T. K. Thorning, Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food & nutrition research 60, p.32527, 2016.

F. Mosca and M. L. Gianni, Human milk: composition and health benefits, La Pediatria medica e chirurgica: Medical and surgical pediatrics, vol.39, 2017.

N. Kosaka, H. Izumi, K. Sekine, and T. Ochiya, microRNA as a new immune-regulatory agent in breast milk, Silence, vol.1, 2010.

Y. Gu, Lactation-Related MicroRNA Expression Profiles of Porcine Breast Milk Exosomes, PLoS One, vol.7, p.43691, 2012.

S. Manca, Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns, 2018.

J. A. Weber, The microRNA spectrum in 12 body fluids, Clinical chemistry, vol.56, p.147405, 2010.

Q. Zhou, Immune-related microRNAs are abundant in breast milk exosomes, International journal of biological sciences, vol.8, pp.118-123, 2012.

M. Alsaweed, Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation, Journal of cellular biochemistry, vol.116, pp.2397-2407, 2015.

R. Li, P. L. Dudemaine, X. Zhao, C. Lei, and E. Ibeagha-awemu, Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells, PloS one, vol.11, 2016.

M. Alsaweed, C. T. Lai, P. E. Hartmann, D. T. Geddes, and F. Kakulas, Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation, PloS one, vol.11, 2016.

V. Modepalli, Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii), BMC genomics, vol.15, 2014.

J. Ma, Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs, Scientific reports, vol.7, 2017.

Y. Xi, The levels of human milk microRNAs and their association with maternal weight characteristics, European journal of clinical nutrition, vol.70, pp.445-449, 2016.

J. Sun, MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection, BMC genomics, vol.16, 2015.

M. Cai, Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus, Cell stress & chaperones, vol.23, pp.663-672, 2018.

X. Chen, Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products, Cell research, vol.20, pp.1128-1137, 2010.

H. Izumi, Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey, PloS one, vol.9, 2014.

D. N. Do, R. Li, P. L. Dudemaine, and E. M. Ibeagha-awemu, MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data, Scientific reports, vol.7, p.44605, 2017.

C. Zhang, Deep RNA sequencing reveals that microRNAs play a key role in lactation in rats, The Journal of nutrition, vol.144, pp.1142-1149, 2014.

I. Floris, MiRNA Analysis by Quantitative PCR in Preterm Human Breast Milk Reveals Daily Fluctuations of hsa-miR-16-5p, PloS one, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641551

A. Benmoussa and P. Provost, Milk microRNAs in health and disease. Comprehensive Reviews in food science and food safety 18, pp.703-722, 2019.

K. Chokeshaiusaha, T. Sananmuang, D. Puthier, and C. Nguyen, An innovative approach to predict immune-associated genes mutually targeted by cow and human milk microRNAs expression profiles, Veterinary world, vol.11, pp.1203-1209, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01977762

R. Golan-gerstl, Characterization and biological function of milk-derived miRNAs. Molecular nutrition & food research 61, 2017.

Z. Wicik, Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, vol.133, pp.31-42, 2016.

P. A. Billa, Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbeliarde cows, BMC genomics, vol.20, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02620652

J. Peng, J. S. Zhao, Y. F. Shen, H. G. Mao, and N. Y. Xu, MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds, International journal of molecular sciences, vol.16, pp.1448-1465, 2015.

M. Alsaweed, C. T. Lai, P. E. Hartmann, D. T. Geddes, and F. Kakulas, Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk, Scientific reports, vol.6, 2016.

J. Laubier, J. Castille, S. Le-guillou, and F. Le-provost, No effect of an elevated miR-30b level in mouse milk on its level in pup tissues, RNA biology, vol.12, pp.26-29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194167

A. Kozomara and S. Griffiths-jones, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic acids research, vol.42, pp.68-73, 2014.

C. Bourdon, RumimiR: a detailed microRNA database focused on ruminant species, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627384

A. Rau, M. Gallopin, G. Celeux, and F. Jaffrezic, Data-based filtering for replicated high-throughput transcriptome sequencing experiments, Bioinformatics, vol.29, pp.2146-2152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00927025

L. Guillou and S. , Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes, PloS one, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193894

C. I. Schanzenbach, B. Kirchner, S. E. Ulbrich, and M. W. Pfaffl, MicroRNA of whole milk samples are not suitable for pregnancy detection in cattle, Gene, vol.692, pp.17-21, 2019.

B. Kirchner, M. W. Pfaffl, J. Dumpler, E. Von-mutius, and M. J. Ege, microRNA in native and processed cow's milk and its implication for the farm milk effect on asthma, The Journal of allergy and clinical immunology, vol.137, pp.1893-1895, 2016.

W. Y. Cai, The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion, Journal of cell science, vol.126, pp.2877-2889, 2013.

Y. Ladeiro, MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations, Hepatology, vol.47, pp.1955-1963, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00329510

K. R. Brennan and A. M. Brown, Wnt proteins in mammary development and cancer, Journal of mammary gland biology and neoplasia, vol.9, pp.119-131, 2004.

J. Prosperi and K. H. Goss, Lactation: Natural Processes, Physiological Responses and Role in Maternity, pp.121-134, 2012.

P. Bhat-nakshatri, Estradiol-regulated microRNAs control estradiol response in breast cancer cells, Nucleic acids research, vol.37, pp.4850-4861, 2009.

J. Tong, H. Zhang, Y. Wang, Q. Li, and Y. Liu, Oestrogens and prolactin regulate mammary gland epithelial cell growth by modulation of the Wnt signal pathway, Slovenian Veterinary Research, vol.53, pp.141-149, 2016.

M. Chu, MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells, The international journal of biochemistry & cell biology, vol.97, pp.118-127, 2018.

D. N. Do, P. L. Dudemaine, R. Li, and E. M. Ibeagha-awemu, Co-Expression Network and Pathway Analyses Reveal Important Modules of miRNAs Regulating Milk Yield and Component Traits, International journal of molecular sciences, vol.18, 2017.

P. Parra, F. Serra, and A. Palou, Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice, PloS one, vol.5, 2010.

W. Sun, miR-223 and miR-142 attenuate hematopoietic cell proliferation, and miR-223 positively regulates miR-142 through LMO2 isoforms and CEBP-beta, Cell research, vol.20, pp.1158-1169, 2010.

M. Wang, MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation, Journal of dairy science, vol.95, pp.6529-6535, 2012.

,

P. Martin, H. W. Barkema, L. F. Brito, S. G. Narayana, and F. Miglior, Symposium review: Novel strategies to genetically improve mastitis resistance in dairy cattle, Journal of dairy science, vol.101, pp.2724-2736, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02620343

A. Govignon-gion, R. Dassonneville, G. Baloche, and V. Ducrocq, Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds, Animal: an international journal of animal bioscience, vol.10, pp.558-565, 2016.

C. Egger-danner, Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits, Animal: an international journal of animal bioscience, vol.9, pp.191-207, 2015.

A. Benmoussa, A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk, Journal of extracellular vesicles, vol.6, 2017.

C. L. Bockmeyer, MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes, Breast cancer research and treatment, vol.130, pp.735-745, 2011.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, vol.17, 2011.

M. R. Friedlander, S. D. Mackowiak, N. Li, W. Chen, and N. Rajewsky, miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic acids research, vol.40, pp.37-52, 2012.

A. Bateman, RNAcentral: A vision for an international database of RNA sequences, Rna, vol.17, pp.1941-1946, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639172

S. Dray and A. Dufour, The ade4 Package: Implementing the Duality Diagram for Ecologists, Journal of Statistical Software, vol.22, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic acids research, vol.43, 2015.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome biology, vol.11, 2010.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J Roy Stat Soc Ser B (Methodological), vol.57, pp.289-300, 1995.

S. Babicki, Heatmapper: web-enabled heat mapping for all, Nucleic acids research, vol.44, pp.147-153, 2016.

I. S. Vlachos, DIANA-miRPath v3.0: deciphering microRNA function with experimental support, Nucleic acids research, vol.43, pp.460-466, 2015.

I. S. Vlachos, DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions, Nucleic acids research, vol.43, pp.153-159, 2015.

H. Ogata, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic acids research, vol.27, pp.29-34, 1999.

V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, 2015.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic acids research, vol.37, pp.1-13, 2009.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature protocols, vol.4, pp.44-57, 2009.