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Abstract 23 

In this study, a gradually increased hydro-mechanical treatments duration were applied to native 24 

hemp bast fibres with a traditional pulp and paper beating device (laboratory Valley beater). There 25 

is often a trade-off between the treatment applied to the fibres and the effect on their integrity. The 26 

multimodal analysis provided an understanding of the beating impact on the fibres at multiple 27 

scales and the experimental design made it possible to distinguish the effects of hydro- and hydro-28 

mechanical treatment. Porosity analyses showed that beating treatment doubled the macroporosity 29 

and possibly reduced nanoporosity between the cellulose microfibrils. The beating irregularly 30 

extracted the amorphous components known to be preferentially located in the middle lamellae 31 

and the primary cell walls rather than in the secondary walls, the overall increasing the 32 

crystallinity of cellulose from 49.3 % to 59.1 %, but a non-significant change in the indentation 33 
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moduli of the cell wall was observed. In addition, beating treatments with two distinct mechanical 34 

severities showed a disorganization of the cellulose conformation, which significant dropped the 35 

indention moduli by 11.2 GPa and 8.4 GPa for 10 and 20 minutes of Valley beater hydro-36 

mechanical treatment, respectively, compared to hydro-treated hemp fibres (16.6 GPa). Pearson’s 37 

correlation coefficients between physicochemical features and the final indentation moduli were 38 

calculated. Strong positive correlations were highlighted between the cellulose crystallinity and 39 

rhamnose, galactose and mannose as non-cellulosic polysaccharide components of the cell wall. 40 
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Abbreviations 46 

DVS:  dynamic vapour sorption; 47 

 HPAEC-PAD:  high-performance anion-exchange chromatography with 48 

pulsed amperometric detection;  49 

HPLC:  high-performance liquid chromatography;  50 

MFA:  microfibrillar angle;  51 

MIP:  mercury intrusion porosimetry;  52 

NCP’s: non cellulosic polysaccharides 53 

SEM:  scanning electron microscopy;  54 

XRD:  X-ray diffraction 55 

 56 

INTRODUCTION 57 

Lignocellulosic fibres have been of increasing interest in recent years in the field of 58 

agromaterials (Gallos et al. 2017). Their good mechanical properties make them a 59 

potential candidate to replace conventional man-made reinforcements in composite 60 

materials (Bourmaud et al. 2018; Mohanty et al. 2018; Wambua et al. 2003). Due 61 

to their multi-scale hierarchical structure, lignocellulosic fibres are akin to 62 

composite materials (Bourmaud et al. 2018). In plants, fibres are organized in 63 

bundles comprising several elementary fibres. Elementary fibres consist of a cell 64 

wall made mostly of cellulose (β-linked glucose unit chains) in a semi-crystalline 65 
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state (Turner and Kumar 2018). Cellulose microfibrils are parallel to each other, 66 

forming a microfibrillar angle (MFA) with the cell axis, and a fraction of them are 67 

connected to non-cellulosic matrix, usually called amorphous, made of 68 

hemicelluloses (mainly xyloglucan), pectins such as homogalacturonan (Morvan et 69 

al. 2003) and a small amount of lignins. 70 

The cell wall of elementary lignocellulosic fibres is organized in concentric layers: 71 

from the outermost to the innermost, we find the primary cell wall; the secondary 72 

cell wall is composed of a xylan-rich layer type which is located on the outer 73 

periphery of a gelatinous layer type (also called S2); and finally a central lumen. 74 

The elementary fibres are linked together thanks to the pectic-rich middle lamella. 75 

The gelatinous layer type has a high cellulose content (80-90 %), high crystallinity 76 

index, and low angle of cellulose microfibrils, and in the case of hemp primary 77 

fibres, it is the thickest layer of the cell wall, more than 10 µm (Chernova et al. 78 

2018). 79 

Hemp bast fibres are used as composites in different industries, notably because 80 

hemp’s cell wall is thick, with a reduced lumen (Beaugrand et al. 2017; Placet et al. 81 

2014), which gives it a high coarseness and is assumed to be non-collapsible 82 

(Westenbroek 2000). Hemp bast fibres are generally composed of 53-91 % 83 

cellulose, 4-18 % hemicelluloses, 1-17 % pectins, 1-21 % lignins in dry matter (Liu 84 

et al. 2017) and a low amount of wax present in the middle lamella (Thygesen et al. 85 

2006a). The large disparity in reported chemical composition can be explained by 86 

the fact that the analyses were not carried out at the same stage of fibre maturity or 87 

with the same measurement protocol (Bourmaud et al. 2018). 88 

The mechanical properties of the cell walls are governed by several factors, such as 89 

the microfibrillar angle (Burgert and Keplinger 2013), the chemical composition 90 

(Lefeuvre et al. 2014), the crystallinity, the defect density (Andersons et al. 2009; 91 

Beaugrand and Guessasma 2015; Gourier et al. 2017; Hughes 2012; Guessasma and 92 

Beaugrand 2019) and the mesoporosity (pore size between 2 and 50 nm), even if 93 

the last factor is not yet well established at the elementary fibre scale. Arnould et 94 

al. (2017) mapped the stiffness of the cell wall of green flax stems by atomic force 95 

microscopy revealing a gradient in mechanical properties along the cross section at 96 

nanoscale. However, this gradient in properties is not observed in mature plants, 97 

except in cases of environmental accident, such as drought or lodging events. 98 
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The mechanical properties of short lignocellulosic fibre–reinforced thermoplastic 99 

composite materials are inherent to the properties of the fibres that make them up 100 

(Bourmaud et al. 2018; Shah 2013; Shah et al. 2016), including such variables as 101 

their reinforcement rate (Ausias et al. 2013), their orientation in the matrix (Tanguy 102 

et al. 2018), their defects (Beaugrand et al. 2017; Rask et al. 2012), their shape 103 

(Beaugrand and Berzin 2012; Berzin et al. 2014; Legland and Beaugrand 2013) and 104 

the fibre-polymer matrix adhesion (Le Moigne et al. 2018). However, 105 

lignocellulosic fibres are hydrophilic, i.e., they easily adsorb water molecules. This 106 

property, incompatible with the hydrophobic character of some thermoplastic 107 

matrices, such as polyolefins, can be a barrier to good fibre-matrix adhesion in 108 

composite materials. Many researchers have conducted work to improve fibre-109 

matrix adhesion by applying thermal, mechanical and/or chemical pre-treatments 110 

to plant fibres. Numerous efforts to improve the properties of composites have been 111 

reviewed. Pickering et al. (2016) provide a synthesis of the various factors affecting 112 

the mechanical properties of natural fibre composites. More recently, Liu et al. 113 

(2017) reported the effects of many targeted pre-treatment techniques on hemp bast 114 

fibres intended for composite application. 115 

Among the existing processes, the beating process is traditionally used in the pulp 116 

and paper industry. The effects of this treatment on wood are well known and 117 

described by Gharehkhani (2015), whereas much less knowledge is available on 118 

lignocellulosic plant fibres. The main ones are internal and external fibrillation - 119 

and consequently the opening of pore structure, increasing their swelling capacity - 120 

and the breakage and the straightening of the macrofibrils. However, also their 121 

chemical composition is changed by degumming cellulosic fibres, i.e., beating 122 

cellulose by removing the non-cellulosic fraction. To control the quality of the pulp, 123 

pulp and paper standard methods of characterization are used, such as the Schopper-124 

Riegler degree (Dienes et al. 2005) or the water retention value (Cheng et al. 2010). 125 

Moreover, nanocelluloses are increasingly attracting materials science researchers 126 

and are being incorporated into formulations, and mechanical characterization 127 

techniques are applied to assess the properties of the fibres. 128 

We tried to increase the external surface area of the hemp fibre elements by 129 

individualizing the bundles and producing microfibrils. To do this, we developed a 130 

soft hydro-mechanical treatment using a Valley beater. The effects of the treatment 131 

were revealed by analyses of the structural, chemical and nanomechanical features 132 
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obtained by SEM observations, polysaccharide analysis, porosity, cellulose XRD 133 

crystallography and nanoindentation. Process impacts were depicted on the fibres’ 134 

structure and therefore on their mechanical properties. Finally, a correlation study 135 

identified the parameters that had the greatest impact on the nanomechanical 136 

properties of the fibres.  137 

 138 

MATERIALS AND METHODS 139 

Plant materials  140 

The native fibres used for this study were whole-plant hackled non-retted hemp 141 

fibres (Cannabis sativa L. variety Fedora 17). Hemp was cultivated and harvested 142 

in Champagne-Ardenne (France, 2012) and cut to an average length of 15 143 

millimetres by Fibres Recherche Développement (FRD, Troyes, France). Samples 144 

were stored in a dark environment at ambient temperature and humidity. 145 

Beating and drying of hemp fibres 146 

Before beating, hemp fibres were water-soaked for 10 min in a laboratory pulper at 147 

ambient temperature to clean them and remove any impurities. For this, 400 g of 148 

hemp fibre was immersed in 4 l of water (10 % w/v consistency) and stirred at a 149 

low rotational speed (510 rpm). Then, the cloudy water was removed and the bulk 150 

fibres put into the Valley beater (described in TAPPI 200) container. The container 151 

was then topped off with water to obtain a 2 % w/v consistency. The device was 152 

turned on for 5 minutes without counterweight to homogenize the suspension. The 153 

beating process started right after a weight of 4 kg was fixed to the lever arm which 154 

corresponds to applying a force of 76.3 N upwards against the roll. The rotational 155 

speed of the roll was 510 rpm and the cutted edge length (CEL) calculated from 156 

Eq.1 was 34.7 m.r-1. From these two parameters and Number of crossing points 157 

(Ncp) (Eq.2) between the roll and bedplate bars, we determined the cumulative 158 

number of crossing points (CNcp) per beating time (Table 1). All experiments were 159 

conducted with the same fibre concentration, counterweight and soaking time, only 160 

the beating time changes. 161 

𝐶𝐸𝐿 =
𝑛𝑟.𝑛𝑠.𝑙0

cos 𝛼𝑅.𝑐𝑜𝑠 𝛼𝑆
  (1) 162 

𝑁𝐶𝑃 =
𝐶𝐸𝐿

𝜋.𝐷𝑅
. sin  (𝛼𝑅 + 𝛼𝑆)   (2) 163 
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with n the number of bars, α the angle of the bars, the R and S indices correspond 164 

to the rotor (roll) and stator (bedplate) respectively. l0 and DR are the width and 165 

diameter of the roll respectively (Roux et al. 2009).The experimental was design 166 

(Table 1) to make it possible to distinguish the effects of water (soaking step) and 167 

hydro-mechanical treatment (beating)..  168 

 169 

The unbeaten native hemp fibres were the “ubH” sample, the beaten 0 minute hemp 170 

fibres (only hydro-treated as hydro treatment) were the “bH_0” sample, the hydro-171 

beaten 10 minutes hemp fibres were the “bH_10” sample, and finally, the hydro-172 

beaten 20 minutes hemp fibres were the “bH_20” sample (as the hydro-mechanical 173 

treatment). 174 

 175 

Table 1: Experimental design 176 

Type Code 

Soaking 

time 

(min) 

Beating 

time 

(min) 

CNcp SR° 

Fibre consistency 

(w/v) 
- 10% 2% -  

Un-beaten hemp 

fibres (raw material) 
ubH 0 0 0 n.a. 

beaten 0 min Hemp 

fibres 
bH_0 10 0 0 7 ± 0.3 

beaten 10 min Hemp 

fibres 
bH_10 10 10 1.6 106 8 ± 0.4 

beaten 20 min Hemp 

fibres 
bH_20 10 20 3.2 106 12 ± 0.4 

 177 

 178 

The beaten fibre suspension was filtered on a homemade system made of a nylon 179 

net having a pore size of 200 µm that was attached to a wooden stretcher frame of 180 

690×420 mm, i.e., a total surface area of 0.29 m2 per frame. The frame was placed 181 

in a large stainless-steel industrial sink. The suspension was spilled on it, and the 182 

fibres were manually dispersed on a nylon net surface to keep them as separate as 183 
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possible. After that, the water was evacuated, and the nylon net surface was put 184 

inside a ventilated oven at 30 °C for 2 hours. 185 

Schopper-Riegler degree (SR°)  186 

This rate is an indicator of the degree of beating of a fibrous suspension based on 187 

its ability to drain water that results directly from its surface conditions (fibrillation) 188 

and the swelling of the fibres. Thus, the higher the Schopper-Riegler degree, the 189 

more the pulp retains water and is more beaten. Unlike classical pulp, in this study 190 

hemp fibres were beaten with a shorter duration than typical paper making time, in 191 

order to maintain maximum integrity and mechanical properties. Therefore, to have 192 

a denser fibre mat, a suspension of 4 g of dry fibres (rather than 2 g) was diluted in 193 

1 l of water and introduced into the fill chamber of freeness tester. The water content 194 

of the suspension passed through a wire screen that retained the fibres and formed 195 

a mat. In the funnel, if the flow speed was too fast, the drained water exited by the 196 

lateral orifice and discharged in the corresponding graduated measuring cylinder. 197 

After a drying step, the absolute fibre mat mass was weighed to correct the SR° to 198 

2 grams per litre absolute dry weight. The SR° value of each treated fibre lot was 199 

averaged across 4 tests (Table 1).  200 

Scanning electron microscopy  201 

The surface appearance of the unbeaten and beaten fibres bundles was observed 202 

with a table-top scanning electron microscope (Hitachi TM-1000). This equipment 203 

did not require coating the fibres, and SEM images were taken at a magnification 204 

of 200 times and at an accelerating voltage of 15 kV.  205 

Chemical composition 206 

The glyosidic linkages of polysaccharides were hydrolysed by two-step sulphuric 207 

acid attack to release monosaccharides and uronic acids. To open the structures, 10 208 

milligrams of milled fibres (sieved of 200 µm) was mixed with 125 µl of H2SO4 12 209 

M under stirring at room temperature for 2 hours, corresponding to the swelling 210 

step. Then, the H2SO4 concentration was lowered by dilution at 1 M, and the 211 

mixture was heated at 100 °C for 2 hours to achieve the total hydrolysis.  212 
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Monosaccharides were separated and quantified by high-performance anion-213 

exchange chromatography equipped with CarboPac Pa-1 Column. The detailed 214 

procedure was previously described by Herbaut (2018). 215 

Cellulosic material is considered the sum of glucose (Glc), whereas the non-216 

cellulosic polysaccharides (NCPs) content is the sum of the monomer units: 217 

arabinose (Ara), rhamnose (Rha), galactose (Gal), xylose (Xyl), mannose (Man), 218 

galacturonic acid (Gal Ac) and glucuronic acid (Glc Ac). 219 

The acid-insoluble lignin content was quantified as described previously (Sharma 220 

et al. 2018). Milled samples (200 mg) were submitted to acid hydrolysis by mixing 221 

with 2 ml of a 12 M H2SO4 solution for 2 h at room temperature. The acid solution 222 

was then diluted to a concentration of 2 M by addition of deionized water before an 223 

incubation of 3 h at 100 °C. The solid fraction was recovered, thoroughly washed 224 

and oven-dried at 105 °C to a constant weight. The Klason lignin content was 225 

calculated after correction for ash content, which was determined by calcination at 226 

550 °C for 4 h. 227 

The protein content was estimated from the nitrogen content of the fibres. 228 

Experiments were carried out using a EURO EA elemental analyser (Eurovector, 229 

Milan, Italy) equipped with a thermal conductivity detector. A precise mass of 230 

approx. 5 to 7 mg of dried-milled samples was weighed in a tin capsule, then 231 

hermetically sealed. Based on the Dumas method (Dumas 1831), the samples were 232 

fully flash-combustion oxidized, and nitrogen was converted into gaseous 233 

dinitrogen (N2). A correction factor (x6.25) was applied to nitrogen content to 234 

estimate the protein content (González López et al. 2010). 235 

Hygroscopic properties by dynamic vapour sorption 236 

The isotherms of the water vapour desorption/adsorption were determined using a 237 

dynamic vapour sorption (DVS) apparatus from Hiden Isochema Ltd. (UK). Nearly 238 

5 mg hemp fibres was placed into the microbalance’s stainless-steel basket 239 

(precision of 0.1 µg), then placed hermetically in a double-jacket reactor connected 240 

to a thermoregulated water bath and equipped with temperature and relative 241 

humidity (RH) sensors to monitor them. Relative humidity was obtained with a flow 242 

mixture of wet and dry nitrogen. Once the sample was loaded into the DVS 243 

apparatus, the sorption/desorption sequence was started (10 % to 90 %RH then back 244 

to 10 %RH with a 10 % step) at a constant and regulated temperature of 20°C. Then, 245 
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a drying sequence was programmed to obtain the dry mass of the sample (4 h at 40 246 

°C then 8 h at 20 °C, under a flow of dry nitrogen). More details on the procedure 247 

are given by Guicheret-Retel (Guicheret-Retel et al. 2015). The moisture uptake 248 

was calculated as follows (Eq. 3) using the mass measured at the equilibrium 249 

moisture content for chosen RH (𝑚𝑚𝑜𝑖𝑠𝑡)and the mass of dried sample (𝑚𝑑𝑟𝑦) 250 

𝜔 (%) =  
𝑚𝑚𝑜𝑖𝑠𝑡− 𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
× 100        (3) 251 

 252 

True Density  253 

True density measurements were carried out using the DVS apparatus from Hiden 254 

Isochema Ltd. (UK). Argon was used because it is an inert and heavy gas. 255 

Approximately 60 mg samples were used. The principle of this technique is to 256 

measure the apparent mass of the sample as a function of the pressure of argon 257 

applied from 1 to 10 bars with an interval of 1 bar. We obtained a linear curve of 258 

10 aligned points from which the slope was extracted and used to calculate the 259 

density of the sample using the buoyancy equation. 260 

Before any measurement, a purge and dry cycle of the sorption microbalance was 261 

performed to obtain 100 % argon in the DVS device and to have a dried sample. To 262 

this end, we injected argon and put the system under vacuum approximately 20 263 

times, and then we maintained the sample under vacuum until its mass was constant. 264 

Fibre diameter distribution  265 

The fibre diameters were measured by a high-resolution 2D scanner (Epson V850 266 

pro) by scattering them on the scanner glass and taking care to keep them 267 

individualized. The images were acquired in 8-bit greyscale at a resolution of 4800 268 

dpi representing theoretically 5.29 µm per pixel. The images were processed and 269 

analysed with ImageJ software. After a manual segmentation step by setting a 270 

threshold value, the fibres were labelled using the "binaryLabel8" plugin. The 271 

length of the fibres was obtained by computing their geodesic diameter, as 272 

implemented in the "MorphoLibJ" plugin (Legland et al. 2016; Legland and 273 

Beaugrand 2013). Their diameter was obtained from the largest circle that could be 274 

contained in the fibre. To plot the diameter distribution graphic, particles with a 275 

length strictly less than 200 µm were excluded by numerical threshold. Also, by 276 
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convention, they are considered as ‘fine’ elements and not fibres (Ferreira et al. 277 

1999). 278 

Thermogravimetric analysis  279 

Thermogravimetric analysis was performed on TGA Q800 (TA instruments Inc, 280 

USA) with a nitrogen flow (40 ml.min-1) from 25 °C to 1000 °C and a temperature 281 

ramp of 10 °C·min-1. The analysis was performed on approximatively 20 mg of 282 

powder fibres (200 µm). 283 

Mechanical properties of the cell wall  284 

The mechanical properties were assessed by nanoindentation. This technique 285 

requires the samples to be embedded in a resin. Before this step, the cell wall 286 

structure of hemp bundles was fixed using a paraformaldehyde (2 %)–287 

glutaraldehyde (0.5 %) solution for 2 hours at room temperature. The fixed sample 288 

was dehydrated by successive ethanol solution baths (20 min) of increasing 289 

concentration until absolute grade. The samples were then soaked in successive 290 

solutions of ethanol/resin with an increasing ratio of resin until 100 % of resin. 291 

During those steps, the ethanol was gradually and then totally substituted by the LR 292 

White resin (Sigma-Aldrich). After that, the samples were placed inside a specific 293 

gelatine capsule and put in an oven. Finally, the resin polymerization was 294 

performed for 24 hours at 60 °C. 295 

The LR White capsule was cut in the transversal axis of the hemp bundles, and the 296 

excess resin around the fibre was manually removed. An ultra-microtome (Microm 297 

Microtech, HM 360) equipped with a diamond knife was used to smooth the sample 298 

surface and to obtain a roughness below 0.5 µm. 299 

A Nanoindenter Xp equipped with a pyramidal indenter (Berkovich tip) was used 300 

to perform indentation measurements. The Nanoscope Analysis software enabled 301 

us to extract the indentation modulus and the indentation hardness from the load-302 

unload curve of the specimen according to the method described by Oliver-Pharr 303 

method (Oliver and Pharr 1992). The indentation method parameters were fixed as 304 

follows: the maximum depth was 120 nm; the loading rate was 1 µN·s-1; the dwell 305 

time at the maximum load was 20 s and the unloading rate was 10 µN·s-1. 306 
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X-ray crystallography  307 

An ultra-centrifugal mill (Retsch ZM 200) was used to grind the hemp fibres to 308 

approximately 200 microns in length. The samples were scanned from 2θ = 5 to 40 309 

° with a step size of 0.03 ° at 2 s·step-1 at 30 kV and 20 mA under ambient conditions 310 

on a Siemens D500 diffractometer using CoKradiation. The crystallinity index 311 

was calculated using Eq. 4 according to the Segal empirical method (Segal et al. 312 

1959):  313 

𝐶 =  
𝐼𝑡𝑜𝑡− 𝐼𝑎𝑚

𝐼𝑡𝑜𝑡
× 100          (4) 314 

where Itot is the intensity at the primary peak for cellulose I (at 2θ = 22.5 °) and Iam 315 

is the intensity from the amorphous portion evaluated as the minimum intensity (at 316 

2θ = 18.5 °) between the primary and the secondary peaks. 317 

Mercury intrusion porosimetry 318 

To determine the pore size distribution and the total pore volume, an Autopore IV 319 

9500 (Micrometrics) was used. Approximatively 150 mg of dried fibres were 320 

loaded in a suitable penetrometer. This technique is based on the non-wetting 321 

property of liquid mercury having high a surface tension (γ = 480 dyne/cm at 20°C) 322 

and a high contact angle (θair/mercury = 140°) on many surfaces. The mercury was 323 

gradually injected into the porous network thanks to an increasing pressure from 324 

0.003 MPa (178 μm) to 227 MPa (0.003 μm). The pore access (r) invaded, which 325 

was determined by the Washburn equation (Washburn 1921), is inversely 326 

proportional to the exerted pressure (Eq. 5). 327 

𝑟 =
− 2𝛾𝑐𝑜𝑠𝜃 

𝑃
          (5) 328 

Statistical analysis 329 

For chemical analyses, nanomechanical properties and true density measurements, 330 

the equality of variance (Fisher test) was verified. Student’s t-test was carried out 331 

to compare the samples by pair, with a significance level of probability set at p < 332 

0.05. Pearson’s correlation coefficients were evaluated between indentation moduli 333 

and chemical analyses, with a statistically significant p-value of < 0.05, using 334 

SigmaPlot 12.0 software (Systat Software, Chicago, USA). 335 

 336 
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RESULTS AND DISCUSSION 337 

Structural changes  338 

The fibre suspensions were first characterized by the Schopper–Riegler test, which 339 

shows the progress of beating by the ability of the fibres to drain water. The beaten 340 

fibres had a SR° of 8 and 12 for bH_10 and bH_20 respectively (Table 1). This 341 

increase compared to water-soaked fibres (bH_0) clearly showed that the fibre 342 

structure had been modified by mechanical beating, and the longer the beating, the 343 

greater the extent of modification.   344 

Moreover, microscopic observations were conducted to visualize the fibre elements 345 

structural and topological natives state (ubH) and induced changes undergone by 346 

the hydro (bH_0) and hydro-mechanical treatments (bH_10 and bH_20). The 347 

resulting images are shown in Figure 1. Untreated fibres (ubH) were thicker and 348 

had a rougher surface. After treatment, the surface of the fibres seemed to be 349 

cleaner, smoother but also finer and more defibrillated, especially with longer 350 

pretreatment times. The surface cleaning of fibre by an immersion step is long, and 351 

here our observations mostly confirm this. More interestingly, mechanical 352 

treatment (bH_10 and bH_20) resulted in defibrillation: the bundles dissociated into 353 

thinner fibres, and the upper layers of the fibres in the cell wall give rise to external 354 

fibrils or to fine particles if they dissociated from them. These phenomena are well 355 

known for wood (Gharehkhani et al. 2015; Page 1989) and for hemp (Wang et al. 356 

2007). In line with enhanced plant fibre composite mechanical properties, 357 

especially for short-fibre thermoplastic composites, the physical anchoring in the 358 

matrix mediated by fibrillation harboured by natural fibres is one promising route 359 

(Lee and Bismarck 2014; Zhong et al. 2011). One goal of this study was to generate 360 

such lateral fibrils along the fibres (see arrow in Figure 1), and the microscopic 361 

observations confirm the effectiveness of the Valley beater hydro-mechanical 362 

treatment.  363 
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 364 

Figure 1: SEM micrographs. White scale bar equal to 50 µm. Yellow arrows point the lateral 365 

microfibrils more or less visible and amplified depending on the treatment severity. 366 

 367 

Further details about the evolution of the morphologies were obtained by image 368 

analysis. The average diameters of nearly 600 fibres with a minimum length of 200 369 

µm were measured for each sample to have a global representation of the fibre 370 

population (Figure 2). The majority of the untreated fibres (ubH) extend to 371 

diameters between 20 and 60 µm. The same trend was observed for water-soaked 372 

fibres (bH_0), with a slight enrichment of this fraction, suggesting that the soaking 373 

step has allowed the beginning of individualisation of some bundles. This would be 374 

in agreement with the water-soluble non-cellulosic polymers extracted from the 375 

fibre elements, in particular from the middle lamella that ‘glued’ the elementary 376 

fibre together. This range was gradually reduced to 20-40 µm for mechanically 377 

treated fibres with a 50 % enrichment compared to native fibres (ubH). As the fibres 378 

were beaten as the mechanical treatment progresses, these diameter results 379 

corroborated the abovementioned microscopic observations. It should be noted that 380 

the method of measuring the diameter by the largest inscribed circle that can be 381 

contained in the fibre may slightly overestimate the diameter, especially for the 382 

most fibrillated fibres. Indeed, we noticed that this larger inscribed circle tended to 383 

be at the branching points. 384 
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 385 

Figure 2: Diameter distributions of hemp fibres greater than 200 µm in length. 386 

 387 

Porosity and swelling 388 

With the objective to estimate the impact of soaking and beating on the porous 389 

structure and surface pore area of hemp fibres, a porosity analysis was performed 390 

by mercury intrusion porosimetry (MIP). The mercury porosity obtained on the 391 

native fibres (ubH) was 49.8 %. In the water-soaked fibres (bH_0), the porosity 392 

was higher with a value of 62.6 %. The total porosity increased with the mechanical 393 

treatment applied to the fibres (64.8 % for bH_10 and 83.3 % for bH_20). 394 

Regarding the pore distribution (Figure 3A), the mean pore access for the native 395 

fibres was approximately 75 μm that corresponded to the interfibre spaces.  396 

 397 
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Figure 3: Incremental volume of mercury injected as a function of pore access (µm) (3A) and 398 

range of porosity distribution in relative percentage for each fibre sample (3B). The legend of the 399 

Figure 3B shows the intensity gradient corresponding to each porosity range. 400 

 401 

This mean pore access was up to 90 µm for the water-soaked fibres and up to 83 402 

microns for the mechanically treated fibres. A small peak approximately 3 µm 403 

which intensity increased with the treatment constituted the fibres microporosity 404 

could correspond to the lumens. They were defined as hollow and elongated 405 

cavities with transversal diameter between 0.5-10 μm (Del Masto et al. 2017; Placet 406 

et al. 2014). This observation obtained with the MIP also matches well with the 407 

lumen description visualized by X-ray nanotomography (Beaugrand et al. 2017). 408 

Considering the relative percentages of the pore access ranges (Table 2), we can 409 

see that it was the 10-100 µm range that increased significantly, i.e., it increased 410 

by 30 % for bH_0 and bH_10 and almost doubled for bH_20 compared to native 411 

fibres.  412 

Table 2: Mercury intrusion porosimetry results: total porosity and apparent skeletal density. True 413 

density obtained by DVS. True densities not having the same letter were significantly different 414 

(p<0.05). 415 

 416 

 
Total porosity 

(%) 

Apparent 

skeletal 

density (g·ml-

1) 

True density 

ubH 49.8 1.379 1.535 ± 0.004a 

bH_0 62.6 1.280 1.541 ± 0.004a 

bH_10 64.8 1.254 1.534 ± 0.005a 

bH_20 83.3 1.453 1.550 ± 0.004a 

 417 

This reflects the densification of porous networks, both intrafibre and interfibre, 418 

through bundle individualization and the formation of lateral microfibrils that can 419 

become entangled and sometimes in loops as can be observed in the SEM images 420 

(Figure 1). Pores smaller than 0.1 microns almost completely disappeared as soon 421 

as the fibres were soaked and dried. These nanopores corresponded to the pores 422 

between the microfibrils (Meng and Ragauskas 2014), so the soaking/drying cycle 423 

imposed on the fibres tightened the cellulose microfibrils between them.  424 
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In addition, water sorption tests using DVS were conducted to learn about the 425 

qualitative evolution of mesoporosity. Indeed, in the case of natural fibres, a 426 

hysteresis was observed during the desorption phase, reflecting the presence of 427 

mesopores in the fibre structure (Célino et al. 2013; Hill Callum et al. 2009). 428 

Recently, Chen et al. (2018) have provided, through simulations, a better 429 

understanding of the role of hydrogen bonds involved in the hysteresis observed in 430 

sorption-induced swelling of soft nanoporous polymers. 431 

The isotherms were analysed by two means: (i) the loop isotherm area (Table 3) 432 

resulting from subtraction of the desorption curve area from the sorption curve area 433 

(Figure 4A), for which areas were estimated by the trapezoidal rule; and (ii) the 434 

hysteresis curves, i.e., the difference in water uptake (ω) between desorption point 435 

and sorption point as a function of relative humidity (Figure 4B).  436 

 437 

 438 

 439 

 440 

 441 

Table 3: Characterization results of untreated and treated hemp fibres: (i) loop area of the 442 

sorption/desorption curve, (ii) nanoindentation modulus and (iii) crystallinity. Values not having 443 

the same letter were significantly different (p < 0.05). 444 

 445 

 

Loop area  

(ω%·RH%) 

Total sugar 

content (%dry 

matter) 

Crystallinity 

(%) 

Indentation modulus 

from unload (GPa) 

ubH 75.2 84.3 ± 7.6a 49.3 15.1 ± 2.7a 

bH_0 86.1 86.5 ± 4.2a 59.1 16.6 ± 2.5a 

bH_10 94.4 85.1 ± 3.1a 56.6 11.2 ± 1.0b 

bH_20 91.7 91.5 ± 2.3b 54.1 8.4 ± 1.0c 

 446 

Water sorption and desorption isotherms are shown in Figure 4A. The curves of the 447 

treated and untreated fibres followed the same pattern, and three curve parts could 448 

be distinguished. At low relative humidity (RH), up to approximatively 10 %, the 449 

water molecules were expected to bind to the surface of the sample in a monolayer 450 

by van der Waals forces. This involves the hydroxyl groups of hemicelluloses and 451 

amorphous cellulose as well as the carboxylic functions of pectin (Célino et al. 452 
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2014), all present in hemp fibre (Placet et al. 2017). Notice that for all samples, the 453 

curves where the moisture content was below 10 %RH could be superimposed.  454 

 455 

 456 

Figure 4: Sorption-desorption curve: moisture uptake expressed in percentage of dry matter (4A). 457 

Hysteresis curve: delta moisture content (4B) as a function of relative humidity. The delta is the 458 

subtraction of the moisture uptake in the desorption phase from the moisture uptake in the sorption 459 

phase, at equivalent relative humidity. 460 

 461 

When the entire surface was saturated, the molecules continued to adsorb and pile 462 

up on the monolayer, forming a multilayer, until all accessible voids were filled. 463 

Above approx. 65-70 %RH, water molecules aggregated in a free liquid state. At 464 

relative humidity between 10 and 65 %, treated fibres adsorbed a greater quantity 465 

of water than untreated fibres, meaning that the porous structure of the fibres had 466 

opened, probably due to the extraction of some cell wall oligo-polysaccharides by 467 

water-assisted mechanical removal, as shown by MIP. This was confirmed by 468 

chemical analysis; see the next section. Thus, physical water sorption predominated 469 

rather than chemo-sorption in this range, because although water absorbing 470 

molecules (hemicelluloses/pectins) were extracted during treatment, more sorption 471 

took place, which could be explained by mesoporosity overcompensation.  472 

Regarding the isotherm curves of Figure 4A, at 90 % RH, untreated fibres 473 

absorbed  25.7 % water compared to the 21-22 % moisture content of treated fibres. 474 

The loop areas (Table 3) confirmed that the three treated fibres had a more 475 

noticeable hysteresis response than the unbeaten fibres, with an area of 86.1, 94.4 476 

and 91.7 ω%·RH%, which were 15 %, 25 % and 22 % increases, for bH_0, bH_10 477 

and bH_20, respectively. Thus, accessibility to sorption sites begins at the soaking 478 

stage and is accentuated with mechanical treatment. In other words, hemp fibres 479 

had a swelling capacity increased by beating, which seems to follow a similar 480 
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behaviour to that reported for lignocellulosic pulp (Pönni et al. 2012). This can 481 

probably be connected to cell wall polymers water plastization and arguably by the 482 

multiplication of defects (kink bands, fibrils…), where one could expect more 483 

water-binding sites. 484 

Even if isotherm curves had a similar trend (Figure 4A), the hysteresis curves 485 

(Figure 4B) yielded more detail concerning the pore opening/closing mechanism 486 

induced by mechanical treatment. At a relative humidity between 10 and 40 %, the 487 

three treated fibres were almost superimposed and had a much higher adsorption 488 

capacity than native fibres. Beyond that, the behaviour differed for bH_0 fibres, 489 

since between 40 and 70 %, it adsorbed less water than bH_10 and bH_20 fibres 490 

and even less than native fibres at RH between 55 and 70 %. From these 491 

observations, we can deduce that water treatment opens smaller pores, unlike 492 

hydro-mechanical treatment, which contributes to the opening of larger sites that 493 

can adsorb water. Westenbroek (2000) mentioned that the small size of the lumen 494 

makes the hemp fibres uncollapsible. However, the fact that the delta water content 495 

of bH_0 was lower than that of native fibres between 55 and 70 % RH shows that 496 

there was some closure of porous cavities. 497 

Concerning the true density measured by DVS, all the sampled had a true density 498 

between 1.53 and 1.55 g.cm-3. The apparent skeletal density measured by MIP took 499 

into account the internal porosity of the fibre, explaining that the measured density 500 

was lower than true density, as recently explained by Legall et al. (2018) for flax 501 

fibres. Because the apparent skeletal density of the most treated fibres in the bH_20 502 

group was raised to 1.453 while the others decreased (1.28 for bH_0 and 1.25 for 503 

bH_10) compared to untreated hemp fibres (1.38), no particular trend could be seen. 504 

Chemical composition  505 

To investigate chemical composition evolution due to treatment, an analysis of the 506 

major dry matter based component of the hemp fibre was performed. The 507 

polysaccharide, proteins and lignin contents were assessed (Figure 5A). The 508 

untreated hemp fibres used in our study (ubH) were composed mainly of 509 

polysaccharides, 86 % of the dry mass in total, including 75 % cellulose and 11 % 510 

non-cellulosic polysaccharides (NCPs), which respectively corresponded to 87 % 511 

and 13 % of the relative content of total polysaccharide. Additionally, the acid-512 

insoluble lignin fraction (called Klason lignin) represented 2.9 % of the dry matter, 513 
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similar to the protein content (3 %). These results of chemical composition of hemp 514 

fibres are in agreement with those of the literature when comparable analytical 515 

techniques were used (Crônier et al. 2005; Placet et al. 2017). Indeed, it is 516 

noteworthy that the biochemical technique used here may give contrasting results 517 

for the same sample. 518 

 519 

Figure 5: (A) Stacked bar charts of chemical composition expressed as the dry matter content. (B) 520 

Monomer composition expressed as the percentage of total polysaccharide. Bars not having the 521 

same letters are significantly different (p < 0.05). 522 

 523 

When the fibres were soaked, the total sugar content slightly and gradually 524 

increased with the mechanical treatment time, and finally became significantly 525 

different at 20 minutes of beating (see Table 3). The opposite trend was observed 526 

for proteins: from the soaking stage and up to 10 minutes of beating, their content 527 

was significantly reduced by half to reach 1.4 % in 20 minutes of beating. In fact, 528 

the aqueous suspension of hemp fibres caused the solubilization of proteins and 529 

other low-molecular-weight organic compounds, furthering a slight enrichment of 530 

cellulosic and phenolic fractions comparing to unbeaten hemp fibres (ubH). Some 531 

proteins are located in the middle lamellae and primary cell walls and are arguably 532 

water soluble. In contrast, another protein compartment is non-water soluble 533 

because it interacts strongly with the cell wall network and directly with cellulose 534 

microfibrils. Those are structural proteins and are generally glycoproteins from the 535 

arabino-galactan protein superfamily, such as fasciclin-like arabinogalactan 536 

proteins (Guerriero et al. 2017). Moreover, the peeling of the fibre cell wall by the 537 

beating process increased the exchange surface with water and thus seemed 538 

amplified this solubilization by removing more soluble components, letting more 539 

polysaccharide polymers in the bH_20.  540 
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One would have expected the lignin to be extracted too, despite its low level in 541 

hemp fibres but greater enrichment in the middle lamella due to its location. 542 

However, its content evolved like the polysaccharide content. According to Akmar 543 

et al. (2000), lignin can neither be modified nor extracted by simple mechanical 544 

treatment such as the one we choose in this study.  545 

We can see also that the relative proportion of the total non-cellulosic 546 

polysaccharide fraction was not affected under the three conditions (Figure 5A). 547 

However, looking in more detail at the monosaccharide composition of NCPs, the 548 

repartition of some monomer units was slightly contrasted, depending on the 549 

applied treatment. Arabinose, galactose and mannose units were significantly 550 

declined by the soaking step. Then, when comparing the bH_0 with both beaten 551 

samples, we can see first that the chemical composition of bH_10 was similar to 552 

bH_0 except for xylose, which increased from 1.1 % to 1.5 % of total 553 

polysaccharide. Under the most drastic treatment, bH_20, arabinose, rhamnose, 554 

galactose, and mannose were reduced, possibly causing an enrichment of xylose. 555 

The solubilization of these monomers, mainly inherent in the middle lamella and 556 

the primary cell wall, facilitated the delamination of fibre bundles into unit fibres, 557 

which is in line with the abovementioned diameter changes. 558 

Additionally, special attention should be paid to the xylose content because in 559 

contrast to the other NCPs components, it is the only one with an enriched content. 560 

The quantified xylose in our study certainly could come from a xylan-rich layer 561 

(located in the secondary cell wall), and the latter would not be affected by soaking 562 

and beating. Interestingly, a xylose enrichment has also been reported during 563 

bamboo processing by bleaching and caramelization procedures (Sharma et al. 564 

2018); those authors hypothesized that the xylan backbone was covalently bonded 565 

with other cell wall polymers, such as lignin via hydroxycinnamic moieties (such 566 

as ferulic acids), to form a cross-linked network, which limited chemical access.  567 

Galacturonic acid is often related to pectin, and in fruit it is often related to 568 

rhamnogalacturonan I. Curiously, with hemp bast fibre elements, the level of 569 

galacturonic acid was constant between all the conditions, suggesting that hemp 570 

bast fibre pectin may have limited susceptibility to peeling treatment (Placet et al. 571 

2017). Glucuronic and galacturonic acids were constant and not enriched, meaning 572 

that they seemed removed, but the significance of this finding is questionable. To 573 

close the polysaccharide examination, we have to recall that the processes used here 574 
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for our samples was unheated, non-alkaline and without barometric stress, leading 575 

us to assume that this explains the relatively low rates of hemicelluloses and pectins 576 

extracted from hemp fibres.  577 

Crystallinity of cellulose 578 

According to equation (1), the crystallinity index of untreated fibres (ubH) was 49.3 579 

% (Table 3) which is in line with the expected values for hemp bast fibres (Dai and 580 

Fan 2010; Shah 2013). The bH_0 sample had a crystallinity of 59.1 %, which 581 

represented an increase in the index of 10 compared to ubH. Yao and co-workers 582 

(Yao et al. 2018) have studied the hydro-thermal pretreatment effect on the structure 583 

of corn stover cellulose and highlighted changes in cellulose conformation by 584 

rearrangement of hydrogen bonds during decrystallisation-recrystallization phases 585 

of cellulose occurring during pretreatment. Thus, possible polymer rearrangements 586 

may have contributed to the increased crystallinity index, due to the water 587 

environment and the closure of nanopores between the cellulose microfibrils, as 588 

suggested by the porosity results above. A slight extraction of amorphous 589 

components could increase the crystallinity index (Xu et al. 2013), but probably to 590 

a lesser extent compared to the rearrangement of cellulose microfibrils. 591 

The hydro-mechanical treatments resulted in a drop in the crystallinity index, index 592 

values of 56.6 % and 54.1 % were obtained for bH_10 and bH_20, respectively. 593 

Thus, mechanical treatment could have disrupted the crystalline structure of 594 

microfibrils by inducing dislocations. These dislocation zones were defined as areas 595 

of the fibre cell wall where the direction of the microfibrils (the angle of the 596 

microfibrils) differed from the angle of the microfibrils of the surrounding cell wall 597 

(Thygesen et al. 2006b). To support this hypothesis, Dai and Fan (2011) used FTIR 598 

spectroscopy to quantify the crystallinity index of two kinds of hemp samples, one 599 

without and the second with dislocations. They found that the crystallinity index 600 

was 48.4 % for the hemp without dislocations and 41.3 % for those within 601 

dislocation regions, showing a significant reduction in the crystallinity due to the 602 

dislocations. 603 

Thermal stability evolution 604 

The evolution patterns of weight loss and their derivatives are shown in Figure 6.  605 
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 606 

Figure 6: Thermogravimetric analysis curve. (-) percentage of weight and (---) derivative of weight 607 

as degradation temperature (°C). 608 

 609 

The decomposition steps of lignocellulosic biomasses have been extensively 610 

studied (Carrier et al. 2011; Stefanidis et al. 2014). Even if the interactions between 611 

hemicelluloses, cellulose and lignin are complex and have an impact on the thermal 612 

stability of the samples, a common pattern emerges. Indeed after the dehydration 613 

stage (peak I), the least stable compounds, pectins and hemicelluloses decomposed 614 

between 210 and 350 °C, followed by cellulose (peak II) up to 400 °C. Pectins and 615 

hemicelluloses having semi-crystalline polymers are often considered an 616 

amorphous polymer in planta. Lignin is a more complex compound which is rich 617 

in aromatic units and degrades at a high temperature, between 400-500 °C (peak 618 

III), but starts slightly from 100 °C onwards, according to its condensation level. At 619 

the end of the pyrolysis, what remains is called the ashes. The temperatures of 620 

thermal degradation obtained are shown in Table 4 and are in agreement with the 621 

above temperature ranges and those described in previous studies (Mazian et al. 622 

2018).  623 

Regarding the moisture content related to peak I (Table 4), we can note that fibres 624 

contained similar moisture content.  625 
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Table 4: Thermogravimetric analysis peaks. Weight loss and mass residue (W%) expressed in 626 

percentage and temperature (T°) expressed in °C. 627 

 Peak I Peak II Peak III Residue 

 W% T° W% T° W% T° W% 

ubH 
5.9 

± 0.35 

37.9 

± 5.0 

66.3 

± 0.47 

308.2 

± 0.62 

24.0 

± 0.37 

454.5 

± 0.2 

0.95 

± 0.07 

bH_0 
5.8 

± 0.59 

39.5 

± 2.7 

74.9 

± 1.19 

362.7 

± 0.3 

17.2 

± 0.23 

484.4 

± 7.90 

0.59 

± 0.06 

bH_10 
7 

± 0.94 

40.5 

± 0.01 

77.8 

± 0.1 

367.4 

± 6.79 

14.8 ± 

0.15 

477.7 

± 6.08 

0.78 

± 0.13 

bH_20 
6.0 

± 0.10 

38.5 

± 2.7 

79.9 

± 0.17 

361.8 

± 0.2 

13.0 

± 0.1 

457.6 

± 1.79 

0.6 

± 0.16 

 628 

Additionally, the thermogravimetric analysis (Figure 6) shows that the cellulose 629 

peak (peak II) was narrowed and shifted in the three treated fibres compared to the 630 

untreated sample ubH. This could be explained by the extraction of water-soluble 631 

components and thus higher cellulose crystallinity. The maximum temperature of 632 

degradation of the cellulose (peak II) was 362.7 °C for the water-soaked fibres 633 

against 308.2 °C for the raw fibres ubH, as shown in Figure 6, so it was necessary 634 

to bring more thermal energy to degrade the cellulose. According to a study on 635 

wood conducted by Giummarella et al. (2017), it would seem that the extraction of 636 

hemicelluloses on the surface of cellulose microfibrils is in favour of stronger 637 

interaction between lignin and cellulose. Even if hemp fibres have a lower lignin 638 

content compared to wood, it is arguable that new interactions between 639 

macromolecules of the cell wall involving cellulose were formed, resulting in a 640 

higher thermostability, as shown experimentally in Figure 6, where we observed a 641 

shift of temperature from 354.5°C to 484.4°C for hydro-treated fibres bH_10 642 

compared to ubH at the maximum temperature of degradation of peak III. Then, we 643 

can see that for bH_10 and bH_20, this temperature gradually decrease (477.7 and 644 

457.6 °C) and simultaneously their percentage of weight loss also (14.8 and 13%).  645 

The mass of degraded cellulose gradually increased from 66.3 % to 79.9 %, 646 

confirming that the cellulose compartment was modified. At the end of pyrolysis, 647 

the ash (residue) was less than 1 % for each sample.  648 

 649 
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Mechanical properties by nanoindentation and correlation studies 650 

Nanoindentation tests were carried out to compare and discuss the impact of the 651 

treatments on the stiffness of the hemp fibre cell walls (Table 3). It is important to 652 

recall that with this technique, only the S2 sublayer, which is the most richly 653 

cellulosic layer, can be reasonably investigated due to the small thickness of the 654 

other sublayers. Due to the high mechanical anisotropy of hemp cell walls and 655 

specific loading mode, nanoindentation can not clearly give absolute mechanical 656 

data (Bourmaud and Baley 2009). Nevertheless, it is a suitable tool to compare 657 

mechanical properties of plant cell walls, being the only method to obtain 658 

mechanical information at the cell wall scale. 659 

Untreated fibres had a 15.1 ±2.7 GPa indentation modulus, which, is in the same 660 

range than literature data; for, example Marrot et al. (2013) measured indentation 661 

modulus between 15.3 and 16.1 GPa in primary hemp fibres . However, this 662 

stiffness started to drop as soon as the mechanical treatment was applied, decreasing 663 

drastically to 11.2 ±1.0 and 8.4 ±1.0 GPa at 10 and 20 minutes of beating, 664 

respectively, which made sense with the loss of crystallinity of cellulose. 665 

Adusumalli (2014) also observed this decrease in cell wall nanoindentation stiffness 666 

after bleaching and beating treatment on wood pulp fibres. Due to the solicitation 667 

mode, the nanoindentation results are strongly impacted by the plant fibres MFA 668 

(Jäger et al. 2011), the indentation modulus being particularly sensitive to cellulose 669 

and the hardness to non-cellulosic polymer matrix. Indeed, the presence of 670 

porosities in these latter may greatly impact the hardness, due to the calculation 671 

method, which considers a theoretical contact area that may be false if the sample 672 

is damaged, as it may have been here. 673 

The decrease in the indentation modulus can also be attributed to an increase in 674 

microfibrillar angle, as Tze et al. (2007) have shown for wood cell wall and as 675 

Burgert and Keplinger (2013) mentioned in their review about nanomechanical 676 

tests for plant cell walls. Once again, the loading mode is particularly sensitive to 677 

macrofibrils stiffness but also to changes into MFA. In our case the important 678 

increase into porosity content (Table 2) is in favour of changes into MFA values 679 

and possible evolution of cell wall stiffness, as evidenced by nanoindentation 680 

results. 681 

Based on bibliographic data on the chemical composition (cellulose, 682 

hemicelluloses, lignin, pectin, waxes) and physical properties (diameter, MFA, 683 
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length, density, moisture gain) of 21 types of natural fibres, Komuraiah et al. (2014) 684 

conducted a Pearson’s correlation study to reveal the influence of these 685 

physicochemical characteristics on their macro-mechanical properties (tensile 686 

strength, specific strength, Young's modulus, specific Young's modulus, failure 687 

strain). Here, we applied this correlation test in an attempt to establish which 688 

chemical and structural modifications of the fibres undergoing mechanical 689 

treatment had the greatest impact on their indentation modulus, and to give 690 

additional data for the analyse and interpretation of mechanical tendencies noticed, 691 

correlation studies were carried out using Pearson’s correlation test (Figure 7). 692 

 693 

 694 

Figure 7: Pearson’s correlation coefficient between nanoindentation measurements and treated 695 

fibre-related features. Disc diameter and colour shade display the strength of the correlation. Both 696 

positive and negative correlations are presented using the absolute value of the coefficients. 697 

Positive and negative correlations are displayed in green and red, respectively. 698 

 699 

The mechanical properties, and especially the indentation modulus of the plant cell 700 

wall are mainly conferred by the cellulose microfibrils. Cellulose being a chain of 701 

glucose units, one would expect that the indentation modulus would be highly 702 

correlated with glucose content but also by properties and structure of cellulose. 703 

Here, the hydro-mechanical treatment applied to the fibres did not significantly 704 

impact the glucose content but gradually disorganizes the cellulose chains, causing 705 

both the crystallinity index and the indentation modulus to drop, these two 706 

parameters being strongly positively correlated (Figure 7). Moreover, the increase 707 

of porosity content within the cell wall is in favour of a drop of mechanical stiffness, 708 

especially due to the solicitation mode which may induce buckling of cellulose 709 

macrofibrils during indentation. 710 

Interestingly, a strong correlation with the indentation modulus was obtained for 711 

rhamnose (0.94), galactose (0.83) and mannose (0.94), whereas these are mainly 712 

monomers composing pectins and hemicelluloses. In our study configuration, this 713 
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means that the indentation modulus decreased in proportion to the contents of these 714 

3 non-cellulosic monomers. Pectins and hemicelluloses form a very complex 715 

network with microfibrils and act as a glue in this structure. Different authors have 716 

underlined the important function of non-cellulosic components into plant cell wall 717 

stiffness, favouring the link and cohesion between cellulose macrofibrils 718 

(Bourmaud and Baley 2009; Lefeuvre et al. 2015). Thus, the possible solubilization 719 

of such compounds may cause a relaxation of the microfibrils’ structure, possibly 720 

resulting in an MFA rearrangement as well as a loss of cell walls mechanical 721 

properties.  722 

One the other hand, xylose (1*) and lignin (0.96) had strong negative correlations 723 

with nanomechanical properties. In our case this shows a recalcitrance to extraction 724 

by water and the soft mechanical beating. Thus, the positive correlation noticed 725 

with nanoindentation modulus highlights the destructuration of cell walls and not 726 

the impact of these components on the mechanical performances. In our case, other 727 

monosaccharidic components such as Glucuronic acid (0.64) or arabinose (0.15) as 728 

well as proteins (0.69) are poorly correlated with mechanical properties of hemp 729 

cell walls; these components having lower structural function, compared to 730 

rhamnose or galactose for example. Due to indentation scale, which remains high 731 

compare to the parietal architecture one, and as discussed previously, a direct 732 

correlation between mechanical properties and components fraction can’t be 733 

directly established but a global tendency is noticed. The increase into porosity ratio 734 

and the decrease into crystallinity degree and non-cellulosic polysaccharides are 735 

here the main contributors to the indentation stiffness decrease; they are responsible 736 

for a pronounced degradation of both parietal architecture and composition, 737 

inducing a drop into cell wall stiffness, which is especially pronounced due to the 738 

specific loading mode during an indentation test. 739 

Conclusion 740 

We explored the use of controlled hydro-mechanical fibre treatment processes, 741 

particularly beating, to modify the hemp fibre surface. Ultrastructural analysis 742 

revealed that beating led to fibre bundle individualisation and fibrillation; these 743 

account for the observed reduction in bundle diameter and densification of the fibre 744 

network, and subsequent increase in macroporosity and surface area, though 745 
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decreased nanoporosity. We expect these to enhance physical interactions between 746 

the fibres and the matrix for composite applications. 747 

However, the beating treatment also influenced the fibres’ biochemical properties. 748 

While initial hydro-treatment (soaking-drying) increased cellulose crystallinity 749 

substantially and extracted amorphous components such as pectins and 750 

hemicelluloses, subsequent beating cycles led to a drop in crystallinity probably due 751 

to defect formation. 752 

The combination of changes in structural and biochemical properties led to the 753 

observed evolution in thermal, moisture absorption and nanomechanical properties. 754 

Specifically, thermal stability and water retention capacity improved with beating 755 

treatment. Indentation modulus increased upon hydro-treatment, but subsequently 756 

almost halved to 8.4 GPa after 20 mins of beating. A Pearson’s correlation analysis 757 

determined that the indentation modulus was most correlated with cellulose 758 

crystallinity and the content of three non-cellulosic cell wall polysaccharides: 759 

rhamnose, galactose and mannose. The solubilisation of these polysaccharides may 760 

have reduced the microfibril angle.  761 
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