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2Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
3VIB Center for Plant Systems Biology, Ghent, Belgium
4Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Bâtiment 630,
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SUMMARY

The target of rapamycin (TOR) kinase is a conserved
energy sensor that regulates growth in response to
environmental cues. However, little is known about
the TOR signaling pathway in plants. We used Arabi-
dopsis lines affected in the lethal with SEC13 protein
8 (LST8-1) gene, a core element of the TOR complex,
to search for suppressor mutations. Two suppressor
lines with improved growth were isolated that carried
mutations in the Yet Another Kinase 1 (AtYAK1) gene
encoding a member of the dual-specificity tyrosine
phosphorylation-regulated kinase (DYRK) family.
Atyak1 mutations partly rescued the developmental
defects of lst8-1-1mutants and conferred resistance
to the TOR inhibitor AZD-8055. Moreover, atyak1
mutations suppressed the transcriptomic and meta-
bolic perturbations as well as the abscisic acid
(ABA) hypersensitivity of the lst8-1-1 mutants.
AtYAK1 interacted with the regulatory-associated
protein of TOR (RAPTOR), a component of the TOR
complex, and was phosphorylated by TOR. Thus,
our findings reveal that AtYAK1 is a TOR effector
that probably needs to be switched off to activate
plant growth.

INTRODUCTION

Recently the plant TOR (target of rapamycin) protein kinase has

emerged as a central regulatory element transmitting external

and internal information to control crucial cellular processes,

including growth, mRNA translation, metabolism, and hormone-

and pathogen-related responses (Rexin et al., 2015; Dobrenel

et al., 2016a; Shi et al., 2018). The TOR protein kinase is a mem-

ber of the phosphatidylinositol 3-kinase (PI3K)-related kinase

(PIKK) family and is present throughout the eukaryotes. Its role
3696 Cell Reports 27, 3696–3708, June 18, 2019 ª 2019 The Author(
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was first described in yeast and animals, in which TOR is found

in two protein complexes: TORC1 and TORC2 (Wullschleger

et al., 2006; Albert and Hall, 2015; Blenis, 2017). Conversely,

only the TORC1 complex has been described in photosynthetic

organisms so far (Dobrenel et al., 2016a). TORC1 contains the

TOR kinase and the core components regulatory-associated

protein of TOR (RAPTOR) and lethal with SEC13 protein 8 (LST8).

The LST8 protein is a conserved and specific component of

the TOR complex in eukaryotes (Dı́az-Troya et al., 2008; Moreau

et al., 2012; Bareti�c and Williams, 2014; Maegawa et al., 2015).

The LST8 gene was first identified in yeast by a screen for muta-

tions showing synthetic lethality with mutations in Sec13, a gene

involved in the transport of the nitrogen-regulated amino acid

permease Gap1p to the plasma membrane (Roberg et al.,

1997). The LST8 protein (called GbL in animals, for G protein b

subunit like) contains seven WD 40 repeats, which are involved

in the formation of a stable, propeller-like platform allowing

interactions with several protein partners (Smith et al., 1999).

Structure analyses indicate that LST8 interacts specifically with

the TOR kinase domain. The binding site for LST8 is defined by

a specific 40-amino-acid-long insertion in the TOR C lobe kinase

domain, which is also conserved in plants. This domain is absent

in other PI3K kinases, suggesting that the LST8-TOR interaction

is specific. LST8 is necessary for TOR activation and is probably

restricting access to the catalytical cleft (Yang et al., 2013; Aylett

et al., 2016). It is likely that LST8 together with RAPTOR act as

gatekeepers, controlling the recruitment and access of sub-

strates to the TOR active site.

Arabidopsis possesses two copies of the LST8 genes: LST8-1

(At3g18140) and LST8-2 (At2g22040). Only mutations in LST8-1

result in retarded plant growth, increased branching, delayed

flowering, reduced fertility, and hypersensitivity to a shift from

short to long days (Moreau et al., 2012). The LST8-1 protein

interacts with the TOR kinase domain and complements

conditional lst8 yeast mutants (Moreau et al., 2012). Moreover,

lst8-1 mutants have been found to be hypersensitive to the

TOR inhibitor AZD-8055 and to abscisic acid (ABA) (Kravchenko

et al., 2015).
s).
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Plant TOR is activated by nutrients or hormones like sugars

and auxin, respectively, and promotes energy-consuming pro-

cesses such as cell division, mRNA translation, and anabolism.

On the other hand, TOR represses nutrient remobilization

through autophagy during starvation or stresses (Dobrenel

et al., 2016a; Baena-González and Hanson, 2017). In response

to high sugar levels, TOR activates cell division in root and shoot

meristems (Xiong et al., 2013; Pfeiffer et al., 2016). The TOR

pathway also interacts with brassinosteroids during etiolated

hypocotyl growth (Zhang et al., 2016) and inactivates ABA recep-

tors by phosphorylation, thereby controlling plant responses to

this stress-related hormone (Wang et al., 2018a).

A few TOR substrates have now been identified in plants,

including the ribosomal protein S6 kinase (S6K) (Mahfouz

et al., 2006), the type 2A phosphatase associated protein

46 kDa (TAP46) (Ahn et al., 2011), the PYL ABA receptors

(Wang et al., 2018a), and the E2FA transcription factor (Xiong

et al., 2013). Up to now, only two TOR regulators have been

described in plants. The ROP2 GTPase activates TOR in

response to auxin (Schepetilnikov et al., 2017; Li et al., 2017),

and the conserved and antagonistic Snf1-related kinase 1

(SnRK1) inactivates the TOR complex by phosphorylating the

RAPTOR protein (Nukarinen et al., 2016). However, a recent

phosphoproteomic and interactomic analysis in Arabidopsis

provided a large number of TOR targets (Van Leene et al.,

2019). This study identified both known and unknown TOR

substrates that contribute to different cellular processes and

regulatory pathways with a significant number of TOR targets

belonging to the translational machinery.

Aiming at identifying molecular components of the TOR

signaling pathway, we undertook a genetic screen to isolate

genetic modifiers of the lst8-1-1 mutant. This mutant was

selected since TOR functions in a complex together with

LST8 and RAPTOR but only lst8-1 or raptor mutants are viable.

Therefore, by searching for lst8 suppressors, we expected to

identify molecular components of the TOR signaling pathway,

which would function in growth control. We isolated two inde-

pendent suppressor lines with nonsense mutations in Yet

Another Kinase 1 (AtYAK1), which is a member of the dual-

specificity tyrosine phosphorylation-regulated kinase (DYRK)

family. The YAK1 kinase is also found in yeast with orthologs

in animals, and functions in the regulation of growth and meta-

bolism. Here, we show that loss-of-function mutations in the

AtYAK1 gene allow recovery of growth in lst8-1-1 mutants by

provoking reversion of both transcriptomic and metabolomic

changes. The AtYAK1 protein interacted with RAPTOR and

was phosphorylated in vitro by TOR. Atyak1 mutations also re-

sulted in a marked resistance to the TOR specific inhibitor AZD-

8055 and suppressed the ABA hypersensitivity of the lst8-1-1

mutants.

RESULTS

A Genetic Screen Identifies Mutations in AtYAK1 That
Suppress lst8-1-1 Growth Defects
In order to understand TOR function, a suppressor screen was

undertaken to isolate mutations suppressing the growth inhibi-

tion conferred by the absence of LST8, a TORC1 component.
Seeds of the lst8-1-1 transfer DNA (T-DNA) insertion mutant

(Moreau et al., 2012) were mutagenized by ethyl methanesulfo-

nate (EMS). Subsequently, the progenies of 1,500 M1 plants

were screened for suppression of the lst8-1-1 growth defect.

The lst8-1-1 mutant has a reduced growth rate and is sensitive

to long days (LD) growth conditions (Moreau et al., 2012). M2

seeds were first screened in vitro for enhanced growth after

10 days in LD conditions. Plants showing faster growth were

then transferred to soil for further screening in the greenhouse

under the same day length. Six suppressor lines named suppres-

sor of lst8 (sol) were isolated (Figure S1A) based on their ability to

grow and flower faster than the lst8-1-1 mutant. However, none

of the suppressor lines isolated were able to grow as well as the

wild-type (WT) Col-0 control plants (Figures 1A and S1B). To

identify the mutations responsible for this improved growth

phenotype, the genome of the M2 suppressor lines and of the

parental lst8-1-1 mutant line was sequenced (see STAR

Methods for details). Homozygous mutations present in the

genome of the M2 suppressor lines were identified by using

the MutDetect DNA pipeline analysis (Granier et al., 2016). Ho-

mozygous nucleotide base changes specific to the suppressor

lines and absent from the parental lst8-1-1mutant were retained.

Nucleotide changes resulting in nonsense mutations (stop

codon, new or loss of start codon, mutations in splicing sites)

were further analyzed. Two suppressor lines named sol23 and

sol69 showed the strongest growth recovery. They were 15

and 14 nonsense mutations in the sol23 and sol69 lines, respec-

tively (Data S1). The only gene in common was AtYAK1

(At5g35980). In sol23, it contained a nonsense mutation (TGG

R TGA transition in the coding sequence producing the

G924Stop mutation), and in sol69 a splice-defect mutation at

the end of the first intron affecting the acceptor site (transition

G1438A, 1438 bp after the ATG of the AtYAK1 genomic

sequence) was present (Figures 1B and S2A). An allelic test

was performed by crossing these two sol lines, the results of

which revealed that they are affected in the same gene (Fig-

ure S1C). The atyak1 causal mutation in sol23 was confirmed

by genetic and cleaved amplified polymorphic sequence

(CAPS) analysis of a segregating backcross F2 population of a

cross between sol23 and lst8-1-1 (Figures S1D and S1E). In

this F2 population, the sol23 mutation segregated at a single

locus and was recessive. AtYAK1 encodes a DYRK, and is the

ortholog of the yeast YAK1 and animal DYRK1A kinases (Figures

S2A and S2B). To further confirm that mutations in AtYAK1

confer the suppressor phenotype in sol23, we used three loss-

of-function alleles of atyak1 (atyak1-3, atyak1-4, and atyak1-5)

and tested whether they could suppress lst8-1-1 as well as

lst8-1-2 (Moreau et al., 2012) mutant phenotypes by generating

lst8 atyak1 double-mutant combinations. The T-DNA insertion

sites of the three atyak1 alleles are shown in Figures 1B and

S3A. The absence of the AtYAK1 transcript in each line was

confirmed by RT-PCR with primers spanning the T-DNA

(Figure S3B). Each atyak1 mutant allele, when introgressed in

the lst8-1-1 mutant background, was able to suppress the

reduced shoot and root growth (Figures 1C–1F). Furthermore,

the lst8-1-2 atyak1-4 double mutant also showed an improved

growth compared to lst8-1-2. The various lst8 atyak1 double-

mutant plants did not show equivalent growth to WT but their
Cell Reports 27, 3696–3708, June 18, 2019 3697



A

C

E

B

D

F

Figure 1. Atyak1 Mutations Suppress Growth Defects of lst8-1 Mutant Plants

(A) Fifty-day-old plants grown in soil under long-day (16 h of light, LD) conditions. A representative plant from each of theWT, atyak1-4, lst8-1-1, lst8-1-1atyak1-4,

and sol23 (suppressor of lst8-1-1) mutant lines is shown.

(B) Schematic representation of the AtYAK1 gene (At5g35980) indicating the point mutations detected in sol23 and sol69 suppressor lines. The T-DNA insertion

sites of the different atyak1mutant lines used in this study are depicted by triangles. Exons are shown in black boxes, black lines are the introns, and white boxes

represent the 50 or the 30 untranslated regions. The red line indicates the putative kinase domain.

(C) Seedlings shown 14 days after transfer (DAT) and grown in vitro. Mutations in the AtYAK1 gene restore growth to the lst8-1-1 atyak1-4 double mutant.

(D) Quantification of the shoot fresh weight for the lines shown in (C) (14 DAT).

(E) The same lines were grown in vitro on vertical plates to determine root growth. Root growth shown 12 DAT.

(F) Quantification of the root length 7 DAT. Between 15 and 30 seedlings were measured for each genotype with three biological replicates. For (D) and (F), error

bars indicate the standard deviation of three independent experiments. Letters indicate significantly different classes (non-parametric Kruskal-Wallis test, p <

0.05).
development was similar to sol23 and sol69. Collectively, these

findings indicate that the causal mutation in sol23 and sol69 is

due to a mutation in AtYAK1.

Atyak1 Mutations Suppress the Delay in Flowering and
Reduced Hypocotyl Growth Observed in lst8-1 Mutants
Given the genetic burden of the suppressor lines that carry

several mutations, we chose to continue our analysis using the

atyak1 T-DNAmutant alleles. We first tested whether atyak1mu-

tations could reduce the flowering delay of lst8-1-1mutants. The

sol23 suppressor line and the lst8-1-1 atyak1-4 double mutant

flowered earlier than lst8-1-1 but later than the WT or atyak1-4

mutants (Figures 2A and S3C).
3698 Cell Reports 27, 3696–3708, June 18, 2019
Next, we assessed whether LST8 was required for hypocotyl

growth, because recent work by Huang et al. (2017) showed

that atyak1 mutants had longer hypocotyls compared to WT

under low-light conditions. They proposed that AtYAK1 is a

regulator of light responses since hypocotyl length can be

used as a proxy for light perception and responses. Moreover,

TOR was also shown to be necessary for hypocotyl elongation

in the dark (Zhang et al., 2016). Therefore, we examined the

hypocotyl of dark-grown mutants. The lst8-1-1 mutants ex-

hibited shorter hypocotyls compared to WT (Figure 2B). Again,

lst8-1-1 atyak1-4 double mutants showed increased hypocotyl

growth compared to lst8-1-1 but hypocotyl elongation was still

decreased compared to the WT. These results further suggest
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Figure 2. The Atyak1-4 Mutation Rescues

lst8-1-1 Growth Defects

(A) Quantification of the flowering time by mea-

suring the number of days to bolting. Plants were

grown in LD conditions. Twelve plants were

measured for each genotype. Two independent

experiments were performed with similar results.

Error bars indicate the standard deviation of a

single experiment. Letters indicate significantly

different classes (non-parametric Kruskal-Wallis

test, p < 0.05).

(B) Seedlings grown in vitro in the dark on vertical

plates for 6 days. The decrease in hypocotyl elon-

gationobserved in lst8-1-1mutants is suppressedby

the atyak1-4mutant. Quantification of the hypocotyl

length of 6-day-old dark-grown seedlings is shown. Between 10 and 30 seedlings were measured for each genotype with three biological repeats. Error bars

indicate the standard deviation of three independent experiments. Letters indicate significantly different classes (non-parametric Kruskal-Wallis test, p < 0.05).
that the absence of AtYAK1 reduces the developmental defects

and growth responses in the lst8-1-1 mutant.

AtYAK1 Acts in the TOR Signaling Pathway
We further analyzed whether the accelerated growth of lst8-1-1

atyak1 mutants compared to lst8-1-1 was due to altered TOR

signaling. First, we measured the sensitivity to the specific

TOR inhibitor AZD-8055 (Montané and Menand, 2013) of the

different mutant lines. Figures 3A and 3B show that the three

atyak1 mutants are less sensitive to AZD-8055 compared to

WT. Atyak1 mutants have their root growth inhibited by 50%

when transferred to Arabidopsis medium containing 1-mM AZD

while WT roots are inhibited by 75%. In comparison to the WT,

the two lst8-1 mutants were more sensitive to AZD, while all

the double-mutant lst8-1 atyak1 combinations (Figure 3B) and

sol23 (Figure S3D) were less sensitive to AZD-8055. Atyak1 mu-

tants and lst8-1 atyak1 double mutants showed a similar AZD-

8055 root growth inhibition.

We then investigated whether an increase in TOR activity

could be detected in the atyak1 mutants in order to explain the

AZD-8055-resistant phenotype. We have previously developed

a new assay to measure TOR activity (Dobrenel et al., 2016b)

that is based on the indirect TOR phosphorylation of the ribo-

somal protein S6 (RPS6) through activation of the S6 kinase.

By using a phospho-specific antibody recognizing the phos-

phorylated Ser240 in RPS6, a correlation between the level of

RPS6 phosphorylation and TOR activity was previously shown

by western blot analysis (Dobrenel et al., 2016b). Therefore,

just as for animals and yeast, RPS6 phosphorylation can be

used as a readout for TOR activity in Arabidopsis. By using this

assay, we showed that the sucrose-promoted TOR activity is

reduced in the lst8-1-1 or lst8-1-2 mutant plants compared to

WT (Figure 3C). However, no changes in TOR activity were

observed in the three atyak1 alleles compared to WT. Further-

more, the induction of TOR activity was not restored in the

lst8-1 atyak1 double mutants or sol23 (Figure S3E), suggesting

that AtYAK1 could be a downstream TOR effector.

AtYAK1 Interacts with RAPTOR1B and Is a Substrate of
TOR
Given that LST8 as well as RAPTOR are required to maintain the

stability of the TORC1 complex and to recruit regulators or sub-
strates of TOR, we tested whether LST8-1 or RAPTOR1B

(At3g08850) could directly interact with AtYAK1. The interaction

between these different proteins was evaluated by a yeast two-

hybrid assay using a HIS3 reporter gene. Only when yeast cells

were expressing RAPTOR1B fused to the GAL4 DNA binding

domain (BD-RPT) and AtYAK1 fused to the GAL4 activation

domain (AD-YAK) were they able to grow on a selective media

lacking histidine (Figure 4A). Therefore, RAPTOR1B physically

interacts with AtYAK1, possibly for recruiting it to the TORC1

complex.

The interaction between AtYAK1 and RAPTOR1B was

confirmed in plant cells by using bimolecular fluorescence

complementation (BiFC) assays. AtYAK1, RAPTOR1B, and

LST8 genes were fused in frame to the N- or C-terminal half of

YFP. Different combinations of vectors were then transiently ex-

pressed inNicotiana benthamiana epidermal leaf cells. As shown

in Figure 4B a fluorescent signal was observed for AtYAK1 and

RAPTOR1B at the periphery of the cells. No interaction was de-

tected between AtYAK1 and LST8 or between RAPTOR1B and

LST8 proteins. These results demonstrate a specific interaction

between AtYAK1 and RAPTOR1B in vivo.

Since AtYAK1 interacts with RAPTOR1B, we determined

whether Arabidopsis TOR is able to phosphorylate the AtYAK1

protein. Using the phosphoproteomic analysis performed by

Van Leene et al. (2019) in cell cultures in response to TOR

inhibition, we extracted the data showing that AtYAK1 is

phosphorylated on Ser505 and Ser847. This phosphorylation

is inhibited by the TOR inhibitor AZD-8055 (Figure S4), sug-

gesting that AtYAK1 is a TOR target. These phosphorylated

sites are found in plant YAK1 (Figure S2A), but seem to be

absent in animal DYRK1A sequences, while yeast YAK1 is lack-

ing the C-terminal domain containing the phosphorylated

Ser847.

To further validate that TOR phosphorylates AtYAK1, we per-

formed in vitro kinase assays. AtYAK1 was purified as a recom-

binant His-MBP-AtYAK1 protein in E. coli but was capable of

strong autophosphorylation activity (Figure 4C). AtYAK1 has

been previously shown to autophosphorylate on serine (Ser)

and tyrosine (Tyr) residues (Kline et al., 2010; Kim et al., 2015).

We then used INDY, a specific inhibitor of the animal AtYAK1

homolog DYRK1A kinase (Ogawa et al., 2010), to inhibit AtYAK1

activity that would otherwise obscure TOR kinase activity. INDY
Cell Reports 27, 3696–3708, June 18, 2019 3699



Figure 3. AtYAK1 Is Part of the TOR Signaling Cascade

(A) Eleven-day-old seedlings grown on Arabidopsismedium supplemented with 1 mM of the TOR-specific inhibitor AZD-8055. The hypersensitivity to AZD-8055

observed in lst8-1 mutants is suppressed by atyak1 mutations.

(B) Quantification of the root length 7 DAT on Arabidopsismedium supplemented with 0.5 or 1 mMof AZD-8055. Between 15 and 30 seedlings were measured for

each genotype with three biological replicates. Error bars indicate the standard deviation of three independent experiments. Letters indicate significantly different

classes (non-parametric Kruskal-Wallis test, p < 0.05).

(C) Determination of TOR activity using phosphorylation of the ribosomal protein S6 as a readout. Total protein extracts from seedlings were used for immu-

noblotting with a phospho-specific antibody against phosphorylated RPS6 (a-P-RPS6) or an antibody recognizing total RPS6 (a-RPS6). Bottom panels show the

Coomassie Brilliant Blue staining of the membrane. Six-day-old seedlings fromWT, lst8 (twomutant alleles), atyak1 (three mutant alleles), and lst8 atyak1 double-

mutant combinations were transferred to sugar-free medium for 24 h and then either mock (�) or 0.5% sucrose (+) treated for 4 h.
significantly reduced the autophosphorylation of recombinant

AtYAK1 protein (Figure 4C). Next, we examined if tandem-affin-

ity-purified (TAP) TOR complexes, obtained from Arabidopsis

cell cultures using the GSrhino-RAPTOR1B fusion protein as

bait (Van Leene et al., 2019), were able to phosphorylate the

recombinant AtYAK1 protein in vitro. To correct for phosphory-

lation by potential contaminating kinases, negative controls

were performed in which an equal amount of substrate was

incubated with non-specific proteins purified through TAP on

WT cell cultures (Figure 4C; TAP WT control), as reported previ-

ously (Van Leene et al., 2019). Moreover, because the tagged

RAPTOR1B protein (153 kDa) is phosphorylated during the

in vitro kinase assay by the TOR kinase, showing a phosphory-

lation band that migrates at approximately the size of the re-

combinant His-MBP-AtYAK1 fusion protein (147 kDa), we

removed the streptavidin beads bearing the tagged GSrhino-

RAPTOR1B protein after the kinase assay by centrifugation

through a filter (Figure 4C, minus TAP beads). When INDY-in-

hibited AtYAK1 recombinant protein was combined with the

TOR fraction, phosphorylation of the AtYAK1 fusion protein

was observed (Figure 4C). Taken together, we conclude that

AtYAK1 is very likely a TOR substrate since AtYAK1 is phos-
3700 Cell Reports 27, 3696–3708, June 18, 2019
phorylated in vitro by TOR, in planta in a TOR-dependent

manner, and is interacting with RAPTOR.

The Metabolic Changes Observed in lst8-1-1 Are Partly
Mediated by AtYAK1
In previous studies, lst8-1-1 mutant plants were shown to have

altered metabolic responses with elevated amino acid levels

(Moreau et al., 2012). A global metabolic profile analysis was

therefore performed to determine if the atyak1-4 mutation is

able to suppress the metabolic changes observed in lst8-1-1.

The metabolites were extracted from 7-day-old seedlings of

WT, atyak1-4, lst8-1-1, and lst8-1-1 atyak1-4 mutants and were

analyzed by gas chromatography-mass spectrometry (GC-MS).

The hierarchical cluster analysis showed a global reversion of

metabolite levels in lst8-1-1 atyak1-4 double mutants compared

to lst8-1-1 (Figure S5; see Data S2 for raw data). In particular, the

amino acid increase occurring in lst8-1-1 mutants is reduced in

lst8-1-1 atyak1-4 double mutants (Figure 5A). Among the 19

aminoacids that showed increased levels in lst8-1-1, 15 accumu-

lated to a lesser extent in the lst8-1-1 atyak1-4 double mutant,

with the exception of aspartate, glutamate, phenylalanine, and

proline, for which the variations were not statistically significant
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Figure 4. AtYAK1 Interacts with RAPTOR1B in Yeast and Plant Cells and Is Phosphorylated by TOR Fractions In Vitro

(A) Yeast two-hybrid assayswith LST8 (BD-LST8) or RAPTOR (BD-RPT) fused to theGAL4DNA binding domain or the empty vector pBD, with AtYAK1 (AD-YAK1)

fused to the GAL4 activation domain or empty vector pAD. Ten-fold serial dilutions were spotted onto SD agar medium control plates (SD) or plates lacking

histidine containing 0.4-mM 3-Amino-1,2,3-triazole (-His).

(B) Bimolecular fluorescence (BiFC) experiments in Nicotiana benthamiana. Confocal images of N. benthamiana epidermal cells co-infiltrated with N-terminal or

C-terminal YFP moieties fused to the proteins of interest (nYFP and cYFP, repectively). The vector pairs are indicated on the left. From right to left: YFP,

chlorophyll from chloroplast autofluorescence, bright field, and merge panels. Scale bars, 20 mm.

(C) The TOR complex was purified by tandem-affinity purification (TAP) from Arabidopsis cell cultures expressing a N-GSrhino-Raptor1B fusion protein (TAP

Raptor1B). As a negative control, TAPs were performed on WT cell cultures (TAP WT control). AtYAK1 was fused to the His-MBP tag and produced from E. coli.

AtYAK1 autophosphorylation activity was inhibited by 25 mM INDY, a specific DYRK1A inhibitor. RAPTOR1B-coated TAP beads were removed (�) or not (+) by

centrifugation after the kinase assay. The top panel shows the kinase assay visualized by autoradiography and the bottom panel shows the Coomassie Brilliant

Blue staining of substrates as loading control.
(Figure 5A). The most striking increase was measured for gluta-

mine, which was 134-fold more abundant in lst8-1-1 compared

to WT (Figure 5B). Amino acids such as arginine are also the

precursors for the synthesis of polyamines and components of

this pathway such as agmatine and putrescine accumulated in

lst8-1-1 but not in lst8-1-1 atyak1-4.

Compared to this strong amino acid response, changes in

sugars such as mannose, galactose, and arabinose, or in the

levels of tricarboxylic acid (TCA) cycle intermediates such asma-

late, were less important. Again, the levels of these metabolites

were reduced in lst8-1-1 atyak1-4 double mutants compared

to lst8-1-1, apart from sucrose. No significant changes to WT

were measured for fructose and glucose in lst8-1-1. Altogether,

this output indicates that AtYAK1 activity could be mediating

part of the metabolic changes occurring in lst8-1-1 mutants.
Mutations inAtYAK1Partly Reduce theGeneExpression
Changes Observed in lst8-1-1 Mutants
To gain further insight into the molecular processes involved in

the suppression of the lst8-1-1 growth phenotype by the atyak1

mutation, we used RNA sequencing (RNA-seq) to explore

transcriptome variations. Seedlings of Col-0 WT, lst8-1-1,

atyak1-4, and lst8-1-1 atyak1-4 double mutants were grown

in vitro for 7 days. RNA was extracted from three biological repli-

cates and sequenced. The reads were mapped to the Arabidop-

sis Tair10 genome version. Expression levels were compared for

eachgenebetween the samples, andonly thegenes forwhich the

variations were significantly different were retained for further

analysis (p value < 0.05; see STAR Methods for details).

As observed previously (Moreau et al., 2012), mutations in the

LST8 gene resulted in large changes of the transcriptome profile
Cell Reports 27, 3696–3708, June 18, 2019 3701
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Figure 5. Metabolite Accumulations

Observed in lst8-1-1 Are Partly Suppressed

by the Atyak1 Mutation

(A) Seven-day-old seedlings were grown in vitro on

Arabidopsis media supplemented with 0.3% su-

crose under LD conditions. Heatmap depicting the

log2-fold changes in metabolites of three different

genotypes (yak1 = atyak1-4, lst8 = lst8-1-1, and

lst8 yak1 = lst8-1-1 atyak1-4) compared to WT.

The intensities of the blue and red colors indicate,

respectively, a decrease and an increase in the

metabolite levels compared toWT. Asterisks show

significant differences between lst8-1-1 mutants

and lst8-1-1 atyak1-4 double mutants (n = 4,

* p value < 0.05, Wilcoxon, Mann-Whitney test).

(B) Quantification of the glutamine content.

Approximately 200 seedlings were used for each

genotype with four biological repeats (a-d).
(Figures 6A and 6B), with 1,328 genes showing more than 2-fold

changes (706 induced, 622 repressed) when compared to the

WT Col-0 control. A large proportion of the differentially regu-

lated genes in the lst8-1-1 mutant had a lower fold change in

the lst8-1-1 atyak1-4 double mutant compared to the WT

(Figure 6A). Indeed, out of 622 repressed genes in lst8-1-1,

403 were induced in the lst8-1-1 atyak1-4 double mutant

compared to the lst8-1-1 mutant. Conversely, out of the 706

genes upregulated in lst8-1-1, 195 were downregulated in the

double mutant when compared to the lst8-1-1 mutant (Fig-

ure 6B). These results suggest that the loss of AtYAK1 activity

globally dampens the impact of the lst8-1-1mutation on the Ara-

bidopsis transcriptome.

To decipher the biological function of these genes, we first

performed a gene ontology (GO) analysis on the complete set

of genes whose expression was significantly altered in either

lst8-1-1 or atyak1-4 mutants compared to the WT (Figure S6).

Interestingly, genes involved in defense or salicylic acid synthe-

sis were the most significant classes (based on false discovery

rate [FDR] scores; see Figure S6) of downregulated genes in
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the lst8-1-1 mutant. Conversely, these

same classes of genes were enriched

and upregulated in atyak1-4. The most

significantly enriched class in atyak1-4

downregulated genes was for transcripts

involved in circadian rhythms, consistent

with the described role of AtYAK1 in the

regulation of the clock (Huang et al.,

2017; Figure S6). We then focused on

the set of genes that were differentially

regulated in the lst8-1-1 mutant and had

their expression tempered or reversed

in the lst8-1-1 atyak1-4 double mutant

(Figure 6C). The biological processes

associated with the enriched GO terms

are diverse and include root develop-

ment, ion transport, as well as nutrient,

stress, defense, and hormone responses

(Figure 6C).
Because the hormone ABA is involved in integrating various

stress signals and since AtYAK1 as well as LST8 are involved

in ABA signaling (Kravchenko et al., 2015; Kim et al., 2016), we

examined the expression of ABA-related genes in the different

transcriptomes. By using the list of ABA-regulated transcripts

published by Wang et al. (2018b), a significant overlap was de-

tected between genes up- or downregulated by either ABA treat-

ment or the lst8-1-1 mutation (Figure 6D). Consistently, several

known ABA-related genes were de-regulated in the lst8-1-1

mutant, but this de-regulation was alleviated in lst8-1-1 atyak1-4

when compared to lst8-1-1 (Figure 6E). This transcriptome

profiling revealed that atyak1-4 mutations probably antagonize

the ABA responses observed in lst8-1-1 by modulating the

expression of genes related to ABA.

AtYAK1Mutations Suppress the ABA Hypersensitivity of
the lst8-1-1 Mutant
To further examine whether AtYAK1 and LST8 act together in

the ABA signaling pathway, we assessed the genetic interac-

tion of atyak1 with the lst8-1-1 mutant. The atyak1 mutants
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Figure 6. A Mutation in AtYAK1 Partly Reduces the Variations in Gene Expression Observed in the lst8-1-1 Mutant

(A and B) Transcriptome analysis of the lst8-1-1, atyak1-4, and lst8-1-1 yak1-4 double mutant by RNA-seq experiments is shown. RNA-seq data were obtained

from 7-day-old seedlings grown in vitro under LD conditions and analyzed as described in STAR Methods.

(A) Comparisons of gene expressions were performed between each mutants and the WT Col-0 reference and between lst8-1-1 atyak1-4 and lst8-1-1mutants.

Differentially expressed geneswere ordered from the lowest to the highest log2 ratio with the lst8-1-1 atyak1-4/lst8-1-1 comparison as reference. Genes for which

at least one comparison showed a differential expression (p value < 0.05) were retained.

(B) Venn diagrams showing the differentially regulated genes in common between the different comparisons (log2 > j1j). The lst8-1-1mutant was compared to the

Col-0 reference and the lst8-1-1 atyak1-4 double mutant was compared to lst8-1-1. Down and up refer to down- and upregulated genes, respectively.

(C) GO enrichment analysis. Selected enriched biological processes of the genes whose expression is significantly different (p value < 0.05 and log2 > j0.5j) in the

lst8-1-1 atyak1-4 double mutant in comparison to lst8-1-1.

(D) Venn diagrams showing the differentially regulated genes in common between the lst8-1-1 mutant and ABA-treated plants. ABA RNA-seq data were from

Wang et al. (2018b).

(E) Subset of ABA-related genes showing differential expression between the lst8-1-1/Col-0, lst8-1-1 atyak1-4/Col-0, and the lst8-1-1 atyak1-4/lst8-1-1 com-

parisons. The scale for log2 ratio is shown below (A).
were shown to be hyposensitive to ABA while the lst8-1 mu-

tants were hypersensitive (Kravchenko et al., 2015; Kim et al.,

2016). Development of the different mutants was evaluated

by germinating seeds on media supplemented with DMSO

(mock treatment) or ABA (1 and 2 mM). The germination and

development were recorded 3, 5, 7, and 10 days after the

transfer to LD conditions (Figures 7A, 7B, and S7). Figure 7B

shows the germination 3 days after sowing the seeds and coty-
ledon establishment 7 days after germination (DAG). Three

DAG, WT, atyak1-3, atyak1-4, and the two double-mutant com-

binations showed between 98% and 100% germination on the

control media (mock), while lst8-1-1 germination was inhibited

by 60% (Figure 7B). Seed germination was inhibited by ABA

for all the genotypes. However, only 4% of lst8-1-1 seeds

would germinate on ABA 2 mM compared to 50% for the other

genotypes. Without ABA, 78% of lst8-1-1 seedlings were able
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Figure 7. Mutations in AtYAK1 Suppress the ABA Hypersensitivity of lst8-1-1 Mutants

(A) Ten-day-old seedlings grown in vitro on half MSmedium supplemented with DMSO (mock control), 1 or 2 mMof ABA. The different genotypes are WT (Col-0),

lst8-1-1, atyak1-3, atyak1-4, lst8-1-1 atyak1-3, and lst8-1-1 atyak1-4.

(B) Quantification of the germination (3 DAG) and cotyledon establishment (7 DAG) on media supplemented with DMSO (mock control), 1 or 2 mM of ABA.

Approximately 45–80 seeds were used for each genotype. Error bars indicate the standard deviation of three independent experiments. Letters indicate

significantly different classes (non-parametric Kruskal-Wallis test, p < 0.05).
to expand cotyledons 7 DAG, compared to 98%–100% for the

other genotypes. While the presence of ABA delayed the devel-

opment of all genotypes, growth of lst8-1-1 was arrested by

ABA (Figure 7B). Atyak1 mutants were less sensitive to ABA

than WT since 81% of both atyak1 mutant seeds developed

cotyledons on 1 mM ABA, compared to 24% for WT plants or

29%–13% for the double mutants. The lst8-1-1 atyak1 double

mutants behaved similarly to WT in the presence of ABA. These

results indicate that atyak1 mutations dampen ABA sensitivity

in lst8-1-1.
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DISCUSSION

In this study we isolated two suppressors of the lst8-1-1

mutant, which contained loss-of-function mutations in the

AtYAK1 (At5g35980) gene. The LST8 protein is already known

to interact with the plant TORC1 complex. We further showed

that LST8 is required for the sugar-induced TOR activation.

However, loss of AtYAK1 did not restore TOR activity, suggest-

ing that AtYAK1 could be a TOR effector. Our genetic analysis

implied that AtYAK1 and TOR act in a common pathway to



control plant growth. This notion is further supported by the

fact that RAPTOR and AtYAK1 physically interact and loss of

AtYAK1 confers resistance to the specific TOR inhibitor AZD-

8055. The AtYAK1 protein interacts with RAPTOR both in a

yeast two-hybrid and in planta BiFC experiments. On the con-

trary no interaction with LST8 was detected using these same

techniques. Nevertheless, Van Leene et al. (2019) identified

AtYAK1 in an immunopurification experiment using tagged

LST8 as bait. This suggests that AtYAK1 interacts with the

RAPTOR component of the TORC1 complex, which also con-

tains LST8. Van Leene et al. (2019) showed that AtYAK1 is

phosphorylated on two conserved Ser residues in a TOR-

dependent way and we further demonstrate that TOR-contain-

ing fractions are able to phosphorylate AtYAK1 in vitro. This is

the first evidence in eukaryotes that TOR is able to phosphor-

ylate the conserved AtYAK1 kinase. It is tempting to sug-

gest that TORC1 binds to AtYAK1 and inactivates it by

phosphorylation since loss of AtYAK1 alleviates the effects of

TOR inhibition in the lst8-1-1 mutant.

YAK1 is the founding member of the conserved DYRK pro-

tein kinase family and has orthologs in lower eukaryotes and

plants (Aranda et al., 2011; Figure S2B). In yeast, YAK1 inhibits

cell proliferation and stimulates stress responses in order to

promote cell survival (Garrett et al., 1991; Malcher et al.,

2011). In response to glucose availability, the yeast cyclic

AMP (cAMP) regulated protein kinase A (PKA) phosphorylates

YAK1 and inhibits its relocation into the nucleus, while rapamy-

cin treatment or PKA inhibition results in the nuclear localization

of YAK1 (Schmelzle et al., 2004; Lee et al., 2011). The deletion

of YAK1 reverts the growth defect of yeast cells lacking PKA

activity (Garrett and Broach, 1989). Once in the nucleus,

YAK1 leads to the activation of stress-responsive transcription

factors like Hsf1, Msn2, and Msn4 (Lee et al., 2008). As in

yeast, where YAK1 transduces the perception of stresses, we

can hypothesize that AtYAK1 also conveys stress signals in

Arabidopsis. In support of this model, the GO classification

(Figure S6) suggests that the AtYAK1-regulated genes were

related to stress and defense. Therefore, we propose a model

where AtYAK1 mediates stress signals in Arabidopsis by block-

ing growth and needs to be inhibited by TOR in order to acti-

vate plant growth.

DYRKs can phosphorylate Ser (S), Thr (T), and Tyr (Y) resi-

dues. They become activated by autophosphorylation of the

second Y residue located in their conserved activation loop

motif Yx(P)Y. The nonsense mutation in the sol23 suppressor

line preserves this activation loop (YSY in Arabidopsis) but re-

sults in the deletion of the C-terminal part of the conserved

DYRK kinase domain (Figure S2A). Interestingly, phosphoryla-

tion of the regulatory Y residue in the AtYAK1 activation loop

was found to be highly increased by ABA treatment (Kline

et al., 2010). This indicates that AtYAK1 activity could be modu-

lated in response to ABA levels. Here, we show that atyak1

mutations suppressed the ABA hypersensitivity of lst8-1-1 mu-

tants, suggesting that TOR may act through AtYAK1 to repress

ABA signaling. TOR silenced lines or TORC1 mutants were

already shown to be hypersensitive to ABA (Deprost et al.,

2007; Kravchenko et al., 2015; Salem et al., 2018). Moreover,

TOR was shown to reduce ABA responses by phosphorylation
of the ABA PYL receptors (Wang et al., 2018a). AtYAK1 can

also phosphorylate annexins (Kim et al., 2015), which are

involved in ABA signaling (Lee et al., 2004). Annexins are

Ca2+-dependent membrane-binding proteins. Taken together,

we propose that during favorable growth conditions TOR would

negatively control ABA signaling by inhibition of the AtYAK1

activity.

TOR has been shown to integrate light, sugar, auxin, cyto-

kinin, and brassinosteroid signals (Dobrenel et al., 2016a).

AtYAK1 interacts with the light-regulated WD-repeat 1 (LWD1)

protein and was found to regulate light responses such

as the circadian clock, photomorphogenesis, and flowering

(Huang et al., 2017). The atyak1 mutation compensates the

early flowering phenotype of lwd1 mutants but in our study it

partly suppressed the late flowering phenotype of lst8-1-1.

Huang et al. also proposed that AtYAK1 is an inducer of light

responses since atyak1 had reduced light responses with

longer hypocotyls than WT. Accordingly, atyak1 mutations

rescued the short hypocotyl phenotype of lst8-1-1 mutants.

Because lst8-1-1 mutants are also hypersensitive to an in-

crease in day length (Moreau et al., 2012), the loss of AtYAK1

activity could contribute to the reduction in light sensitivity of

lst8-1-1.

One of the hallmarks of TOR inhibition in plants is the accu-

mulation of amino acids (Moreau et al., 2012; Mubeen et al.,

2018). Recent work by Mubeen et al. (2018) suggested that

this increase in amino acid levels occurring when TOR is in-

hibited is due to an increased nitrogen uptake followed by its

assimilation into amino acid. Since in our study atyak1 muta-

tions suppressed the amino acid accumulation observed in

lst8-1-1 plants, we checked whether genes involved in nitrogen

uptake were regulated by AtYAK1 or LST8 (Figure S7B). Con-

trary to what could have been expected, genes encoding ni-

trate and ammonium transporters (NRT2 and AMT families,

respectively) were repressed in the lst8-1-1 mutant and re-

induced by the atyak1 mutation. This could be the conse-

quence of a negative feedback in response to the excess of

amino acids. Furthermore, yeast YAK1 targets transcription

factors and transcriptional coregulators, which regulate stress

responses (Lee et al., 2008; Malcher et al., 2011), or ribosome

biogenesis and the mRNA life cycle (Martin et al., 2004; Moriya

et al., 2001). In Arabidopsis, atyak1 mutants were also identified

in a screen for AZD-8055-resistant Arabidopsis plants (Barrada

et al., 2019). In this recent report AtYAK1 was shown to control

root meristem functions and to upregulate SIAMESE-related

proteins which inhibit cyclin-dependent kinases (Barrada

et al., 2019). Future work will thus be necessary to identify

AtYAK1 targets in order to further investigate how this kinase

controls plant growth.

In conclusion, we uncovered the AtYAK1 kinase as a suppres-

sor of TORC1 mutations and as a TOR target. Upon TOR inhibi-

tion, our results support the hypothesis that AtYAK1 inhibits

growth, increases ABA sensitivity, and reprograms the plant

gene expression and metabolism. A tight control of AtYAK1 by

TOR is probably essential for plant growth to proceed. Many hor-

mone and stress signaling pathways are known to regulate plant

growth. It remains to be shown how TOR and AtYAK1 integrate

these different signaling pathways.
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Malcher, M., Schladebeck, S., and Mösch, H.U. (2011). The Yak1 protein ki-

nase lies at the center of a regulatory cascade affecting adhesive growth

and stress resistance in Saccharomyces cerevisiae. Genetics 187, 717–730.

Martin, D.E., Soulard, A., and Hall, M.N. (2004). TOR regulates ribosomal pro-

tein gene expression via PKA and the Forkhead transcription factor FHL1. Cell

119, 969–979.

McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression anal-

ysis of multifactor RNA-Seq experiments with respect to biological variation.

Nucleic Acids Res. 40, 4288–4297.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-RPS6 rabbit polyclonal antibody Dobrenel et al., 2016b N/A

Anti-phosphorylated RPS6 rabbit polyclonal antibody Dobrenel et al., 2016b N/A

Anti-rabbit HRP-conjugated SIGMA-Aldrich Cat# A0545; RRID: AB_257896

Clarity Western ECL blotting substrate Bio-Rad Cat# 1705061

Yeast Strains and plasmids

PJ69-4A James et al., 1996 N/A

pGBKT7-GW Lu et al., 2010 N/A

pGADT7-GW Lu et al., 2010 N/A

Bacterial strains and plasmids

Agrobacterium tumefaciens C58C1-pMP90 Moreau et al., 2012 N/A

pBIPF1-4 Azimzadeh et al., 2008 N/A

pDEST-His-MBP Addgene Cat# 11085; RRID: Addgene_11085

Chemicals

AZD-8055 Sellekchem Cat# S1555

Murashige and Skoog medium Duchefa Cat# M0222

Phytagel SIGMA-Aldrich Cat# P8169

Critical Commercial Assays

Nucleospin Plant II DNA extraction kit Macherey-Nagel Cat# 740770

Deposited Data

RNA-sequencing This paper GEO: GSE120003

Experimental Models: Organisms/Strains

Arabidopsis thaliana Col0 Versailles Stock Center Col0

Oligonucleotides

CAPS: TTTGGCCAACTTGCGTTAACT Eurofins N/A

For CAPS: ATACCCTAGTATTTCA ATCATACGC Eurofins N/A

Rev Actin: GCCATCCAAGCTGTTCTCTC Eurofins N/A

For Actin: CCCTCGTAGATTGGCACAGT Eurofins N/A

Rev Yak-1F: CACTATTTCCAGGAGGTTCAGA Eurofins N/A

Yak-1R: TGACCAACGTTTTGCTGGAT Eurofins N/A

Yak-2F: GCAAAGCACCCTTTCATTACT Eurofins N/A

Yak-2R: ATTGCCAGTCCCTCCATAGC Eurofins N/A

LBsail: TAGCATCTGAATTTCATAACCAATCTCGATACAC Eurofins N/A

LB1-3: ATTTTGCCGATTTCGGAAC Eurofins N/A

Software and Algorithms

XL-STAT XLSTAT N/A

Mutdetect Granier et al., 2016 N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Chris-

tian Meyer (christian.meyer@inra.fr). There are no restrictions on reagent sharing to disclose.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Lines
The Arabidopsis thaliana ecotype Columbia 0 was used for all the experiments and grown as previously described (Moreau et al.,

2012). The lst8-1-1, lst8-1-2 and atyak1-3 (Salk_02459, Sail_641_D10, Salk_131306 respectively) mutant lines have been previously

described (Moreau et al., 2012; Huang et al., 2017). The loss-of-function mutant lines atyak1-4 (Sail_627_C09) and yak1-5

(Sail_1219_F01C01) were obtained from the Nottingham Arabidopsis stock center. T-DNA insertions for each mutant line were

confirmed by sequencing and genotyping. Primers used for the genotyping are listed in Table S1 and in the Key Resources Table.

Nicotiana benthamiana was grown in a greenhouse with standard nutrition.

METHOD DETAILS

Suppressor Screen
20 000 lst8-1-1 seedswere treatedwith 10mL of 0.35%ethyl methanesulfonate (EMS v/v) for 17 h at room temperature. Themutagen

was neutralized by adding 10 mL of sodium thiosulfate 1M for 5 min. Seeds were then washed 6 times with 15 mL of water for 15 min

and sown in soil. Since the lst8-1-1mutant shows low fertility and sensitivity to long days (LD), the mutagenized seeds were grown in

short days (10h light) and after 50 days flowering was induced with 10 days of LD (14 h light) before returning the plants to short day

conditions. 1500 M1 plants were recovered and harvested in 250 pools of 6 plants each. M2 plants of each pool were screened for

their ability to grow faster than lst8-1-1. Genomic DNA was extracted with the NucleoSpin Plant II Kit (Macherey-Nagel) from the

flowers of M2 plants. The DNA was sequenced by the GetPlaGe Genotoul sequencing platform (Toulouse, France) using the Illumina

Hiseq 3000 sequencing system. Mutations were identified by using the MutDetect pipeline (Girard et al., 2014; Granier et al., 2016). A

list of SNPs was created by using as reference genome TAIR10. The lists of non-sense/strong (new stop or start codons, loss of start

codon, splice site changes) mutations for the sol23 and sol69 suppressor lines are provided in Data S1.

To confirm the causal mutation in sol23, themutation (G924A in YAK1At5g35980) was genotyped using a CAPS (cleaved amplified

polymorphic sequence) assay. CAPS primers were designed using dCAPS Finder 2.0 (Table S1). sol23 M2 suppressor plants were

backcrossed to lst8-1-1. In the F2 population sol23 mutation segregates at a single locus and is recessive (Figures S1D and S1E).

Genomic DNA was extracted from the segregating F2 population by grinding a leaf in a sucrose solution (50 mM Tris-HCL pH

7.5, 300 mM NaCl, 300 mM sucrose) and by heating the extract at 95�C for 10 min (Berendzen et al., 2005). 1.5 ml of genomic

DNAwas used as a template for the PCR reaction. Ten ml of the PCR reactions were digested for 3 h with the MboI restriction enzyme

(2.5 units) in a total volume of 20 ml at 37�C. The DNA fragments were subsequently separated by gel electrophoresis (2% agarose

gel).

Plant Growth Conditions
Seeds were germinated on two different media: Arabidopsis medium (1.8 g L-1 Arabidopsis medium including vitamins (Estelle and

Somerville, 1987), 0.3% sucrose, 0.5 g L-1 2-(N-Morpholino) ethanesulfonic acid sodium salt (MES) pH 5.7 and 0.5% phytagel) or

0.5xMS medium (2.2 g L-1 Murashige Skoog including vitamins (Duchefa, M0222), 0.3% sucrose, 0.5 g L-1 MES pH 5.8 and 0.5%

phytagel). The seeds were stratified at 4�C between 48 and 72 h and were then transferred to 20�C under long day conditions

(16 h light, 8 h dark) for germination and growth. Four-day-old seedlings were then transferred ontoArabidopsismedium grown either

vertically for 7 days or grown horizontally for 14 days beforemeasuring the root length or the fresh weight, respectively. For AZD-8055

(Selleckchem, S1555) treatment, 4-day-old seedlings were transferred onto Arabidopsismedium containing either 5 ml DMSO (Mock

treatment) or 0.5 or 1 mM AZD-8055 (dissolved in DMSO) and were grown vertically. Root length was marked 3, 5 and 7 days after

transfer (DAT).

Hypocotyl measurements were performed in the dark. Seeds were sown on Arabidopsis medium, stratified for 72 h before

exposing to light for 3 h and then grown vertically in the dark for 6 days. Root and hypocotyl length were measured using ImageJ

software. For sucrose treatments 6-day-old seedlings grown on MS medium were transferred to MS liquid sugar-free medium for

24 h and then either mock or sugar treated (0.5%) for 4 h.

For the metabolite and the RNaseq analysis 7-day-old seedlings grown on Arabidopsis medium were harvested. 200 seedlings

were collected for each lines (WT Col-0, atyak1-4, lst8-1-1, lst8-1-1 atyak1-4) and frozen in liquid nitrogen before grinding. The

ABA effect on germination and early development assay was performed on 0.5xMS medium supplemented with either DMSO

(mock treatment) or ABA at final concentrations of 1 or 2 mM. At least 45 to 80 seeds of each genotype were used. Two developmental

stages were scored, as follows: 1) Germination, protrusion of the radicle and 2) cotyledon establishment, when the cotyledons were

green and open. The germination and development were recorded 3, 5, 7 and 10 days after the transfer to long day conditions.

Western Blotting
Proteins were extracted from 7-day-old Arabidopsis seedlings by grinding them in Laemmli buffer (62.5 mM Tris-HCL pH 6.8, 2%

SDS, 100 mM dithiothreitol (DTT), 10% glycerol, 0.1% Triton X-100 (v/v), 0.0025% bromophenol blue). Total protein extracts were

heated at 95�C for 5 min, and cell debris were removed after centrifugation. Protein concentrations were measured using the Brad-

ford assay (Bio-Rad). 30 mg of proteins were separated by SDS-PAGE gels and transferred to polyvinylidene difluoride membranes
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(PVDF, Bio-Rad) by electroblotting using a Trans-Blot Turbo blotting system (Bio-Rad). Custommade rabbit polyclonal antiphospho-

RPS6 (P-RPS6) or anti-RPS6 (RPS6) antibodies were used (Dobrenel et al., 2016b). Membranes were blocked with a 5% non-fat dry

milk solution in PBS (137mMNaCl, 2.7 mMKCl, 10 mMNa2HPO4, 2 mMKH2PO4, pH7.4) and then probed overnight with either anti-

P-RPS6 (dilution 1:2500) or with anti-RPS6 (dilution 1:5000) antibodies at 4�C. A goat anti-rabbit IgG-horseradish peroxidase (HRP)

(Sigma-Aldrich, A0545) was used as a secondary antibody (dilution 1:5000). Immunodetection was performed by using enhanced

chemiluminescent (ECL) substrates for HRP as recommended by the manufacturer (Clarity Western ECL blotting substrate Bio-

Rad) and was visualized using a LAS-4000 system (Fujifilm). Transferred proteins on PVDF membranes were visualized by

Coomassie staining to check for equal loading.

Yeast Two-Hybrid Assays
The coding sequences of LST8 (At3g18140), RAPTOR (At3g08850) and AtYAK1 (At5g35980) genes were cloned in the two-hybrid

vectors pGBKT7-GW / pGADT7-GW (Lu et al., 2010), using the Gateway technology (Invitrogen). The yeast strain PJ69-4A (James

et al., 1996) was co-transformed according to Gietz et al. (1992) with two different plasmids: the pGBKT7-GW vector containing the

GAL4 DNA binding domain (BD) fused to LST8 or RAPTOR and the pGADT7-GW vector containing the GAL4 DNA activation domain

(AD) fused to AtYAK1. The transformants were selected on synthetic mediumwith dextrose (SDmedium: 0.68%Yeast Nitrogen Base

with ammonium sulfate (Sigma-Aldrich), 2% dextrose, 2% agar) supplemented with the required amino acids. To test the interaction

colonies were grown overnight at 30�C in liquid SDmedium supplemented with the required amino acids. Yeast cultures were diluted

to an OD600 of 1 and 10-fold serial dilutions were spotted onto SD selective agar plates. Interactions between BD and AD fusion pro-

teins were scored by the relative yeast growth on SD media lacking His (-HIS) and containing 0.4 mM 3-amino-1, 2, 4 triazole.

Bimolecular Fluorescence Complementation (BiFC) Assay in Nicotiana Benthamiana Leaves
The coding sequences of LST8 (At3g18140),RAPTOR (At3g08850) andAtYAK1 (At5g35980) geneswere cloned in the pBiFP 1-4 vec-

tors (Azimzadeh et al., 2008), using the Gateway technology (Invitrogen). Each gene was cloned in fusion to either the N-terminal

(nYFP) or the C-terminal (cYFP) part of YFP, either as N- or C-terminal fusions and under the control of the 35S promoter. The different

vectors were introduced in the Agrobacterium tumefaciens strain C58C1 (pMP90) by electroporation. The Agrobacterium cultures

were grown overnight at 28�C until saturation, were collected by centrifugation and resuspended in infiltration buffer (10 mM

MgCl2, 10 mM MES pH 5.6). Equal volumes of Agrobacterium cultures expressing either cYFP or nYFP fusions were mixed and

used for infiltration of abaxial leaf cells from N. benthamiana with a 1 mL syringe. Two days after infiltration YFP fluorescence in

leaf epidermal cells was visualized by confocal microscopy Zeiss LSM 710.

In Vitro Kinase Assay
For the TOR kinase assay, the coding sequence of AtYAK1 was cloned into pDONR221, and the resulting entry vector was recom-

bined with pDEST-His-MBP (Addgene 11085) for N-terminal fusion of the His-MBP tag and the recombinant protein was produced

and purified as described by Van Leene et al. (2019). For in vitro kinase assays, the TOR kinase complex was purified by tandem

affinity purification (TAP) from a PSB-D cell culture expressing the N-terminal GSrhino fusion to RAPTOR1B as previously described

(Van Leene et al., 2019) andmixed with the recombinant His-MBP-AtYAK1 protein. After standard washing of streptavidin beads, the

beads were washed with 250 ml kinase wash buffer (25 mM HEPES, pH 7.4, and 20 mM KCl). Washed beads were dissolved in 80 ml

kinase assay buffer (25 mM HEPES, pH 7.4, 100mM NaCl, 50 mM KCl, 10 mM MgCl2 and 10 mM cold ATP). Kinase reactions were

performed for 1 h at 30�C, combining 20 ml TAP-purified fractions with 10 ml substrate, in the presence of 5 mCi ATP-g-32P. As negative

control, TAP purifications were performed on wild-type PSB-D cell cultures and streptavidin beads were combined with an equal

amount of substrate. After the kinase reaction, the streptavidin beadswere removed by centrifugation throughMobicol columns (Mo-

BiTec GmbH, Germany) to remove the co-migrating RAPTOR band. Reactions were stopped by addition of SDS sample buffer and

incubation for 10 min at 95�C. Proteins were separated by SDS–PAGE and stained with Coomassie Brilliant Blue R-250. Gels were

dried and radioactivity was detected by autoradiography on a photographic film. YAK1 autophosphorylation was first inhibited by

incubation with 25 mM INDY for 1hour at 30�C.

Transcriptome Studies
Transcriptomes were analyzed using RNA-seq and RNA extracted from three independent biological replicates. Total RNA was ex-

tracted from 7-day-old seedlings using the RNeasy plant minikit (QIAGEN) including a DNase treatment according to manufacturer’s

instructions. Sequencing technology used an Illumina NexSeq500 (IPS2 POPS platform). RNA-seq libraries were performed by

TruSeq Stranded protocol (Illumina�, California, U.S.A.). The RNA-seq samples have been sequenced in single-end (SE) with a sizing

of 260 bp and a read length of 75 bases. 18 samples by lane of NextSeq500 using individual bar-coded adapters and giving

approximately 16 millions of SE reads by sample are generated. All steps of the experiment, from growth conditions to bioinformatic

analyses, were managed in CATdb database (Gagnot et al., 2008; http://tools.ips2.u-psud.fr/CATdb/) ProjectID NGS2018_05_TOR

according to the international standard MINSEQE ‘minimum information about a high-throughput sequencing experiment’.
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Metabolite Measurements
Metabolite levels were determined by global analysis after derivatization and injection into a GC-MS. In vitro grown seedlings were

harvested 7 days after sowing on Arabidopsismedium. Four biological replicates were analyzed for eachmutant and control lines. All

extraction steps were performed in 2mLSafelock Eppendorf tubes. The ground frozen samples (50mg) were resuspended in 1mL of

frozen (�20�C) Water:Acetonitrile:Isopropanol (2:3:3) containing Ribitol at 4 mg/ml and extracted for 10 min at 4�C with shaking at

1400 rpm in an Eppendorf Thermomixer. Insoluble material was removed by centrifugation at 20000 g for 5 min. 50 ml were collected

and dried overnight at 35�C in a Speed-Vac and stored at �80�C or immediately injected. Three Blank tubes underwent the same

steps as the samples. A quality control was made by pooling an equal volume of each conditions. Samples were taken out of

�80�C, warmed 15 min before opening and speed-vac dried again for 1.5 hour at 35�C before adding 10 ml of 20 mg/ml methoxy-

amine in pyridine to the samples and the reaction was performed for 90 min at 28�C under continuous shaking in an Eppendorf ther-

momixer. 90 ml of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (Aldrich 394866-10x1ml) were then added and the reaction

continued for 30 min at 37�C. After cooling, 45 ml were transferred to an Agilent vial for injection. Four hours after derivatization 1 ml of

sample was injected in splitless and split (1:30) modes on an Agilent 7890A gas chromatograph coupled to an Agilent 5977B mass

spectrometer. The column was an Rxi-5SilMS from Restek (30 m with 10 m integraguard column). The liner (Restek # 20994) was

changed before each series of 24 samples analysis. Oven temperature ramp was 70�C for 7 min then 10�C/min to 330�C for

5 min (run length 38 min). Helium constant flow was 0.7 mL/min. Temperatures were the following: injector: 250�C, transfer line:
290�C, source: 250�C and quadrupole 150�C. Five scans per second were acquired spanning a 50 to 600 Da range. The instrument

was tuned with PFTBA with the 69 m/z and 219 m/z of equal intensities. Samples were randomized. Four different quality controls

were injected at the beginning and end of the analysis formonitoring of the derivatization stability. An alkanemix (C10, C12, C15, C19,

C22, C28, C32, C36) was injected in the middle of the queue for external RI calibration. Five scans per second were acquired. An

injection in split mode with a ratio of 1:30 was systematically performed with the following conditions: 70�C for 2 min then 30�C
per min to 330�C for 5 min. Helium constant flow 1 mL/min. Three independent derivatization of the quality control were injected

at the beginning, in the middle and at the end of the series.

Metabolic Data Processing
Raw Agilent datafiles were converted to NetCDF format and analyzed with AMDIS https://chemdata.nist.gov/mass-spc/amdis/. A

home retention indices/mass spectra library built from the NIST, Golm, http://gmd.mpimp-golm.mpg.de/ and Fiehn databases

and standard compounds was used for metabolite identification. Peak areas were also determined with the Targetlynx software

(Waters) after conversion of the NetCDF file in masslynx format. AMDIS, Target Lynx in splitless and split 30 modes were compiled

in one single Excel File for comparison. After blank mean substraction peak areas were normalized to Ribitol and Fresh Weight.

Statistical analysis was made with TMEV http://mev.tm4.org/#/welcome: univariate analysis by permutation (1way-anova and

2-way anova) were first used to select the significant metabolites (P value < 0.01). Multivariate analysis (hierarchical clustering an

principal component analysis) were then made on them. Mapman http://www.gabipd.org/projects/MapMan/ was used for graphical

representation of the metabolic changes after Log2 transformation of the mean of the 3 replicates (Thimm et al., 2004).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq Bioinformatic Treatment and Analysis
To facilitate comparisons, each sample followed the same steps from trimming to count. RNA-Seq preprocessing includes trimming

library adapters and performing quality controls. The raw data (fastq) were trimmed with Trimmomatic (Bolger et al., 2014) tool for

Phred Quality Score Qscore > 20, read length > 30 bases, and ribosome sequences were removed with tool sortMeRNA (Kopylova

et al., 2012).

The mapper Bowtie version 2 (Langmead et al., 2009) was used to align reads against the Arabidopsis thaliana transcriptome

(with–local option and other default parameters). The 33602 genes were extracted from TAIR10 database with one isoform per

gene (corresponding to the longest CDS). The abundance of each gene was calculated by a local script which parses SAM files

and counts only paired-end reads for which both reads map unambiguously one gene, removing multi-hits. According to these rules,

around 98.4% of SE reads were associated to a gene, approximatively 2% SE reads unmapped and 1.85 to 2.2% of SE reads with

multi-hits were removed.

Differential analysis followed the procedure described in Rigaill et al. (2018). Briefly, genes with less than 1 read after a count per

million (CPM) normalization in at least one half of the samples were discarded. Library size was normalized using the trimmedmean of

M-value (TMM)method and count distributionwasmodeledwith a negative binomial generalized linearmodel where the environment

factor (‘‘stressed’’ or ‘‘unstressed’’ plants) and the block number were taken into account. Dispersion was estimated by the edgeR

method (Version 1.12.0, McCarthy et al., 2012) in the statistical software ‘R’ (Version 2.15.0; R Development Core Team 2005).

Expression differences were compared between stressed and unstressed plants using likelihood ratio test and p values were

adjusted by the Benjamini-Hochberg procedure to control False Discovery Rate (FDR). A gene was declared differentially expressed

if its adjusted p value < 0.05. FPKMs were calculated for visual analysis only, and were obtained by dividing normalized counts by
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gene length. Expression differences were compared between the different mutants and Col0 WT using likelihood ratio test and

pvalues were adjusted by the Benjamini-Hochberg procedure to control FDR. A gene was declared differentially expressed if its

adjusted pvalue is lower than 0.05.

Gene ontology enrichment analysis was performed using the PlantGSEA online toolkit (http://structuralbiology.cau.edu.cn/

PlantGSEA/index.php). Differentially expressed transcripts (adjusted p < 0.05; log2 fold change > j0.5j) were compared against

the Arabidopsis thaliana genome, using Fisher’s exact test and Yekutieli adjustment (FDR < 0.05) parameters.

Metabolite Absolute Quantification
A response coefficient was determined for 4 ng each of a set of 103metabolites, respectively to the same amount of ribitol. This factor

was used to give an estimation of the absolute concentration of the metabolite in what we may call a ‘‘one point calibration.’’

Growth Data Analysis
All statistical tests were done using XLSTAT. The non-parametric Kruskal-Wallis test was performed with pairwise multiple compar-

isons according to Conover-Iman tests and the addition of Bonferroni correction.

DATA AND SOFTWARE AVAILABILITY

RNA-Seq Data
RNA-Seq data were submitted to the GEO international repository (Gene Expression Omnibus, Edgar et al., 2002), https://www.ncbi.

nlm.nih.gov/geo).

ProjetID: GEO: GSE120003.

Metabolomic Data
Raw data are provided in Data S2.
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