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Highlight 

Water deficit primarily impacts grain set through interaction between reproductive organs 

and hydraulics, before the carbon status of reproductive organs is affected  
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Abstract 

Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is 

also a trait selected for by evolutionary processes. Youngest reproductive organs must be 

prone to abortion so older organs can finish their development in case of limited resources. 

Water deficit increases natural abortion via two developmentally-driven processes, namely a 

signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of 

all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically 

encountered in dryland agriculture, these developmental mechanisms account for 90 % of 

drought-associated abortion and are irreversible three days after silk emergence. 

Consistently, transcripts and enzyme activities suggest that the molecular events associated 

with abortion affect expansive growth in silks whereas ovaries keep a favourable carbon 

status. Abortion due to carbon starvation is only observed for severe drought scenarios 

occurring after silking. Both kinetic and genetic evidence indicate that vegetative and 

reproductive structures share a partly common hydraulic control of expansive growth. 

Hence, the control of expansive growth of reproductive structures probably has a prominent 

effect on abortion for mild water deficits occurring at flowering time, while carbon 

starvation dominates in severe post-flowering drought scenarios. 

 

 

 

 

Key-words: carbon status, expansive growth, grain abortion, grain set, hydraulics, maize, 

ovary abortion, water deficit   

Downloaded from https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/ery078/4931671
by INRA (Institut National de la Recherche Agronomique) user
on 14 March 2018



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Turc, O., Tardieu, F. (2018). Drought affects abortion of reproductive organs by exacerbating

developmentally-driven processes, via expansive growth and hydraulics. Journal of Experimental
Botany, 69 (13), 3245–3254. , DOI : 10.1093/jxb/ery078

Acc
ep

te
d 

M
an

us
cr

ipt

 

4 

 

Introduction 

The development of reproductive organs (fruits, seeds and their precursors, ovaries and 

ovules) plays a dominant role in global crop production (Liu et al., 2013). Among the top 

fifteen major crops worldwide, ten are consumed as fruit or grain (Ross-Ibarra et al., 2007) 

and 75% of the total worldwide crop yield comes from fruit and grain crops (Ruan et al., 

2010). Fruit and grain abortion under water deficit is a major limiting factor for achieving 

crop yield potential (Boyer and McLaughlin, 2007; Patrick and Stoddard, 2010; Ruan et al., 

2010). Indeed, abiotic stresses during early reproductive stages often result in failure of 

fertilization or abortion of fruits and seeds (Thakur et al., 2010), thereby dramatically 

decreasing crop yield (Setter et al., 2011; Kakumanu et al., 2012). For example, drought at 

the flowering stage causes severe grain abortion in maize (Zea mays) (McLaughlin and Boyer, 

2004) and heat stress can cause up to 80% flower abortion in tomato (Solanum 

lycopersicum) (Ruan et al., 2010). Hence, reducing the sensitivity of fruit and seed set to 

abiotic stresses is a viable option for sustaining crop yield in the face of climate change. 

In the plant life cycle, the early stages of fruit and grain development are the most sensitive 

to abiotic stresses such as heat, drought or cold (Barnabas et al., 2008; Hedhly et al., 2009; 

Thakur et al., 2010). The period with maximum risk of abortion extends, in most species, 

from the beginning of flowering time to the end of cell division in the embryo or endosperm 

(Hedley and Ambrose, 1980; Ney et al., 1993; Patrick and Stoddard, 2010). No abortion 

occurs any more after the latter stage so the risk of abortion occurs during a very limited 

period of time in a wide range of species including crops and non-cultivated trees or herbs 

(Stephenson, 1981). The failure of reproductive organs during this period can occur before 

and after fertilization, and is termed ‘abortion’ here for simplicity. Recent reviews on this 

topic have focused on the importance of hormones (Sotelo-Silveira et al., 2014) or of carbon 

metabolism (Ruan et al., 2010; Liu et al., 2013) during this short period of time. The present 

paper examines the role of developmental processes, in particular the interaction between 

reproductive organs of different ages in the same plant and the role of the superposition of 

controls at organ and at plant level. This involves mechanisms such as expansive growth, 

hydraulics and carbon metabolism at the reproductive organ and whole-plant levels.  
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From an evolutionary point of view, youngest reproductive organs should be the most prone 

to abortion to ensure that older reproductive organs that are already developing have access 

to sufficient resources and can result in viable seeds. Indeed, reproductive organs of 

different ages usually coexist in a plant or an inflorescence (Stephenson, 1981), suggesting 

that interactions between them may act as feedbacks that result in a developmental control 

of abortion. Even in crop plants, grain abortion can be favorable in very dry climates by 

securing full development of a limited number of grains. In wheat (Triticum aestivum), an 

allele causing reduction in grain number has a highly positive effect on yield under severe 

water deficit but not in milder scenarios in which yield is associated with high grain number 

(Parent et al., 2017). The hypothesis proposed in this paper is that, whereas the evolutionary 

trend to favour abortion in dry conditions is observed in most species, carbon availability to 

developing ovaries is not always the triggering mechanism of abortion. We present evidence 

from previously published studies for a role of developmental processes, which can avoid 

carbon shortage in reproductive organs by ‘mimicking’ carbon-starvation-driven abortion 

before any carbon stress occurs at the plant or ovary level. 

Developmental control of abortion 

Abortion occurs at preferential locations within or among inflorescences.  

In pea (Pisum sativum), a steep gradient of development exists within a single plant: oldest 

basal pods begin seed filling whereas apical reproductive organs are still at early stages in 

the shoot apex, with all intermediate stages between them (Fig. 1A; Ney and Turc, 1993). 

The same occurs in the maize ear, in which basal ovaries are older than apical ovaries 

(Kiesselbach, 1949), and in the sunflower (Helianthus annuus) capitulum in which central 

akenes are the youngest because of centripetal initiation of floret primordia (Palmer and 

Steer, 1985; Dosio et al., 2006). In these three cases, a clear localization of aborted ovaries is 

observed in regions carrying the youngest ovaries, i.e. at the shoot apex in pea (Fig. 1A), at 

the ear apex in maize (Fig. 2A) and at the capitulum centre in sunflower (Connor and Sadras, 

1992; Sinsawat and Steer, 1993; Alkio et al., 2003). Water deficit does not change this 

pattern, but essentially extends the region of shoot/inflorescence in which ovaries abort (Fig. 

1; Fig. 2). This suggests that a link may exist between position, age, water deficit and 

abortion frequency. This link is also observed in other species in which the spatial gradients 
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of abortion frequency coincide with an opposite gradient of pollination or fertilization (see 

review by Stephenson (1981)), for ovaries located within a fruit (Rocha and Stephenson, 

1991; Susko, 2006), in different fruits of an inflorescence (Cawoy et al., 2007) or in different 

inflorescences of a plant (Ney et al., 1994; Egli and Bruening, 2006).  

Spatial gradients of ovary abortion as a result of developmental sequences in maize and pea 

The maize ear is a coalesced inflorescence composed of spikelet pairs arranged in rings 

sequentially initiated at the ear apex (Bonnett, 1940; Kiesselbach, 1949). These rings are 

therefore cohorts of ovaries that are initiated simultaneously. Styles and stigma of female 

flowers, called silks, must rapidly elongate at flowering time to emerge from bracts and 

collect pollen originating from the apical male inflorescences (or tassels) (Weatherwax, 

1916; Kiesselbach, 1949). The first silks to emerge originate from basal spikelets, and the last 

ones from apical spikelets. Two mechanisms account for early ovary abortion and result in 

the typical distribution of aborted ovaries at the ear tip (Fig. 2A), which contrast with the 

random distribution observed with later carbon-starvation-based grain abortion under 

severe drought (Fig. 2B).  

- The fertilization of basal, oldest, ovaries is sufficient to stop the development of younger, 

apical, ovaries and cause their abortion. This happens, for example, when fertilization occurs 

at two different dates, either naturally or via an artificial a-synchronous pollination (Freier et 

al., 1984; Cárcova and Otegui, 2001). In this case, young ovaries located at the tip of the ear 

abort, even in the absence of carbon deficiency or water deficit (Fig. 2A, “GP”). This suggests 

that ovaries progressively loose competence to develop into grains after the fertilization of 

the first older ovaries, probably because of a signalling process. This explains why aborting 

ovaries are located at the ear tip, where youngest ovaries are located, but probably not the 

increased abortion in case of water deficit. The nature of the signal remains unknown but 

may involve cytokinins synthetized during the early development of grains needed for the 

development of starchy endosperm (Brugiere et al., 2003). Other hormones have been 

hypothesized to contribute to this systemic signal, such as ABA (Wang et al., 2002; Setter 

and Parra, 2010; Setter et al., 2011) or ethylene (Cheng and Lur, 1996; Habben et al., 2014).  

- The temporal pattern of ear development can also cause abortion of ovaries located close 

to the ear tip. In our analysis, abortion rate is accounted for by the superposition of (a) the 
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sequential emergence of silks originating from ovaries of different cohorts along the ear with 

(b) one event occurring on a single day for the whole ear, namely the simultaneous arrest of 

the growth of silks originating from all ovary cohorts. Abortion occurs in all ovaries that are 

not pollinated two days before silk growth arrest (Fig. 2C). This superposition of events 

explains why aborting ovaries are located at the ear tip, which cannot be pollinated before 

silk growth arrest because they are younger than basal ovaries. In contrast with the 

signalling process presented above, this temporal process also explains why the aborted 

region of the ear increases in size when silk growth rate decreases with water deficit (Fig. 2A, 

“WD”). Indeed, the decreased silk growth rate due to water deficit delays silk emergence so 

the time from silk emergence to silk growth arrest is shorter in water deficit (typically 2-3 

days) than in well-watered plants (typically 7-8d, Oury et al., 2016b). A greater number of 

ovary cohorts therefore cannot be pollinated before silk growth arrest, and eventually abort. 

The link between silk growth arrest and abortion may be due to the ability of pollen tubes to 

grow into the silks. Indeed, during the normal pollination process, tissue stiffening occurs 

along the silk after the passage of the first pollen tube, thereby blocking the progression of 

additional pollen tubes (Kapu and Cosgrove, 2010). If tissue stiffening accompanies the early 

arrest of silk growth in water deficit, as it does in growing leaves (Chazen and Neumann, 

1994; Vincent et al., 2005) or roots (Zhu et al., 2007), it may block the progression of the first 

pollen tube therefore impeding fertilization. The limit of 2 days before silk growth arrest 

might be linked to the necessary time for a pollen tube to reach the ovule through the silk 

(Miller, 1919). Alternatively, it could correspond to the end of the period of sensitivity of 

ovaries to plant water status which occurs when ovary tissues become hydraulically isolated 

from the mother tissues a few days after fertilization (Westgate and Thomson Grant, 1989; 

Bradford, 1994). Overall, 90 % of drought-associated abortion was already irreversible three 

days after the emergence of the first silk, when silk emergence stopped in plants subjected 

to water deficit (Fig. 3; Oury et al., 2016b).  

Pea is a species with indeterminate flowering in which each phytomere, from the first 

reproductive phytomere and above, carries an inflorescence originating from an axillary bud 

(Fig. 1A). The stage “open flower”, synchronous with pollination, occurs first at the most 

basal reproductive phytomere and then progresses sequentially towards apical positions. 

The duration of flowering, and therefore the developmental lag time between the 
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fertilization of basal and apical organs, is typically 12-20 days in well-watered plants (Ney 

and Turc, 1993; Ney et al., 1994; Guilioni et al., 2003), i.e. much longer compared with 

maize. As in the case of maize, abortion occurs in youngest organs: abortion frequency is 

100% in the most apical reproductive organ regardless of watering treatments (Fig. 1B). 

When plants are subjected to soil water deficit during flowering, abortion occurs at more 

basal positions than in well-watered plants (Ney et al., 1994; Guilioni et al., 2003; Fig. 1). The 

final number of reproductive phytomeres that emerge from the apical bud is also reduced by 

water deficit due to an early arrest of phytomere initiation (Ney et al., 1994; Guilioni et al., 

2003). This event is synchronous with a simultaneous cessation of growth and development 

of all the phytomeres located in the apical bud (Kelly and Davies, 1988; Roche et al., 1998). 

Leaf emergence and flowering therefore stop simultaneously, 4-10 days (2-5 phyllochrones) 

earlier in plants subjected to soil water deficit compared to well-watered plants (Ney et al., 

1994; Guilioni et al., 2003). As in the case of maize, the abortion frequency of the 

reproductive organs is explained by the organ age (days from pollination) at this critical 

stage (Fig. 1C). Abortion occurs in all reproductive organs that are pollinated less than 1d 

before apex growth arrest, whereas all reproductive organs that have been pollinated since 

more than 7 days at that date complete their development (Fig. 1C). A common relationship 

between organ age and abortion rate was observed for various levels of soil water deficit 

and different genotypes (Fig. 1C, data from Ney et al. (1994) and Guilioni et al. (2003)). 

Abortion occurring in pea and maize therefore present striking similarities, shared with other 

species (i) The presence of fertilized reproductive organs affects the development of young, 

non-fertilized ovaries in maize, pea (Guilioni et al., 1997) and other species (Stephenson, 

1981), even in the absence of any carbon limitation or abiotic stress. (ii) The distribution of 

abortion frequency in the youngest ovaries under water deficit is associated with an early 

arrest of growth that occurs simultaneously for all the silks of the maize ear or for all the 

phytomeres in the pea apical bud. A similar situation is observed in sunflower, in which one 

observes a synchronous cessation of the development of all youngest organs located in the 

centre of the capitulum, due to the arrest of capitulum meristem growth (Dosio et al., 2006). 

In these three species, a gradient of reproductive organ age in the shoot or inflorescence 

results in abortion for organs younger than a threshold at a given date, associated with 
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cessation of growth. The effect of water deficit is mainly to amplify these effects, in relation 

with the expansive growth of silks, capitulum or shoot apex.  

Is ovary/grain abortion in water deficit caused by carbon starvation or by developmental 

processes? 

The mechanisms presented above are at first sight contradictory with the well-accepted 

theory that abortion in maize is linked to carbon starvation in young ovaries, based on a 

series of experiments showing that sucrose feeding can partly reverse the effect of water 

deficit on abortion (Boyle et al., 1991; Zinselmeier et al., 1995a; Zinselmeier et al., 1999; 

McLaughlin and Boyer, 2004). In these experiments, the sucrose flux to ovaries decreases to 

near-zero but is partly restored upon sucrose feeding (Makela et al., 2005). Enzyme activities 

and gene expressions of cell wall invertases increase 5-8 days after silking in ovaries of well-

watered plants, whereas they remain low under water deficit (Zinselmeier et al., 1995b; 

Zinselmeier et al., 1999; McLaughlin and Boyer, 2004). This has led several authors to 

consider cell wall invertases, in particular INCW2, as a causal link between water deficit, 

sugar availability to ovaries and ovary abortion (Boyer and McLaughlin, 2007; Ruan et al., 

2010). It was recently demonstrated that the targeted overexpression in developing maize 

ovaries of a gene involved in sugar signalling improves maize yield under water deficit by 

reducing grain abortion (Nuccio et al., 2015). This was interpreted as an evidence for the 

central role of sucrose sensing and carbon metabolism in grain set and abortion (Smeekens, 

2015; Griffiths and Paul, 2017). 

Several arguments lead us to consider that “developmental” and “carbon-starvation-based” 

abortion might correspond to events occurring at two separate phenological stages during 

maize reproductive development. First, it is important to note that all experiments with 

sucrose perfusion reported in the former paragraph follow a common protocol, in which a 

water deficit is imposed for six days following silk emergence (Zinselmeier et al., 1999). As a 

consequence, mechanisms occurring earlier, such as silk growth arrest, cannot be observed 

in the protocol followed by Boyle et al. (1991) and in further studies. Secondly, this protocol 

causes a drastic reduction in photosynthesis, which is not the case in natural drought 

scenarios in which photosynthesis is in most cases at least partially maintained. Finally, this 

protocol involves artificial synchronous pollination 5-7 days after silk emergence, so the 
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consequences of asynchronous pollination cannot be observed. The protocol of Boyle et al. 

(1991) and further studies is, therefore, appropriate to characterize carbon-starvation-

associated processes leading to abortion but, by its characteristics, cannot account for other 

causes. It is noteworthy that this protocol results in a random abortion on the ear (Fig. 2B), 

whereas water deficits in natural conditions result in abortion at the ear tip, in both field and 

controlled conditions (Fig. 2A). This reinforces the possibility that carbon-starvation-based 

and development-based abortion may coexist. 

In the experiments reported in Fig. 4, where plants were subjected to a moderate water 

deficit (soil water potential between -0.25 and 0.30 MPa), the analysis of transcript 

abundance suggests no carbon deficiency in either ovaries or silks (Fig. 4). The amount of 

sugars and starch in ovaries even tended to be higher in water deficit than in well-watered 

plants (Oury et al., 2016a), as it did in other experiments including soil water shortage 

(Andersen et al., 2002; Nuccio et al., 2015) or osmotic stress due to salt (Henry et al., 2015). 

The most striking changes in gene expression were observed in silks rather than ovaries, and 

were related to genes involved in cell wall mechanical properties, such as expansins, 

pectinases, pectinesterases, cellulases or wall-associated kinases. A counter example could 

be the higher vacuolar acid invertase activity in well-watered than in droughted plants. 

However, the latter was probably associated with high tissue expansion rate, as it does in 

several studies involving pea epicotyl, maize roots and silks, Arabidopsis (Arabidopsis 

thaliana) roots and cotton (Gossypium hirsutum) fibers (Morris and Arthur, 1984; Sturm and 

Tang, 1999; Tang et al., 1999; Kohorn et al., 2006; Wang et al., 2010). A favourable carbon 

status of ovaries and silks in droughted plants is also suggested by the level of trehalose-6-

phosphate (T6P), which acts as a signalling intermediate for reporting the cellular sucrose 

status (Lunn et al., 2006; Yadav et al., 2014). T6P content is increased in maize ovaries during 

salt stress (Henry et al., 2015) and water deficit (Nuccio et al., 2015). The reduction of 

transcript abundance of trehalose-6-phosphate phosphatase (TPP), the enzyme converting 

T6P to trehalose, observed in silks of plants subjected to a moderate water deficit (Oury et 

al., 2016a) suggests an increased level of T6P in silks. 

In ovaries, the main changes in carbon-related transcript amounts and enzyme activities 

occur only 5-8 days after silk emergence (e.g. Andersen et al., 2002; Oury et al., 2016a), i.e. 
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when ovaries had already engaged in the abortion process for several days (Fig. 3). The same 

conclusion applies to changes in concentrations and amounts of sugars in ovaries. Hence, it 

has been proposed that these late changes in carbon metabolism of ovaries are a 

consequence rather than a cause of the beginning of ovary abortion (Oury et al., 2016a). The 

absence of appreciable effect of moderate water deficit on carbon status is consistent with 

studies indicating that moderate water deficits induce a carbon satiation because expansive 

growth of sink organs, including peach (Prunus persica) and tomato fruit, sunflower 

capitulum, arabidopsis expanding leaves, is more affected than photosynthesis (Hummel et 

al., 2010; Dosio et al., 2011; Muller et al., 2011; Pantin et al., 2013). Hence, plants subjected 

to moderate water deficit show ovary abortion that is probably not linked to carbon 

deprivation, in opposition to the later and intense water deficit imposed in the protocol of 

Boyle et al. (1991) and further studies of the Boyer’s group.  

The above paragraphs suggest that two successive periods of sensitivity of reproductive 

organs coexist in maize. The first period is associated to developmental processes (arrest of 

silk growth and first fertilization), characterized by abortion located near the ear tip (Fig. 2A). 

The second period, linked to carbon deprivation occurs after fertilization, is only observed 

under severe water deficit that drastically decreases photosynthesis and results in a random 

distribution of abortion on the ear (Fig. 2B).  

Vegetative and reproductive structures share a partly common hydraulic control of 

expansive growth  

The developmental controls presented above suggest a major role for expansive growth on 

grain abortion in maize, pea and sunflower. In maize, the control of silk elongation might be 

a key for grain abortion, consistent with the fact that the anthesis-silking interval (ASI) is 

closely correlated with yield in water deficit, both phenotypically and genotypically (Bolaños 

and Edmeades, 1996; Ribaut et al., 1997; Bruce et al., 2002). Drought-induced ASI is linked to 

silk growth because the rates of silk elongation and of cell division are both reduced by 

water deficit, resulting in a delayed silk emergence, whereas anthesis is essentially 

unaffected by water deficit (Fuad-Hassan et al., 2008). Expansive growth, defined as an 

increase in organ volume via water entry into growing cells, depends on the interplay of cell 

wall extensibility and of gradients of water potential and hydraulic conductance on the 

Downloaded from https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/ery078/4931671
by INRA (Institut National de la Recherche Agronomique) user
on 14 March 2018



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Turc, O., Tardieu, F. (2018). Drought affects abortion of reproductive organs by exacerbating

developmentally-driven processes, via expansive growth and hydraulics. Journal of Experimental
Botany, 69 (13), 3245–3254. , DOI : 10.1093/jxb/ery078

Acc
ep

te
d 

M
an

us
cr

ipt

 

12 

 

water pathway from the xylem to cells (Lockhart, 1965). It is loosely coordinated with carbon 

accumulation, in particular via the contribution of sugars to osmotic adjustment (Hummel et 

al., 2010). However, a limited contribution of carbon supply to expansive growth is usually 

observed under water deficit (Hummel et al., 2010; Muller et al., 2011; Tardieu et al., 2011; 

Fatichi et al., 2014). 

Diel kinetics of silk elongation rate strongly suggest a hydraulic control for silk elongation 

(Turc et al., 2016): (i) the half times of change in silk elongation rate is about 30 min upon 

changes in soil water potential (Fig. 5B) or evaporative demand (Fig. 5A), (ii) maximum silk 

elongation rate is observed during the dark period when photosynthesis is arrested but plant 

water status is most favourable because of a low evaporative demand (Fig 5A), (iii) silk 

elongation rate largely decreases with evaporative demand, even when ear and silk 

transpiration is impeded, so it is the whole-plant water status that affects silk growth (Turc 

et al., 2016). These characteristics are similar to those in leaves, in which the half times of 

changes in elongation rate are 20-30 min upon changes in soil water potential or evaporative 

demand, the elongation rate is maximum during nights and the day-time elongation rate is 

closely related to evaporative demand (Caldeira et al., 2014). Consistently, both leaves and 

silks are maternal tissues directly connected to the xylem (Heslop-Harrison et al., 1984; Tao 

et al., 2006), whereas the embryo is largely isolated hydraulically from maternal tissues 

(Felker and Shannon, 1980; Miller and Chourey, 1992). The genetic variability of the 

sensitivity of silk elongation rate to water deficit is related to that of leaves. It was estimated 

in 8 maize inbred lines carrying QTL alleles for contrasting sensitivity of leaf elongation rate 

to soil water potential (Fig 5C). This has allowed identification of the soil water potential that 

stops elongation of both silks and leaves of each line (Fig. 5C). Strikingly, the values 

corresponding to silks were closely related to those in leaves in this set of lines (Fig. 5D), 

thereby suggesting that alleles affecting leaf elongation also affect silk elongation. 

Consistently with Westgate and Boyer (1985), silks were more sensitive than leaves because 

the regression line was above the 1:1 line meaning that, for a given maize line, silks stopped 

elongation at soil water potentials higher than leaves (Fig. 5D). 

Taken together these elements suggest a commonality of mechanisms controlling the 

response of elongation in leaves and silks. This conclusion cannot be extended to the growth 
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of the endosperm and of the embryo that are weakly connected hydraulically to the stem, 

with a disruption of vascular elements in the ovary pedicel (Kiesselbach, 1949; Felker and 

Shannon, 1980; Miller and Chourey, 1992), resulting in lower symptoms of water deficit than 

in maternal tissues (Yu and Setter, 2003). 

 Recent studies propose that the diurnal time courses of leaf elongation rate closely follows 

that of xylem water potential over changes in evaporative demand (Caldeira et al., 2014; 

Tardieu et al., 2015). The response curve of leaves and silks elongation rates to soil water 

potential during the night can be interpreted as a response to xylem water potential because 

water potentials equilibrate in silks, leaves, in the xylem and in the soil during the night, in 

the absence of transpiration. The model of Tardieu et al. (2015) uses this relationship to 

simulate the time course of leaf elongation rate during the day, in such a way that diurnal 

variations in elongation rate reflect those of xylem water potential following changes in 

evaporative demand and soil water potential. This conclusion can probably be extended to 

silks that are also directly connected to the stem xylem. The similarity of time courses of silk 

and leaf elongation rates, but also the genetic correlation between them, lead us to propose 

that silk elongation rate also follows xylem water potential, in spite of the fact that these are 

two different organs carried by plants at different phenological stages. The expansive growth 

of leaves and silks may therefore be governed by common alleles that control cell wall 

mechanical properties (Cosgrove, 2005) or the water entry into growing cells via changes in 

hydraulic conductance as modelled in Tardieu et al. (2015). Expansins may be involved in the 

common control, via their effect on cell wall properties (Zhang et al., 2014). This is consistent 

with the fact that transcript amounts of genes involved in water movements (aquaporins) 

and in cell wall properties (expansins, XET) are more expressed in silks of well-watered than 

of droughted plants (Oury et al., 2016a).  

The link between the sensitivities of leaf elongation rate and silk elongation rate via 

hydraulic processes probably explains the common genetic control observed between leaf 

elongation and anthesis-silking interval (Welcker et al., 2007). Anthesis-silking interval has 

long been considered as a trait associated with maintenance of maize yield in water deficit, 

so hydraulic processes may eventually have a role on grain abortion via silk elongation. This 

may explain the unexpected result that the sensitivity of grain number to water deficit in the 
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field has a high genetic correlation with the sensitivity of leaf growth to water deficit in 

young plants assessed in a phenotyping platform (Chapuis et al., 2012). 

 

Concluding remarks 

Grain or ovary abortion is, from an evolutionary point of view, a feedback mechanism that 

allows plants to produce at least a few viable seeds, whereas there would be a risk that no 

seed is viable if all ovaries continued development after flowering time under unfavourable 

conditions. Plants carrying such alleles have therefore not been able to reproduce during 

very dry years. In agronomic conditions, a favourable effect of abortion on yield can be 

observed in extreme drought scenarios by ensuring adequate grain filling in spite of limited 

resources (Parent et al., 2017). However, a maximum grain number, involving minimum 

abortion rate, is a favourable trait in most drought scenarios (Millet et al., 2016; Parent et 

al., 2017), so breeding for limited abortion under water deficit is needed.  

In this context it would be tempting to consider that carbon availability to ovaries is the 

triggering mechanism causing abortion, whereas it is proposed here that developmental 

mechanisms “mimic” an effect of carbon supply before any carbon starvation is sensed in 

reproductive organs. These mechanisms involve the effect of fertilized reproductive organs 

on the development of younger organs, the superposition of a gradient of ovary 

development with a “stop” signal occurring on a given day and, in maize, hydraulic processes 

that affect silk elongation rate. However, carbon-starvation-based and water-fluxes-based 

abortion are not mutually exclusive, and probably correspond to different phenological 

stages in maize. Early developmental abortion is prominent when the water deficit is 

moderate during flowering time, as it is in more than 40% drought scenarios in Europe 

(Harrison et al., 2014). Carbon-starvation-based abortion occurs later, in particular when a 

severe water deficit at flowering time causes a drastic reduction in photosynthesis. This case 

is estimated as 18% of drought scenarios in Europe (Harrison et al., 2014). 
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The results reviewed here have large consequences for both modelling and breeding.  

- The timing and preferential location of abortion can be accounted for by models of 

reproductive organogenesis, which simulate the distribution and hierarchy of organs at any 

time of the reproductive period (e.g. Ney and Turc, 1993; Moreau et al., 2007; Chenu et al., 

2009). Coupled with rules of assimilate partitioning, these models allow one to account for 

spatial and temporal distribution of abortion in inflorescences (Mathieu et al., 2009; Egli, 

2010; Jullien et al., 2011). 

- Alleles related to the maintenance of processes of tissue expansion in both vegetative and 

reproductive organs may have a direct effect on yield maintainance under drought. Genetic 

variability exists in maize for this maintenance. Phenotyping silk elongation rate is a difficult 

task at a throughput compatible with genetic analyses, i.e. hundreds of genotypes, but is 

feasible in situ via a combination of robot-assisted image analysis and machine learning 

(Brichet et al., 2017). The commonality of mechanisms controlling the responses of 

expansive growth to environmental constraints in both vegetative and reproductive 

structures, centered on hydraulic processes, has therefore potentially large consequences in 

breeding for plants adapted to changing environments, but also in understanding plant 

adaptive traits and in modeling plant-water interactions from the cell to the global scale. 

This is consistent with recent studies addressing the modeling and prediction of terrestrial 

carbon and water dynamics, which suggest to revise the hierarchy of plant growth control in 

the vegetation models (Fatichi et al., 2014) by giving a pivotal role to plant hydraulics (Fatichi 

et al., 2015; Pappas et al., 2016). 
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Figure captions 

Fig. 1. Abortion occurs in youngest apical ovaries in pea (Pisum sativum L), and water deficits reduce 

the number of fertile phytomeres. A, Schematic representation of pea plants during seed filling. The 

stem (vertical green bar) is made of successive phytomeres with an internode, a leaf (green) and an 

inflorescence. Youngest phytomeres are located in the apical bud at the top of the plant. WW: well-

watered plant, WD: plant subjected to a moderate soil water deficit at flowering. Pods at later stages 

are represented in red. Black triangles: aborted reproductive organs. B, Abortion frequency is related 

to the spatial position of reproductive organs along the stem. It is calculated as (SNmax – 

SNi)/SNmax, where SNi and SNmax are the number of seeds counted, respectively, at the position i 

and at the oldest reproductive phytomere. WW, closed symbols; WD, open symbols. Two water 

deficits were applied during flowering (Data from Ney et al., 1994). C, Abortion frequency is related 

to the time elapsed between the growth arrest of the apical bud and the stage ‘open flower’ 

(pollination) of the considered organ. (Data from Ney et al. (1994): circles, and Guilioni et al. (2003): 

triangles). 

Fig. 2. A, Abortion is predominantly apical in maize (Zea mays L) ears, with an aborted region 

that increases in length in plants subjected to a moderate water deficit (WD) or to 

asynchronous pollination (GP). WW, well-watered plants. Adapted from Oury et al., 2016b. 

B, A severe water deficit after silking (SWP) induces a randomly distributed abortion which is 

partly reversed by sucrose (Suc) feeding (Mc Laughlin and Boyer, 2004). C, The abortion 

frequency of each ovary cohort is related to the time elapsed between silk growth arrest and 

silk emergence of the considered cohort. The relationship is common to 4 hybrids and 3 

levels of soil water deficit at flowering (Oury et al., 2016b). 

Fig. 3. More than 90% of drought-associated abortion is already irreversible at silk growth 

arrest, i.e. 2-3 days after the emergence of the first silk in water deficit. The relationship is 

common to 4 hybrids and 3 levels of soil water deficit at flowering (Oury et al., 2016b). 

Fig. 4. The first molecular events associated with water deficit in reproductive organs occur 

in silks rather than in ovaries, and involve genes affecting expansive growth rather than 

sugar metabolism. SE: first silk emergence. +5d: five days later. WW: well-watered plants. 

WD: moderate water deficit at flowering. Colours represent the ratio of expression between 

WW and WD plants. Adapted from Oury et al., 2016a. 
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Fig. 5. Hydraulic control of expansive growth in maize silks and leaves. A, Silk elongation rate 

is more rapid during nights than days, with a rapid transition (t1/2 : half time,). B, Recovery of 

silk elongation rate is also rapid upon soil rehydration. C, The relationship between 

elongation rate and soil water potential is linear in both leaves and silks in two maize lines 

introgressed with alleles conferring contrasting sensitivities. D, Leaf and silk sensitivities are 

closely correlated in a panel of 8 lines. They are estimated by the soil water potential (SWP) 

causing growth arrest (x-intercept of response curves in C). Adapted from Turc et al., 2016. 
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