(. Cryst, 86-92 ppm) and amorphous (A amorp , 78-86 ppm) C4 signals from spectral deconvolution as CrI = A crys / A cryst + A amorp × 100%

F. Jiang, T. Li, Y. J. Li, Y. Zhang, A. Gong et al., Wood-based nanotechnologies toward sustainability, Adv Mater, vol.30, p.1703453, 2018.

L. T. Mika, E. Csefalvay, and A. Nemeth, Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability, Chem Rev, vol.118, pp.505-613, 2018.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem Rev, vol.110, pp.3479-500, 2010.

A. Isogai, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, J Wood Sci, vol.59, pp.449-59, 2013.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials, Angew Chem Int Ed, vol.50, pp.5438-66, 2011.

N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym, vol.90, pp.735-64, 2012.

C. Moreau, A. Villares, I. Capron, and B. Cathala, Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials, Ind Crops Prod, vol.93, pp.96-107, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606350

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: a review of recent advances, Ind Crops Prod, vol.93, pp.2-25, 2016.

B. G. Rånby, Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles, Discuss Faraday Soc, vol.11, pp.158-64, 1951.

B. G. Rånby, Physico-chemical investigations on animal cellulose (Tunicin), Arkiv Kemi, vol.4, pp.241-249, 1952.

A. Turbak, F. Snyder, and K. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J Appl Polym Sci, vol.37, pp.815-842, 1983.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, J Appl Polym Sci, vol.37, pp.797-813, 1983.

A. Samir, M. Alloin, F. Dufresne, and A. , Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, vol.6, pp.612-638, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00196887

I. Capron, O. J. Rojas, and R. Bordes, Behavior of nanocelluloses at interfaces, Curr Opin Colloid Interface Sci, vol.29, pp.83-95, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606560

I. Kalashnikova, H. Bizot, B. Cathala, and I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir, vol.27, pp.7471-7480, 2011.

C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films, Langmuir, vol.28, pp.12463-71, 2012.

J. B. Mougel, C. Adda, P. Bertoncini, I. Capron, B. Cathala et al., Highly efficient and predictable noncovalent dispersion of single-walled and multi-walled carbon nanotubes by cellulose nanocrystals, J Phys Chem C, vol.120, pp.22694-701, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608523

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules, vol.7, pp.1687-91, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules, vol.8, pp.2485-91, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305562

M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola et al., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules, vol.8, pp.1934-1975, 2007.

L. Wagberg, G. Decher, M. Norgren, T. Lindstroem, M. Ankerfors et al., The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes, Langmuir, vol.24, pp.784-95, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00367879

S. X. Nie, K. Zhang, X. J. Lin, C. Y. Zhang, D. P. Yan et al., Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils, Carbohydr Polym, vol.181, pp.1136-1178, 2018.

L. F. Long, D. Tian, J. G. Hu, F. Wang, and J. Saddler, A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation, Bioresour Technol, vol.243, pp.898-904, 2017.

M. Lecourt, J. C. Sigoillot, and M. Petit-conil, Cellulase-assisted refining of chemical pulps: impact of enzymatic charge and refining intensity on energy consumption and pulp quality, Process Biochem, vol.45, pp.1274-1282, 2010.

M. Lecourt, V. Meyer, J. C. Sigoillot, and M. Petit-conil, Energy reduction of refining by cellulases, Holzforschung, vol.64, pp.441-447, 2010.

T. Tandrup, K. Frandsen, K. S. Johansen, J. Berrin, L. Leggio et al., Recent insights into lytic polysaccharide monooxygenases (LPMOs), Biochem Soc Trans, vol.46, pp.1431-1478, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01984302

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochem Soc Trans, vol.44, pp.143-152, 2016.

S. V. Valenzuela, C. Valls, V. Schink, D. Sánchez, M. B. Roncero et al., Differential activity of lytic polysaccharide monooxygenases on celluloses of different crystallinity. Effectiveness in the sustainable production of cellulose nanofibrils, Carbohydr Polym, vol.207, pp.59-67, 2019.

J. Hu, D. Tian, S. Renneckar, and J. N. Saddler, Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase, Sci Rep, vol.8, p.3195, 2018.

A. Villares, C. Moreau, C. Bennati-granier, S. Garajova, L. Foucat et al., Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure, Sci Rep, vol.7, p.40262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595678

S. Ladeveze, M. Haon, A. Villares, B. Cathala, S. Grisel et al., The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases, Biotechnol Biofuels, vol.10, p.215, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668799

C. Bennati-granier, S. Garajova, C. Champion, S. Grisel, M. Haon et al., Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnol Biofuels, vol.8, p.90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202474

G. Chinga-carrasco, Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale Res Lett, vol.6, p.417, 2011.

G. Siqueira, S. Tapin-lingua, J. Bras, D. S. Da-perez, and A. Dufresne, Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, vol.17, pp.1147-58, 2010.

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu Rev Plant Biol, vol.61, pp.263-89, 2010.

C. Hoebler, J. L. Barry, A. David, and J. Delortlaval, Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography, J Agric Food Chem, vol.37, pp.360-367, 1989.

A. Potthast, S. Radosta, B. Saake, S. Lebioda, T. Heinze et al., Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol, Cellulose, vol.22, pp.1591-613, 2015.

M. Hasani, U. Henniges, A. Idstrom, L. Nordstierna, G. Westman et al., Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl, Carbohydr Polym, vol.98, pp.1565-72, 2013.

M. Couturier, S. Ladeveze, G. Sulzenbacher, L. Ciano, M. Fanuel et al., Lytic xylan oxidases from wood-decay fungi unlock biomass degradation, Nat Chem Biol, vol.14, p.306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02188478

G. Zuckerstätter, G. Schild, P. Wollboldt, T. Röder, H. K. Weber et al., The elucidation of cellulose supramolecular structure by 13 C CP-MAS NMR, Lenzing Ber, vol.87, pp.38-46, 2009.

P. T. Larsson, K. Wickholm, and T. Iversen, A CP/MAS C-13 NMR investigation of molecular ordering in celluloses, Carbohydr Res, vol.302, pp.19-25, 1997.

T. Liitiä, S. L. Maunu, B. Hortling, T. Tamminen, O. Pekkala et al., Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods, Cellulose, vol.10, pp.307-323, 2003.

A. Peciulyte, K. Karlstoem, P. T. Larsson, and L. Olsson, Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis, Biotechnol Biofuels, vol.8, p.56, 2015.

E. Malm, V. Bulone, K. Wickholm, P. T. Larsson, and T. Iversen, The surface structure of well-ordered native cellulose fibrils in contact with water, Carbohydr Res, vol.345, pp.97-100, 2010.

L. Wagberg, L. Winter, L. Odberg, and T. Lindstrom, On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials, Colloids Surf, vol.27, pp.163-73, 1987.

B. Cathala, A. Villares, C. Moreau, and J. G. Berrin, Procedure for the fabrication of nanocellulose from a cellulosic substrate. French patent FR, 2015.

I. Besbes, M. R. Vilar, and S. Boufi, Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential, Carbohydr Polym, vol.86, pp.1198-206, 2011.

A. Chaker, P. Mutje, F. Vilaseca, and S. Boufi, Reinforcing potential of nanofibrillated cellulose from nonwoody plants, Polym Compos, vol.34, pp.1999-2007, 2013.

T. J. Simmons, J. C. Mortimer, O. D. Bernardinelli, A. C. Poppler, S. P. Brown et al., Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR, Nat Commun, vol.7, p.13902, 2016.

W. X. Wang, R. C. Sabo, M. D. Mozuch, P. Kersten, J. Y. Zhu et al., Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization, J Polym Environ, vol.23, pp.551-559, 2015.

M. Couturier, M. Haon, P. M. Coutinho, B. Henrissat, L. Lesage-meessen et al., Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass, Appl Environ Microbiol, vol.77, pp.237-283, 2011.

B. Westereng, J. W. Agger, S. J. Horn, G. Vaaje-kolstad, F. L. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, J Chromatogr A, vol.1271, pp.144-52, 2013.

I. Horcas, R. Fernandez, J. M. Gomez-rodriguez, J. Colchero, J. Gomez-herrero et al., WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev Sci Instrum, vol.78, p.13705, 2007.

A. B. Blakeney, P. J. Harris, R. J. Henry, and B. A. Stone, A simple and rapid preparation of alditol acetates for monosaccharide analysis, Carbohydr Res, vol.113, pp.291-300, 1983.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations