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Gut microbiome modulation during 
treatment of mucositis with the 
dairy bacterium Lactococcus lactis 
and recombinant strain secreting 
human antimicrobial PAP
Rodrigo Carvalho  1, Aline Vaz1, Felipe Luiz Pereira1, Fernanda Dorella1, Eric Aguiar  2,  
Jean-Marc Chatel4, Luis Bermudez4, Philippe Langella4, Gabriel Fernandes  3, 
Henrique Figueiredo  1, Aristóteles Goes-Neto1 & Vasco Azevedo1

Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, 
such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several 
research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this 
context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been 
explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant 
strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-
associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of 
these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we 
aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 
16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease 
in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The 
Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery 
was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain 
secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.

Oncology treatments based on chemotherapy or radiotherapy are responsible for the occurrence of a gastroin-
testinal inflammatory condition known as mucositis1–3. Chemotherapy drugs, including 5-fluorouracil (5-FU), 
irinotecan and methotrexate, present high toxicity to cells with high proliferation rates, such as intestinal epi-
thelial cells lining the gut mucosa. These drugs lead to apoptosis of those cells generating significant damage to 
epithelial barrier integrity, which allows bacterial colonization, invasion and consecutive triggering of inflamma-
tory processes4,5. The scientific community believed that the gut microbiota would play a secondary role in the 
pathogenesis of the disease limited to aggravating conditions, such as bacterial translocation. However, recent 
studies have been investigating the role of commensal intestinal microbes under an ecological perspective where 
diverse organisms occupy niches that are essential for the development of mucositis6,7. The gut microbiota that 
colonizes the epithelial barrier of the intestine is composed mostly of bacteria which contribute to many func-
tions of the host, while some are referred to pathobionts being capable of acquiring pathogenic characteristics 
under intestinal ecology disturbance6. Interestingly, it has been shown that germ-free mice are more resistant to 
5-FU-induced mucositis, which reinforces the hypothesis that the microbiota is essential for the disease devel-
opment5,8. Several pre-clinical and clinical studies have reported modifications in fecal microbiota diversity and 
composition following chemotherapy9–12.
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To date, the treatment of gastrointestinal mucositis relies mostly on antibiotics and analgesics administration 
and since the efficiency of current therapies in alleviating this pathology has been questioned, several research 
groups are currently investigating alternative rationales13. In this context, promising achievements with probiot-
ics, mainly members of the Lactic Acid Bacteria (LAB) group, have been reported in animal models of mucositis 
and seems to be useful to maintain intestinal barrier function14–21. The use of recombinant LAB strains, such as 
the model Lactococcus lactis, for delivering biologically active molecules with anti-inflammatory properties have 
also been explored as an alternative therapy for the treatment of mucositis13,22,23. Currently, a study designed 
recombinant strains of L. lactis to produce Trefoil factor 1 (TFF-1), involved in the maintenance of epithelial 
barrier integrity, revealing promising outcomes in the treatment of oral mucositis patients in clinical trials22,23. 
In a previous study, our research group evaluated the beneficial effect of a recombinant strain of L. lactis NZ9000 
producing an antimicrobial peptide (AMP) isolated from human, the Pancreatitis-associated Protein (PAP), into 
mice exposed to 5-FU24. This AMP is naturally secreted by Paneth cells in mammalian small intestines and seems 
to be involved in the protection of the host by killing harmful bacteria and preventing the microbe-driven inflam-
matory process25. This strategy was shown to be useful to prevent mucositis, although the role of PAP in the 
microbiota was never explored in this model. Considering that the protein could be associated with host epithelial 
cell surface protection against pro-inflammatory bacteria in the mucosa, we sought to investigate PAP effects 
in the intestinal microbiome of 5-FU-treated mice in a mucositis experimental model. As L. lactis NZ9000 has 
shown protective effects in the same model, we also addressed its effects on the gut microbiome as well.

Results
The high-throughput sequencing generated more than 135 megabases (Mb) for the enriched 16 rRNA gene V4 
regions from all 72 samples, representing a total of 4.784.028 reads. Over 2.775.137 of the total reads from each 
sample passed quality control (Supplementary Table 1). The rarefaction curves approximated to a stable asymp-
tote for all groups, meaning that the number of reads obtained was sufficient to represent the whole diversity in 
each group (Supplementary Figure 1). A total of fifteen phyla was obtained (Fig. 1) in all groups, and the most 
abundant were Bacteroidetes (70.8% ± 2.9%), Firmicutes (20.6% ± 4%), and Proteobacteria (4.3% ± 1.4%). From 
the 161 bacterial OTUs that were mapped to the database 1 belonged to Synergistetes phylum, 1 to Thermus, 1 to 
Planctomycetes, 1 to Fusobacteria, 1 to Spirochaetes, 2 to Verrucomicrobia, 2 to Deferribacteres, 2 to Cyanobacteria, 
4 to Tenericutes, 8 to Actinobacteria, 28 to Bacteriodetes, 41 to Proteobacteria and 68 to Firmicutes. From 17 
genus-level OTUs that were expected to be found in the Mock communities DNA samples, 15 and 14 were 
detected in the Mock even and Mock staggered respectively.

5-FU causes disruption in the microbial community structure when compared to the nonin-
flamed groups. There were no statistically signifcant variation on richness (Fig. 2), Shannon (Fig. 3), and 
evenness (Fig. 4) among the groups, except LL group, which showed the highest richness when compared to 
Naïve (P = 0.014), LL5FU (P = 0.022) and PAP5FU (P = 0.028). However, the community structure of the naïve 
group was statistically different from the inflamed groups (5FU, LL5FU and PAP5FU). This dissimilarity was also 
observed when compared the LL and PAP to the inflamed groups (Table 1 and Table 2). Moreover, the group with 
inflamed animals that did not feed on probiotics (5FU group) showed highest values of the dissimilarity when 
compared to naïve, LL and PAP groups (R values in ANOSIM).

L. lactis NZ9000 and PAP are able to change the gut microbiota composition. There were no sig-
nificant statistical differences in the phylum abundances between Naïve and LL group (Supplementary Figure 2); 
however, there was a significant decrease in the percentage of Actinobacteria (P = 0.003) in the animals fed with 
L. lactis expressing PAP when compared to the Naïve group.

When analyzed at the OTU level, LL group had a lower abundance of the OTU identified as Clostridiaceae 
and higher abundance of Lactobacillales, Peptococcaceae, and RF39 than Naïve group (Fig. 5 and Supplementary 
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Figure 1. Phylum relative abundance in stool among the groups.
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Figure 2. Microbial richness of the fecal microbiota among the groups. LL group showed an increase in 
richness when compared to Naïve (P = 0.014), LL5FU (P = 0.022) and PAP5FU (P = 0.028). Bonferroni, P-value 
<0,05.
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Figure 3. Diversity analysis of fecal microbiota among the groups. There was no significant statistical variation. 
Bonferroni, P-value <0,05.
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Figure 4. Microbial evenness of the fecal microbiota among the groups. There was no significant statistical 
variation. Bonferroni, P-value <0,05.



www.nature.com/scientificreports/

4SCIeNTIFIC REPoRts |  (2018) 8:15072  | DOI:10.1038/s41598-018-33469-w

Figure 3). The animals fed with the L. lactis expressing PAP showed a significant increase of Mycoplasma 
when compared to the naïve group. Moreover, mice receiving the recombinant strain showed decreased lev-
els of Enterobacteriaceae and Corynebacterium compared to Naïve and RF39, Turicibacter, Lactobacillus, and 
Enterobacteriaceae in comparison to mice treated only with LL (Fig. 5 and Supplementary Figure 3).

Mucositis induced by 5-Fluorouracil promotes a broad modification of the OTUs abundances 
in mice fecal microbiota. When the animals were inflamed, the abundance of Actinobacteria significantly 
decreased while the number of Verrucomicrobia increased when compared to Naïve (Supplementary Figure 2). 
Moreover, the OTUs Adlercreutzia, Anaeroplasma, Clostridium, Helicobacter, Lactobacillus, Odoribacter, Rikenella 
and Streptophyta significantly decreased when compared with the Naïve groups. At the same time, the following 
OTUs had the relative abundance increased in the inflamed animals: Akkermansia, Bilophila, Dehalobacterium, 
Desulfovibrio, Desulfovibrionaceae, Parabacteroides, Peptococcaceae, RF32, Rhodocyclaceae (Fig. 5 and 
Supplementary Figure 3).

The administration of L. lactis NZ9000 maintain reduced levels of Peptococcacea, Staphylococcus, 
and Corynebacterium in inflamed mice. The animals that were fed with L. lactis and challenged with 5-FU 
(LL5FU) presented a significant increase in the relative abundances of the TM7 phylum (Supplementary Figure 2) 
and the OTUs identified as F16, Enterobacteriaceae, Enterococaccea and Lactococcus (Fig. 5 and Supplementary 
Figure 3). The L. lactis feeding treatment also decreased the proportion of Corynebacterium, Lachnospiraceae, 
Peptococacceae, and Staphylococcus which could be confirmed by the relative decreasing of the abundance of those 
OTUs in LL5FU when compared with 5FU group (Fig. 5 and Supplementary Figure 3).

Naive LL PAP 5FU LL5FU PAP5FU

Naive 0.029 −0.007 0.087 0.075 0.077

LL 0.103 0.012 0.122 0.038 0.011

PAP 0.517 0.229 0.131 0.068 0.063

5FU 0.008 0.001 0.003 0.025 0.054

LL5FU 0.005 0.050 0.018 0.159 −0.031

PAP5FU 0.016 0.245 0.032 0.057 0.986

Table 1. Significant differences in microbial community among the groups using the multiple response 
permutation process (MRPP). The superior part of the table corresponds to the A-value and the inferior part 
to the P-value. The A-value describes within-group homogeneity, compared to the random expectation. The 
P-values indicated the significant differences at the levels of P < 0.05.

Naive LL PAP 5FU LL5FU PAP5FU

Naive 0.069 − 0.015 0.193 0.184 0.182

LL 0.073 0.006 0.272 0.099 0.029

PAP 0.562 0.331 0.244 0.141 0.106

5FU 0.007 0.003 0.001 0.074 0.109

LL5FU 0.001 0.040 0.011 0.095 −0.057

PAP5FU 0.008 0.185 0.034 0.063 0.954

Table 2. Significant differences in microbial community among the groups using ANOSIM. The superior part 
of the table corresponds to the R-value and the inferior part to the P-value. The P-values indicated the significant 
differences at the levels of P < 0.05.
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L. lactis expressing PAP restore the abundance of RF39 and maintain reduced levels of 
Anaerotruncus and Enterobacteriaceae in mice with mucositis. The abundance of TM7 phylum 
was higher in PAP5FU than in 5FU group (Supplementary Figure 2). Abundance analysis at the OTU level shows 
that F16 and RF39 increased while Anaerotruncus significantly decreased in the PAP5FU when compared to mice 
receiving only 5-FU (Fig. 5 and Supplementary Figure 3). Besides, treatment with PAP was responsible for reduc-
ing Enterobacteriaceae in comparison to mice fed only with LL (Fig. 5 and Supplementary Figure 3).

Discussion
Recently, the interest in using probiotics for alleviating intestinal inflammation in patients submitted to antineo-
plastic chemotherapy has increased15,26,27. Although several works demonstrate the protective effects of probiotics 
in preventing mucositis, their impact on the microbial community structure has been poorly explored. In this 
study, we evaluated the effects of two L. lactis strains with anti-inflammatory properties, NZ9000 and LL-PAP24,28, 
on the intestinal microbial community structure through a 16 S rRNA gene metataxonomic analysis in a mouse 
model of mucositis. Three major phyla constituted the predominant gut microbiota in all mice from all exper-
imental groups, consistent with previous surveys done with mammalian subjects29. In addition, almost all the 
genera constituting the Mock communities were detected. Although this finding was expected, it gives us more 
reliability when comparing our data with other related studies.

The 5-FU administration can cause a disturbance in the community structure, usually decreasing the richness 
and abundance of OTUs30. We were expecting to observe a similar effect in the inflamed animals, and despite 
the richness and diversity indices did not vary among the groups after 5-FU injection, we observed a significant 
alteration in the microbial community structure when comparing the noninflamed to the inflamed groups as 
indicated by the dissimilarity analyses. These findings suggest that different 5-FU regimens might cause distur-
bance states with particular structural traits.

At phylum level analysis, the proportion of Verrucomicrobia presented significant changes after 5-FU injec-
tion, corroborating with previous studies31,32. There are very few species belonging to this phylum found in the 
gut to date. The most dominant is Akkermansia muciniphila, a bacterium that scavenges mucins as a carbon and 
nitrogen source which has been inversely associated with obesity and diabetes, and presents protective activity 
in DSS-colitis in mice33. In the work of Kang and colleagues, extracted vesicles from A. muciniphila ameliorated 
inflammatory damage in the colon and reduced the expression of pro-inflammatory IL-6 stimulated by E. coli. 
Interestingly, we identified a genus-level OTU belonging to Verrucomicrobia, assigned as Akkermansia, being 
solely responsible for the increased proportion of Verrucomicrobia in the inflamed groups. The treatment with L. 
lactis presented an enrichment of Akkermansia compared to mice receiving 5-FU, although it was not statistically 
significant.

Actinobacteria was less enriched in the groups submitted to 5-FU injection compared to naive control. 
Intriguingly, this phylum was also decreased in healthy mice after treatment with L. lactis secreting PAP. Since 
Actinobacteria is almost exclusively formed by Gram-positive bacteria, its reduced abundance could be due to 
PAP anti-microbial affinity against Gram-positive bacteria as previously described34,35. However, there are con-
troversies in the literature regarding the proportion of Actinobacteria in response to inflammation making it 
challenging to unravel its biological implications. For example, Bifidobacterium spp are considered as dominant 
bugs presenting anti-inflammatory properties, but other genera probably might play essential roles in the gut as 
well10,36. In our work, we identified two genera of Actinobacteria being significantly influenced during mucositis. 
A reduced proportion of Adlercreutzia was observed in mice receiving 5-FU suggesting its niche is essential for 
avoiding a dysbiosis state. The decreased abundance of Adlercreutzia has been previously reported in cases of 
colitis patients compared to control group, and in another clinical study, patients have shown a reduced pro-
portion after chemotherapy submission10. Interestingly, this genus is currently formed by one species, A. equo-
lifaciens, which produces an isoflavone metabolite, named equol, with anti-cancerous and anti-inflammatory 
properties37,38. Moreover, studies reveal that equol is exclusively produced by the intestinal microbiota39. The 
treatment with PAP did not cause any alteration at OTU level regarding Actinobacteria. The consumption of  
L. lactis culture did not seem to significantly increase the abundance of Adlercreutzia as well, but caused a reduc-
tion of another genus identified as Corynebacterium. In humans, these Gram-positive bacteria are commonly 
found on the skin, and some members of the genus are opportunistic pathogens when colonizing other sites 
of the body, such as the oral cavity. Commensal species of corynebacteria found in the gut are acquired from 
the mother’s skin mainly in cesarian-section infants29. Opportunistic Corynebacterium spp. have also been iso-
lated from oral mucositis patients40,41. It is possible that competitive exclusion activity from L. lactis in reducing 
the abundance of corynebacteria might affect the dysbiosis state. However, their role in the gut requires further 
investigation.

In a similar context, there is no previous report about Tenericutes traits as indicators of health state in mucosi-
tis. Unclassified RF39 and Anaeroplasma were found decreased in inflamed mice, treated only with 5-FU, while 
delivery of PAP was able to restore RF39 to normal levels.

The candidate phylum TM7 is a recently described subgroup of Gram-positive uncultivable bacteria ini-
tially found in different natural environmental habitats42,43. In our study, we identified a TM7 family-level OTU 
assigned as F16. Mice receiving 5-FU did not show alteration while treatment with L. lactis has caused signifi-
cant enrichment of TM7/F16 at phylum- and OTU-level respectively. Controversially, Li and colleagues found a 
reduced abundance of TM7 proportion in mice treated with 5-FU in mice32. Although no definite correlation of 
TM7 has been associated with 5-FU-induced mucositis up to date, previous studies show TM7 OTUs has been 
associated with the pathogenesis of periodontitis44. Similarly, another study investigated TM7 in inflammatory 
bowel diseases (IBDs) suggesting it might play a key role in the development of inflammation45. Therefore, target-
ing TM7/F16 is of extreme importance to be investigated in further studies to improve or develop novel strategies 
for treating the disease.
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No alteration was detected for Firmicutes, Bacteriodetes, and Proteobacteria at phylum-level analysis, possibly 
because they present the highest richness of OTUs being either down- or up-modulated. Perhaps they are more 
ecologically stable when compared to subdominant phyla such as Verrucomicrobia, TM7, and Actinobacteria, 
which presented significant changes after treatment with 5-FU or the Lactococci strains.

Bacteriodetes phylum comprised two members, Rikenella and Odoribacter, that were found decreased after 
5-FU injection. Odoribacter spp are considered atypical opportunistic commensals because they produce butyrate 
and their presences are essential for preventing diseases such as hypertension though they may also contribute to 
intestinal abscesses46. Low levels of the Odoribacter population has been found in IBD patients47. However, the 
association of Rikenella with bad or good prognosis for inflammatory diseases has not been reported yet. Another 
Bacteriodetes, assigned as Parabacteroides, was found enriched in inflamed mice. Parabacteroides spp. are essential 
for digesting high-fiber diets that humans cannot process, and they tend to be missing from the gut of patients 
suffering from IBD48. L. lactis or PAP treatment in mice did not significantly affect any Bacteriodetes OTU either 
in healthy or inflamed mice, suggesting this phylum may present robustness against PAP inhibitory property and 
is less susceptible to L. lactis effects in the gut.

Firmicutes phylum is mainly formed by Gram-positive species of bacteria occupying several niches in the 
intestines, such as the production of Short-chain fatty acids (SCFAs) and trophic functions, although some 
are considered pathobionts as well49,50. Within Firmicutes, we verified that the majority of modulatory effects 
occurred in the Clostridialles, Lactobacillales and Bacillales. The Lactobacillales order, which is virtually formed by 
many species of bacteria with anti-inflammatory properties51–53, was found enriched in healthy mice that fed on 
L. lactis NZ9000 culture but seemed to be partially abrogated by 5-FU activity. The decrease of Lactobacillus cor-
roborates with the study of Florez and colleagues, in which authors suggest that LAB species are more susceptible 
to 5-FU effects than other intestinal bacteria54. Although the treatment with L. lactis NZ9000 did not restore the 
abundance of Lactobacillus during mucositis, it caused an increase of the genus Lactococcus. Despite Lactococcus 
spp. are not usually considered to be commensal, this OTU was found in all groups, including mice that did not 
feed on the cultures containing live Lactococci strains.

The Lactobacillales order also contains opportunistic bacteria including Streptococcus spp and Enterococcus 
spp. In our work, unclassified Enterococaccea were found increased in inflamed mice treated with L. lactis NZ9000. 
In a recent study, Enterococcaceae dominance was associated with higher risk of neutropenia and diarrheal illness 
after chemotherapy treatment55. We were expecting a decrease of Enterococcaceae in mice treated with PAP, as we 
have previously demonstrated it was able to inhibit a representative commensal from this family, E. faecalis, in 
vitro,24. For unknown reasons, in the present study, we observed reduced levels of Enterococcaceae in PAP-treated 
mice, but it was not statistically significant when compared to the treatment with L. lactis NZ9000.

The Bacillales member Staphylococcus was decreased in mice consuming L. lactis wild-type strain. In humans, 
this genus comprises opportunistic commensals colonizing the skin and mucosal surfaces lining the nose and 
ear cavities. Studies suggest that parental transmission is the most common form for infants-gut colonization56. 
A study revealed that different Staphylococcus spp. strains had been isolated from the mouth of chemotherapy 
patients, presenting the ability to produce several staphylococcal enterotoxins57. These bacteria have also been 
reported to contribute to systemic infections during oral mucositis58. The representative species S. aureus caused 
30 of 438 cases of bacteremia in neutropenic patients with cancer during a 10-year study period and septic metas-
tases were more frequent in patients with S. aureus bacteremia, remaining as a significant cause of morbidity and 
mortality59. Therefore, our results imply a vital role for L. lactis in the prevention of Staphylococcus infection.

Our results suggest Clostridium was found depleted in mice submitted to 5-FU administration. The genus 
Clostridium comprises more than 200 species of bacteria in which some of these are pathogenic, but the majority 
is inoffensive. The representative pathogen is C. difficile, a Gram-positive bacteria that have been reported to be 
involved in IBD pathogenesis, but also in patients receiving antineoplastic chemotherapy60. Other Clostridiales 
bugs such as Dehalobacterium and unclassified Peptococcaceae was found overrepresented in mice injected 
with 5-FU. Although their role in the gut microbiome are unknown, the group of inflamed animals that con-
sumed L. lactis NZ9000 culture restored the level of Peptococcacea and caused a reduction of the Lachnospiraceae 
population. Further studies are needed to provide possible clues about their biological implications. Another 
Clostridiales OTU which was suppressed by L. lactis consumption was Anaerotruncus, a recently described 
rod-like anaerobic bacterial genus belonging to Clostridiaceae family. The representative species is A. colihominis 
which have been isolated from human feces and associated with nosocomial bacteremia and to inflammatory 
traits in elderly subjects61–63. The expansion of Proteobacteria in the intestinal lumen, mainly Enterobacteriaceae 
has been consensually considered as a microbial signature of dysbiosis64–66. Among the Proteobacteria hav-
ing increased numbers of mice receiving 5-FU, we identified three potential sulfate-reducing bacteria (SRB), 
Desulfovibrio spp., Bilophila spp. and unclassified Desulfovibronaceae. Increased levels of Desulfovibrionacea have 
also been found in ulcerative colitis [72,73] while Bilophila wadsworthia67 have been isolated in clinical intestinal 
infections and bacteremia. Several studies suggest that SRB acquire sulfate by depolymerization and desulphation 
of host mucus glycoproteins such as mucins, which are secreted by goblet cells lining the gastrointestinal tract68. 
In this context, SRB might act in intestinal disorders by secreting metabolic end products such as hydrogen 
sulfide, which inhibits the production of SCFAs by other commensal bacteria and by promoting the formation 
of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) (Loubinoux et al., 2002). While ROS/
RNS may exacerbate the inflammatory process, they also serve as metabolic substrates for providing ATP for 
opportunistic Enterobacteriaceae in the gut69. The increase of Enterobacteriaceae family in the intestinal micro-
biota is associated with several intestinal disorders such as the Inflammatory Bowel Diseases and Colorectal 
Cancer. Moreover, recent studies reveal that the presence of Escherichia coli, the representative commensal spe-
cies belonging to this family, can aggravate mucositis in mice70. Unexpectedly, in our study, feeding mice with L. 
lactis NZ9000 seems to favor the growth of this OTU in the inflamed mice. This result reiterate the importance 
of investigating the effects of probiotic strains in the gut microbiome as they may also stimulate the growth of 
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undesirable bacteria. Previous studies have demonstrated that lactate, produced by LAB species can be used as 
an electron donor and may serve as a substrate for Enterobacteria71. In this context, as we did not observe sig-
nificative augmentation of this OTU in healthy mice that also fed on L. lactis NZ9000 culture, we suggest lactate 
and the ROS/RNS generated by 5-FU activity in the mucosa might be acting synergically to provide fitness for 
Enterobacteriaceae72. In our previous work, we show that L. lactis NZ9000 producing PAP was able to preserve 
villous architecture of mice and increase Paneth cells activity in response to 5-FU inflammation24. Interestingly, 
in the present study our results show PAP delivery drastically inhibited the growth of the Enterobacteriaceae both 
in healthy and inflamed mice, suggesting a crucial protective role in the intestinal mucosa against the coloniza-
tion of potential opportunistic Enterobacteria. Moreover, our study reinforces that PAP antimicrobial activity 
is not exclusively against Gram-positive bacteria. In an attempt to aggregate biological meaning to OTUs in 
which their role in the gut is not well established, we tried correlating the relative abundance with the metadata 
regarding inflammation markers that were assessed in our late work24. However, no significant correlation was 
obtained (data not shown).

Conclusions
This study was the first step in characterizing the effects of the L. lactis NZ9000 and PAP-secreting strain in the 
prevention of 5-FU-induced dysbiosis. We demonstrate that both Lactococci strains were able to prevent specific 
niches being occupied by microorganisms with potential implications in the prognostic of mucositis. We believe 
the data generated in the study will be of extreme importance for improving therapeutic strategies for treating 
the disease.

Methods
Bacterial strains and growth conditions. Lactococcus lactis NZ9000 strain harboring pSEC:PAP vector 
(LL-PAP) and L. lactis NZ9000 strain carrying pSEC vector without the open reading frame of PAP (LL), were 
grown in M17 medium (Difco) supplemented with 0.5% glucose (GM17) at 30 °C without shaking. The strains 
were selected by the addition of chloramphenicol (Cm, 10 μg/mL). For nisin-induced PAP expression, LL-PAP 
was cultivated until the optical density at 600 nm reached 0.6. Afterward, 10 ng/mL of nisin (Sigma) were added 
to the medium and cultures were maintained at 30 °C for 2 h. Immediately after incubation, bacterial cells were 
washed with saline solution by centrifugation at 12000 rpm for 10 minutes to eliminate residual antibiotic com-
pounds. L. lactis NZ9000 or LL-PAP cells were then dissolved in M17 without the addition of antibiotics and 
transferred to feeding bottles before experimentation.

Animals and experimental treatment of the groups. Conventional female BALB/c mice between 6 
and 8 weeks of age were obtained at Federal University of Minas Gerais (UFMG–Belo Horizonte, Brazil) and 
the Brazilian Ethics Committee on Animal Use (CEUA) approved the study. All mice were housed in cages in a 
controlled environment (23 °C, 12-/12-light/dark cycle with lighting), fed with standard chow diet, and provided 
with filtered water ad libitum before the experiment.

The animals were divided into six experimental groups (n = 4 in each group/cage), fed with standard chow 
diet and were administrated with 5 mL of filtered water or M17 medium containing 2.5 × 109 CFU/mL of the 
following of bacterial strains: L. lactis NZ9000 or L. lactis expressing PAP by continuous feeding for 13 days73. For 
the induction of mucositis, 300 mg/Kg of 5-Fluorouracil (Flaudfluor) was administered intraperitoneally to mice 
on day 10. All mice were euthanized on day 14, and stools samples were collected and kept at −80°C.

The first three groups consisted of noninflamed mice: (i) Control, injected with 0.9% saline on day 10 and 
daily administered with water; (ii) LL, fed with L. lactis NZ9000; and (iii) LL-PAP, fed with L. lactis expressing 
PAP. The following groups were composed by those mice with mucositis: (iv) 5-FU, receiving filtered water; (v) 
LL-5FU, fed with L. lactis NZ9000, and (vi) LL-PAP, fed with L. lactis expressing PAP. All experiments were done 
in three replicates, totalizing 12 animals per group.

16S rRNA gene sequencing. Total DNA was extracted from 100 mg stool samples following QIAamp DNA 
Stool Mini Kit protocol (Cat No./ID: 51504, Qiagen) and quantified with Qubit®2.0 Fluorometer and Qubit® dsDNA 
BR Assay Kit (Life Technologies). The hypervariable V4 region from 16 S rRNA gene was amplified using fusion 
primers F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-GGACTACHVGGGTWTCTAAT-3′)74,75.  
Sample emulsion PCR, emulsion breaking, and enrichment were performed using the Ion PGM™ Hi-Q™ View 
OT2 Kit (#A29900) according to the manufacturer’s instructions (Supplementary Document 1).

To determine the quality of metataxonomic method, two synthetic 16 S rRNA gene microbial communities 
(Mock Communities) of species with known genomes were used (Supplementary Document 1).

Bioinformatics analyses for taxonomic assignment. Fastq file with raw data of all barcodes (expects 
two barcodes with mock communities) were used in OTU classification pipeline derived from 16 S rRNA gene 
profiling data analysis of Brazilian Microbiome Project76. Briefly, the raw fastq file was processed to strip barcodes 
using Usearch package77. Then, quality filtering was performed including removal of truncated and low-quality 
sequences (Phred score smaller than 20). Next, sequences were submitted to dereplication, abundance sorting, 
singleton removal, OTU clustering (97% similarity), and chimera filtering using Vsearch78. Finally, pre-processed 
sequences were assigned taxonomically using QIIME requiring 97% of sequence similarity threshold against the 
Greengenes 13.8 database79. The two barcodes with mock communities were processed using the same steps.

Ecological analysis. The alpha diversity was estimated by richness, Shannon diversity and evenness index. 
The diversity was estimated using Shannon (H′) index (H′ = −Σni/n ln (ni/n), where ni is the number of indi-
viduals in the taxon i and n is the total number of individuals), which is a heterogeneity index, influenced by 
both species richness and evenness. The evenness of species diversity was calculated using the Pielou formula: 
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H′/H′max, where H′ = Shannon index and H′max = the possible maximum diversity of the number of species (S) 
present in the community, defined by the formula H′max = ln S. Rarefaction curves was performed to indicate if 
the sequencing depth was sufficient to wholly capture the diversity present using iNEXT package80,81.

Two different non-parametric analyses were used to determine the significance of differences among the 
groups: analysis of similarity (ANOSIM) and multiresponse permutation procedure (MRPP)82 using Jaccard dis-
tance. A Bonferroni correction was applied to a p-value of 0.05 resulting in a significance level set at P = 0.0033.

Ethics approval. The Protocol no. 366/2012, related to the present project is in agreement with the Ethical 
Principles in Animal Experimentation, adopted by the Ethics Committee in Animal Experimentation (CEUA/
UFMG), and was approved on 11/04/2013.

Availability of Data and Material
The datasets generated and/or analyzed during the current study are available in the Figshare repository, https://
figshare.com/s/057a1c06772fbf6de6a9. Metadata, the OTU table, pipelines and scripts have all been included as 
supplementary materials.
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