whaley | The physiological response of winter wheat to reductions in plant density[END_REF].

Conversely, the other tillers generally regress due to the competition between neighboring tillers and plants [START_REF] Masle | Competition Among Tillers in Winter Wheat: Consequences for Growth and Development of the Crop[END_REF].

Assimilation exploits consistently all the available information into a single workflow

The assimilation approach that integrates multidate remote sensing observations into process models, was originally developed for satellite observations [START_REF] Moulin | Combining agricultural crop models and satellite observations: from field to regional scales[END_REF][START_REF] Weiss | Coupling canopy functioning and canopy radiative transfer models for remote sensing data assimilation[END_REF]Bacour et al., 2015;[START_REF] Zhang | Estimating wheat yield by integrating the WheatGrow and PROSAIL models[END_REF]. It was applied here to HTP measurements. Data assimilation offers several advantages as compared to the more classical crop characteristics retrieval approaches. First, it integrates into a single and consistent workflow all the available information including phenotyping observations, environmental variables and knowledge on the physical and biological processes embedded in the FSPM and RTM. Second, it capitalizes on the accumulation of observations from several sensors and dates and thereby facilitates the parameter estimation process (Baret and Buis, 2008;Combal et al., 2003). Third, data assimilation within such a modelling workflow permits to access plant and canopy level architectural properties that cannot be directly measured in the field at high throughput. Finally, the combination of ADEL-Wheat with simulators of several phenotyping measurements allows assimilating concurrently observations coming from different sensors. This will allow adding more information in the interpretation system to provide more accurate parameter estimates or new traits. The proposed approach allows defining the optimal measurement configuration that provides a trade-off between the accuracy of trait estimation and the cost/time associated to the multiplication of measurements and devices. This was demonstrated here by selecting the more parsimonious combination of dates and directions of observations. Results show that observations made at 0° and 60°

Optimizing of the measurement configuration

and repeated every 100 °Cd provide the best estimates of the accessible traits. The optimization process allows playing on additional elements of the measurement configuration including the uncertainties associated to the measurements, the spatial resolution, or the interest of additional devices.

Potential benefits and limitations of the assimilation technique

The sequential assimilation scheme proposed here splits the retrieval problem into sub-problems. It gradually adds parameters to be estimated as soon as they are required, limiting the complexity of the problem (Baret and Buis, 2008). Further, the values of the parameters needed for the first stages can be refined when exploiting later observations since they affect the fate of the canopy for the later growth stages. For the sake of simplicity, we focused on early growth stages that are recognized to be critical for the implantation of the crop and the competition with weeds. The traits estimated are therefore considered crucial to identify cultivars with higher early vigor and competitiveness with weeds or other crops/genotypes (Araus et al., 1997;[START_REF] Hafsi | Leaf senescence and carbon isotope discrimination in durum wheat (Triticum durum Desf.) under severe drought conditions[END_REF]. However, the approach could be also applied to later stages to capture additional traits. This will be achieved at the expense of increased complexity because of the growing number of parameters to be considered. Additionally, our simulations are based on fixed thermal time and directions under which the GF are observed. However, the dynamics of GF is smooth since it results from incremental growth and senescence processes.

Therefore, it would be possible to interpolate the GF values between the fixed dates simulated in this exercise to match the actual dates. Similar smooth variations of GF are expected as a function of the directions of GF observations. Therefore, it would also be possible to interpolate between the fixed directions to match the actual ones under which GF is observed.

The results presented here were based on in silico experiments where pseudo-observations were used instead of actual measurements. This probably boosts artificially the retrieval performances since the consistency of the ADEL-Wheat model with the actual canopy structure development was not challenged. The assimilation approach should therefore be further evaluated using actual observations 
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to ensure that the possible systematic error on the description of the dynamics of canopy structure by the ADEL-Wheat model is limited. Nonetheless, the noise added on the GF observations demonstrates that the approach is relatively robust to random error thanks to the multiplicity of the observations.

The performances of the proposed approach when applied to actual observations rely on the realism of the FSPM, ADEL-Wheat in our case. In a previous work, we pointed out the limits of ADEL-Wheat to get realistic GF values acquired close to nadir directions because of the possible interactions between leaves at early growth stages that were not always accurately described [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. However, it is possible to use only inclined observations for these early stages, which would limit the impact of model approximations on the estimation of the model parameters. Besides, ADEL-Wheat assumes that tillering ceases when the first internode starts to elongate [START_REF] Kirby | Leaf emergence and tillering in barley and wheat[END_REF]. However, the end of tillering can be strongly affected by external factors including light quality within the canopy (Evers et al., 2006) and photoperiod [START_REF] Miralles | Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod[END_REF]. Although simplifications and assumptions on the description of some processes are always necessary, phenotyping observations will contribute to provide the required information for improving the realism of FSPMs.

As in many FSPMs, ADEL-Wheat incorporates very little functioning in terms of ecophysiological processes, which limits the type of traits that can be extracted by assimilating phenotyping observations into D3P. The next step should be to retrieve crop growth model parameters describing canopy response to environmental factors, i.e. truly functional traits, from the assimilation of the structural parameters retrieved from the proposed combination of high-throughput phenotyping observations and D3P. Some wheat crop growth models such as SiriusQuality (Martre and Dambreville, 2018) describes the leaf area dynamics from the growth of individual leaves and tillers using an approach similar to that of ADEL-Wheat. In order to feed a crop model such as SiriusQuality with the FSPM parameters, they should be reparametrized so that the retrieved parameters have the same meaning in both models. Parameters determining the short-term responses of physiological processes to environmental factors are now also accessible in HTP platforms [START_REF] Prado | Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand[END_REF], which can limit the number of parameters that need to be retrieved by data assimilation. 

Materials and Methods
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The digital plant phenotyping platform (D3P) includes two components: a 3D canopy structure model and simulators of the phenotyping observations from LiDARs and multispectral or RGB cameras (Fig. 5). Three-dimensional canopy structures were simulated using the FSPM modeling platform OpenAlea [START_REF] Pradal | OpenAlea: a visual programming and component-based software platform for plant modelling[END_REF]. OpenAlea is used in D3P to create 3D meshes of virtual canopies. LiDAR data are simulated using the 3D crop modelling library Plantgl [START_REF] Pradal | PlantGL: A Python-based geometric library for 3D plant modelling at different scales[END_REF]. Multispectral and RGB images are simulated using the Persistence of Vision Raytracer (POV-Ray, Version 3.7), which renders complex 3D scenes for a range of camera specifications. Optical properties of plant organs are simulated with the PROSPECT model [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF]) using the Python library PyProSAIL. RGB simulator is a special case of multispectral camera for red, green, and blue channels.

By defining the sensor properties and the observational configuration (Supporting Information Supplemental Table S1), we can mimic with a very high realism any phenotyping measurement (Supplemental Video S1).

The accuracy of the LiDAR simulator has been previously evaluated through comparison with LiDAR measurements [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. The performance of POV-Ray based radiative transfer simulation was evaluated through radiation transfer model inter-comparison using an on-line model checker, ROMC [START_REF] Widlowski | The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models[END_REF]. The evaluation of POV-Ray (in Supplemental Figure S1) shows satisfactory results.

D3P is programmed in Python. All D3P dependencies are open-source and their code is accessible from the code repositories and websites given in Table S2. The code and user manual of D3P is freely available in GitHub (https://github.com/lsymuyu/Digital-Plant-Phenotyping-Platform). DP3 is distributed under the free software open source license MIT.

Simplification of ADEL-Wheat functional-structural plant model

Virtual wheat (Triticum aestivum) canopies were simulated with the wheat FSPM ADEL-Wheat implemented in OpenAlea (Fournier and Andrieu, 1999;Abichou et al., 2013;[START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. Plant development is primarily driven by temperature and the thermal time between the appearance of two successive leaf tips, i.e. the phyllochron. The phyllochron is considered constant from seedling to flag leaf expansion [START_REF] Hokmalipour | The Study of Phyllochron and Leaf Appearance Rate in Three Cultivar of Maize (Zea mays L.) At Nitrogen Fertilizer Levels[END_REF]. The current version of ADEL-Wheat needs more than 50 parameters to describe explicitly the dimension, orientation and inclination of each organ (for a [START_REF] Masle | Competition Among Tillers in Winter Wheat: Consequences for Growth and Development of the Crop[END_REF], five parameters drive the plant structure dynamics (Table 1):

 The phyllochron, , controls the time of leaf appearance and the rate of leaf extension;

 The lamina length of the first three leaves is assumed to change linearly with leaf rank. It is parameterized by the lamina length of the first leaf 𝐿 and the slope, α leaf , of the relationship between lamina length and leaf rank;  Leaf orientation is initialized from the seedling stage depending on seed orientation. Seeds are assumed to be sown with a random azimuth [START_REF] Ledent | Spatial orientation of wheat leaves[END_REF]. Evers et al. (2005) found that the azimuth of successive leaves is mainly opposite for the first three leaves. The azimuth angle of a leaf relative to the previous one was drawn from a Gaussian distribution with mean angle of 180° and standard deviation φ accounting for the plasticity of the cultivar. The leaf inclination was described based on experimental observations (Abichou, 2016). Variations of leaf inclination is controlled by the basal inclination, . 

Simulation of synthetic datasets

We simulated RGB images of wheat canopies using D3P with our simplified version of ADEL-Wheat.

We rendered 2 × 2 m scenes containing 11 rows with and inter-row spacing of 17.5 cm and a sowing density of 250 seeds•m -2 . Note that plant density was not considered as an unknown parameter since high resolution RGB imagery techniques have been developed to accurately measure it and document the associated sowing pattern [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF][START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. A total of 2,500 combinations of the five influential parameters of ADEL-Wheat before tillering (Table 1) were randomly drawn using a

Latin Hypercube sampling scheme. The parameters were assumed to follow a uniform distribution within their range of variation (Abichou, 2016; Table 1). During tillering, a similar sampling strategy was used for the five influential parameters during that period (Table 1). The canopies were simulated every 50 °Cd before tillering (between 50 and 250 °Cd after crop emergence) and every 100 °Cd during tillering (between 300 and 700 °Cd after crop emergence).

GF in a given direction is defined as the fraction of green elements viewed in this particular direction.

It is computed from the classification of RGB images. The RGB camera with a ±10° field of view was placed at 1.5 m above the canopy, providing a footprint of 50 × 50 cm. The images had a resolution of 500 × 500 pixels with a 1 mm spatial resolution, which appears to be a good compromise between computation time and performances. Marginal classification errors were expected in the calculation of GF from our simulations. Noise was thus added to the simulated GF values to mimic the actual GF measurements where possible classification errors may be observed due to confusions between green vegetation and non-green elements or the soil surface, depending on illumination conditions and camera spatial resolution. We assumed that the noise followed a Gaussian distribution with a mean of zero and a standard deviation of 0.05 and 0.10, which are typical values (Baret et al., 2010;[START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. We then rendered the 3D scenes using POV-Ray every 15° between 0° and 60°. View azimuth was perpendicular to the row to maximize the sensitivity to canopy structure (López-Lozano et al., 2007;Lopez-Lozano et al., 2009).

GF was computed for the 10 dates and the five view directions for each of the 2,500 combinations of ADEL-Wheat parameters (Table 1). The 125, 000 simulated RGB images and corresponding GF 
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values will be called 'pseudo-observations' in the following (illustrated in Supplemental Figure S2).

Each of the 2,500 input parameter combination were also associated to two additional traits: the GAI at each of the 10 dates and the number of axes with more than three leaves (𝑑 3𝑙 ) at the end of the tillering period. Training and validation processes were conducted with 85% and 15% of the synthetic dataset, respectively.

Green fraction assimilation

The assimilation process was conducted sequentially for the two growth periods as illustrated in Fig. 6.

The five parameters involved before tillering (, 𝐿, α leaf , 𝜑, and ) were first estimated. Then the five additional parameters required for the tillering period ( N 𝑠𝑒𝑛 , N min , N til ,  til and α til ) were estimated while the first five parameters were fine-tuned since they also influence the architecture of canopies during tillering. In the second assimilation step, GF data from crop emergence to beginning of stem elongation were also assimilated.

For each of the two periods, the assimilation process consisted in adjusting the ADEL-Wheat parameters (Table 1) to get a good agreement between the simulated GF and the GF pseudo-observations for the 10 dates and five directions considered. Parameter adjustment was completed using a neural network (NN) machine learning approach, which is well adapted to our case where the simulations are time consuming, preventing from using iterative optimization approaches [START_REF] Kimes | Inversion methods for physically-based models[END_REF]Baret and Buis, 2008). We used a one-layer feed-forward network with tangent sigmoid transfer functions in the first layer and a linear transfer function in the output layer. The number of neurons in the hidden layer is based on the geometric pyramid rule proposed by Masters (1993). The optimal number of neurons in the hidden layer should be close to √𝑛𝑚 with 𝑛 and 𝑚 being the number of inputs and outputs, respectively. Then the synaptic weights and biases are tuned using the Levenberg-Marquardt optimization algorithm (Marquardt and Mathematics, 1963) to best match the output values over the training database. The accuracy of the estimated parameters was assessed with the relative root mean squared error (rRMSE).

Defining the optimal observational configuration

The optimal measurement configuration for the retrieval of plant and canopy architectural traits was investigated using D3P. We analyzed, among the 961 possible combinations of five dates and five 
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directions, the ones providing the best retrieval performances for the ADEL-Wheat parameters and GAI. Pseudo measurements of GF were assimilated into D3P using the trained NN for each of the 961 configurations considered the same way as described above for the five dates and five directions. A 5%

Gaussian noise was applied on GF values simulated by D3P. Retrieval performances were quantified as the average rRMSE computed on the targeted traits and GAI for validation dataset (375 among the 2,500 combinations of the parameters presented in Table 1). For GAI, the rRMSE was computed for the five dates before tillering.

Comment citer ce document : Liu, S., Martre, P., Buis, S., Abichou, M., Andrieu, B., Baret, F. (2019) measurements with the reference values for the first growth period (between crop emergence and ligulation of leaf 3). Synthetic GF data were obtained from five view directions with 5% noise. The five parameters are: 𝑁 sen , number of green leaves at the start of leaf senescence on the mainstem;

𝑁 min , minimum number of green leaves on the mainstem; 𝑁 til , final number of tillers per plant;

 til , inclination of the base of tillers relative to mainstem inclination; α til , change of tiller inclination angle with the number of emerged leaves.

Fig. 3

Relative root mean squared error (rRMSE) for ten parameters of ADEL-Wheat, green area index (GAI), and the number of tillers with at least three leaves at the beginning of stem elongation (𝑑 3𝑙 ) estimated with the Digital Plant Phenotyping Platform using the green fraction observations under five view directions for 10 dates between crop emergence and the beginning of stem elongation.

Three levels of noise were considered (0%, 5% and 10%) for the evaluation dataset. The ten parameters include: , phyllochron; L, laminae length of leaf 1, rank from the bottom;  leaf , increase rate of lamina length; φ, standard deviation of the leaf azimuth compared to the previous one with mean 180°; , shift of leaf basal inclination 𝑁 sen , number of green leaves at the start of leaf senescence on the mainstem; 𝑁 min , minimum number of green leaves on the mainstem; 𝑁 til , final number of tillers per plant;  til , inclination of the base of tillers relative to mainstem inclination; α til , change of tiller inclination angle with the number of emerged leaves. 

Fig. 1 Fig. 2

 12 Fig.1Relative root mean squared error (rRMSE) for five parameters of ADEL-Wheat and green area index (GAI) estimated with the Digital Plant Phenotyping Platform using the green fraction observations under five view directions for five dates before tillering. Three levels of noise were considered (0%, 5% and 10%) for the evaluation dataset. The five parameters are: , phyllochron; L, laminae length of leaf 1, rank from the bottom;  leaf , increase rate of lamina length; φ, standard deviation of the leaf azimuth compared to the previous one with mean 180°; , shift of leaf basal inclination.

Fig. 4 Fig. 5

 45 Fig.4Average relative root mean squared error (rRMSE) for the three estimated ADEL-Wheat parameters (, 𝐿, and α leaf ) and GAI obtained from the 961 combinations of one to five directions and one to five dates before tillering.

Fig. 6 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

 6123456 Fig.6Diagram showing the sequential scheme of green fraction assimilation. The assimilation was done in two consecutive steps: between crop emergence and the start of tillering (before tillering), and between crop emergence and the beginning of stem elongation (before stem elongation). In each step, a neural network (NN) was first trained using the training green fraction (GF(t,)) dataset. The trained NN was then used to estimate ADEL-Wheat parameters and GAI using the green fraction (GF(t,)) validation dataset. The distribution of ADEL-Wheat parameters estimated in the first step (before tillering) were used as prior information when training the NN in the second step (before stem elongation). Finally, the tiller number with more than three leaves at the beginning of stem elongation (𝑑 3𝑙 ) was computed from the estimated set of parameters.

  

  

  

  

  

  

8 Discussion Assimilation of green fraction observations provides accurate estimates of few pertinent wheat architectural traits
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Description of the digital plant phenotyping platform
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  /openalea.gforge.inria.fr/doc/alinea/adel/doc/_build/html/user/manual.html). Therefore, a reduced number of parameters was required in order to estimate them from HTP observations. We reparametrized the leaf dimension representation in ADEL-Wheat using a large dataset covering 28 winter wheat experiments conducted over several years in Grignon, France, with a range of sowing dates, cultivars, and nitrogen levels(Abichou, 2016). The modifications proposed are detailed in Supplemental Methods S1. A total of 10 influential parameters controlling the canopy development from emergence to the beginning of stem elongation was finally necessary to drive the simplified version of ADEL-Wheat model. Before tillering starts, i.e. before ligulation of the third leaf on the main stem

	detailed	presentation	of	ADEL-Wheat	see
	http:/				
					13
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  𝑁 sen , and the minimum number of green leaves on the mainstem, 𝑁 min Change of tiller inclination angle with the number of visible leaves, α til .

	During the tillering phase, i.e. between ligulation of the third leaf on the mainstem and the beginning
	of stem elongation (Abichou et al., 2018), five additional parameters drive tiller development and leaf
	senescence (Table 1):
		Leaf senescence is described by the number of green leaves on the mainstem when
		senescence starts,

(Abichou et al., 2013)

;  Final number of tillers, 𝑁 til ;  Leaf inclination,  til ; Comment citer ce document : Liu, S., Martre, P., Buis, S., Abichou, M., Andrieu, B., Baret, F. (2019). Estimation of plant and canopy architectural traits using the D3P Digital Plant Phenotyping Platform. Plant Physiology, 181 (3), 881-890. , DOI : 10.1104/pp.19.00554 14 

Table Table 1

 Table Influential parameters of the simplified ADEL-Wheat model estimated in the Digital Plant Phenotyping Platform. The range of variation as observed in field experiments is indicated (Abichou,

	2016).
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