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Abstract: 9 

Terrestrial LiDAR becomes more and more popular to estimate leaf and plant area density. 10 

Voxel-based approaches account for this vegetation heterogeneity and significant work has 11 

been done in this recent research field, but no general theoretical analysis is available. 12 

Although estimators have been proposed and several causes of biases have been identified, 13 

their consistency and efficiency have not been evaluated. Also, confidence intervals are 14 

almost never provided. 15 

In the present paper, we solve the transmittance equation and use the Maximum Likelihood 16 

Estimation (MLE), to derive unbiased estimators and confidence intervals for the attenuation 17 

coefficient, which is proportional to leaf area density. The new estimators and confidence 18 

intervals are defined at voxel scale, and account for the number of beams crossing the voxel, 19 

the inequality of path lengths in voxel, the size of vegetation elements, as well as for the 20 

variability of element positions between vegetation samples. They are completed by 21 

numerous numerical simulations for the evaluation of estimator consistency and efficiency, as 22 

well as the assessment of the coverage probabilities of confidence intervals. 23 

• Although commonly used when the beam number is low, the usual estimators are strongly 24 

biased and the 95% confidence intervals can be ≈ ±100% of the estimate. 25 
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• Our unbiased estimators are consistent in a wider range of validity than the usual ones, 26 

especially for the unbiased MLE, which is consistent when the beam number is as low as 5. 27 

The unbiased MLE is efficient, meaning it reaches the lowest residual errors that can be 28 

expected (for an unbiased estimator). Also the unbiased MLE does not require any bias 29 

correction when path lengths are unequal. 30 

• When elements are small (or voxel is large), 103 beams entering the voxel leads to some 31 

confidence intervals ≈ ±10%, but when elements are larger (or voxel smaller), it can remain 32 

wider than ±50%, even for a large beam number. This is explained by the variability of 33 

element positions between vegetation samples. Such a result shows that a significant part of 34 

residual error can be explained by random effects. 35 

• Confidence intervals are much smaller (±5	  to	  10%) when LAD estimates are averaged over 36 

several small voxels, typically within a horizontal layer or in the crown of individual plants. 37 

In this context, our unbiased estimators show a reduction of 50% of the radius of confidence 38 

intervals, in comparison to usual estimators. 39 

Our study provides some new ready-to-use estimators and confidence intervals for attenuation 40 

coefficients, which are consistent and efficient within a fairly large range of parameter values. 41 

The consistency is achieved for a low beam number, which is promising for application to 42 

airborne LiDAR data. They entail to raise the level of understanding and confidence on LAD 43 

estimation. Among other applications, their usage should help determine the most suitable 44 

voxel size, for given vegetation types and scanning density, whereas existing guidelines are 45 

highly variable among studies, probably because of differences in vegetation, scanning design 46 

and estimators. 47 

 48 

 49 

Keyword: terrestrial LiDAR; TLS; LAI; LAD; element size; bias; consistency; efficiency 50 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024


 3 

 51 

Highlights: 52 

• Voxel-based estimations of LAD/PAD may lack of consistency and efficiency 53 

• We propose new estimators based on theoretical derivation and numerical simulations 54 

• Estimators for confidence intervals are also provided 55 

• New estimators should help determine the most appropriate voxel resolution 56 

 57 

1. Introduction 58 

The amount and spatial distribution of foliage in a tree canopy have a fundamental function in 59 

ecosystems by affecting energy and mass fluxes through photosynthesis and transpiration. 60 

Moreover, canopy structure may reveal plant adaptation strategies to their physical or biotic 61 

environment (Norman and Campbell, 1989). Canopy foliage has other important ecological 62 

functions since it constitutes the crown fuels involved in high intensity forest fires (Keane, 63 

1995) and its spatial structure may determine the habitat quality for animal species (Vierling 64 

et al., 2008). Terrestrial LiDAR (Light Detection And Ranging), referred to hereinafter as 65 

TLS (Terrestrial LiDAR System) recently emerged as a promising tool to estimate leaf/plant 66 

area density (LAD/PAD) distribution for individual plants and forest plots. Although similar 67 

traversal algorithms have recently been used with high resolution airborne data, acquisitions 68 

still suffer from substantial occlusion. This occlusion could be reduced with large flight strip 69 

overlaps (Kükenbrik et al., 2017), which would lead to a promising application of methods 70 

initially developed for TLS. Two classes of methods are commonly applied to derive LAD 71 

distributions with TLS. First, the leaf area density profile can be measured through a gap 72 

fraction approach (Jupp et al., 2009; Zhao et al., 2011). Rigorous statistical analysis using 73 

maximum likelihood estimator (MLE) has been applied to the gap fraction equation inversion, 74 

leading to robust estimates of LAD and leaf angulation profiles (Zhao et al., 2015). 75 
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Unfortunately, the gap fraction approach does not explicitly account for spatial correlation in 76 

vegetation distribution (Zhao et al., 2015), whereas spatial correlation in heterogeneous media 77 

are known to modify transmission laws and free path distribution (Davis and Marshak, 2004; 78 

Pimont et al., 2009; Larsen and Clark, 2014). A clumping factor is thus required (Chen and 79 

Cihlar, 1995; Zhao et al., 2011). Stochastic geometry entails to explicitly account for such 80 

clumping, but only to determine the leaf area index, LAI (Allard et al., 2013), which is the 81 

integral of the LAD over the vertical. The second class of methods is voxel-based and 82 

explicitly account for clumping at scales larger than voxel size. They entail to assess not only 83 

the vegetation vertical profile, but the full 3D distribution of area or mass density. Several 84 

approaches have been developed: the voxel-based profiling (Hosoi and Omasa, 2006 & 2007; 85 

Bailey and Mahafee, 2017a), the relative density index (Durrieu et al., 2008; Pimont et al., 86 

2015), the modified contact frequency (Béland et al., 2011) and the Beer-Lambert approach 87 

(Béland et al., 2014b; Grau et al., 2017; Bailey and Mahafee, 2017a). These theoretical 88 

indices can be readily applied or combined with field measurements through a calibration 89 

phase (e.g., in Pimont et al., 2015). 90 

The application of physical principles such as turbid media and contact frequency to 91 

voxelized-TLS data raises several problems that folds in two categories. The first one deals 92 

with departure from ideal measurements due to TLS “flaws”. An idealized TLS would send 93 

an infinite number of infinitely thin beams on any voxel. The actual diameter of the beam (on 94 

the order of a few mm) is responsible for partial hits (Hebert and Koktov, 1992; Béland et al., 95 

2011; Grau et al., 2017). There is also uncertainty regarding beam intensity, due to the noise 96 

instrument gain, that affects the detection (Grau et al., 2017). Béland et al., (2011) proposed 97 

an approach that accounts for partial hits and intensity through a calibration of intensity and 98 

view factors. Another aspect that has received little attention until now is the number of 99 

beams entering the voxel (sampling size). The beam number depends on the distance to 100 
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scanner, the direction and scanner resolution, as well as the interaction with vegetation which 101 

limits the number of beams reaching a given background voxel (occlusion). A basic rule of 102 

the thumb is to only consider measurements with beam number larger than 10 (Béland et al., 103 

2014a) or to compute indices in large voxels, which leads to a fairly large beam number in 104 

most cases (Bailey and Mahafee, 2017a). 105 

The second cause of departure from ideal measurement is vegetation “flaws”. An idealized 106 

vegetation would be made of leaf only, assumed to be infinitely small elements with random 107 

distribution of position and orientation. The actual orientation and size of elements alter 108 

transmission laws (Larsen and Clark, 2014) and can be accounted for as in Béland et al. 109 

(2011), where leaf orientation is separately measured and the interaction between a single leaf 110 

and a beam is modelled. Element and branch orientations have been reported to be of 111 

secondary importance in comparison to other sources of errors (Grau et al., 2017; Seielstadt et 112 

al., 2011; Pimont et al., 2015). However, the assumption of spherical leaf inclination is not 113 

valid in many cases (Pisek et al., 2013), which suggests that the assessment of the proper 114 

angle distribution is likely to reduce errors. A recent method based on triangulation entails to 115 

estimate the orientation factor with a TLS, provided that leaves are large enough to be 116 

individually sampled by several beams (Bailey and Mahafee, 2017b). Regarding element size, 117 

Grau et al. (2017) reports little effects when elements are much smaller than grid size. This 118 

effect has been demonstrated to vary with voxel size (Béland et al., 2014b). Finally, several 119 

methods based on return intensity have been proposed to separate leaf from wood returns and 120 

to account for it (Béland et al., 2011, 2014a), even though such a method can not be applied to 121 

all TLS (Pimont et al., 2015). Despite these known issues, a detailed analysis of the 122 

consistency is still missing. 123 

The determination of confidence intervals on LAD estimates has received little attention until 124 

now. If such estimators are known in the context of gap fraction approaches (Zhao et al., 125 
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2015), confidence interval for voxel-based approaches are seldom proposed (with the 126 

exception of Pimont et al., 2015). Most error evaluations are based on simple comparison to 127 

experimental data, in which various sources of bias and dispersion may interact. This might 128 

explain why there is no consensus about the selection of voxel size among studies (e.g., 129 

Béland et al., 2011, 2014a; Bailey and Mahafee, 2017a; Grau et al., 2017). More generally, a 130 

rigorous statistical analysis of estimators such as in Zhao et al. (2015) is still missing for 131 

voxel-based approaches. 132 

In the present study, we focus on some of the vegetation “flaws”. We set our approach in the 133 

framework of random set theory, stochastic geometry and stereology (Stoyan et al., 1987; 134 

Schneider and Weil, 2008). In stochastic geometry, random distributions of geometrical 135 

objects such as points, segments and disks are analyzed and analytical expressions are derived 136 

for geometrical characteristics such as mean volume and area, specific surface etc. Stereology 137 

is concerned with the estimation of those quantities with limited probing, in particular in 138 

lower dimensions, such as beams probing a canopy voxel. We develop generalized estimators 139 

towards two different approaches: i) the resolution of the transmittance equation (also called 140 

Beer-Lambert law), ii) the maximum likelihood. Our developments are theoretical and 141 

validated through numerical simulations. They include bias corrections for the beam number, 142 

the element size, as well as for the variability of element positions between vegetation 143 

samples. Estimators for variance are also provided and can be used to compute confidence 144 

intervals. In order to facilitate the reading of the manuscript, most of the mathematical 145 

development are detailed in supplementary materials for reference and only the main 146 

equations are presented in the manuscript. Numerical simulations are used to compare the 147 

new estimators to usual ones (Beer-Lambert, Modified Contact Frequency), through the 148 

analysis of their consistency (i.e. bias size) and of their efficiency at the scale of a single voxel 149 

or a group of voxels (i.e. 95% error). The application of the new estimators and their 150 
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confidence interval are then discussed, especially in the context of the determination of the 151 

most appropriate voxel size. 152 

 153 

2. Background regarding the estimation of PAD/LAD through the attenuation 154 

coefficient 155 

This section summarizes the existing knowledge regarding the estimation of attenuation 156 

coefficient in voxel-based approaches and defines a few notations. 157 

 158 

2.1. Beer-Lambert law formulation for TLS 159 

The transmittance T in small and randomly distributed vegetation elements with no scattering 160 

follows an exponential attenuation along a path of length δ, known as the Beer-Lambert law 161 

(Nilson, 1971; Ross, 1981): 162 

 T = e. / 0 102
3  (1) 

with λ the attenuation coefficient of the medium (m-1) 163 

The plant area density (PAD, m-1) is related to the attenuation coefficient (λ, m-1): 164 

 PAD = λ/G (2) 

where G is the plant projection function, which is frequently assumed to be equal to 0.5. 165 

        166 

The complementary to one of the transmittance is the absorbance, A. TLS can be used to 167 

estimate the absorbance of	  a vegetation sample with the relative density index I (also denoted 168 

RDI in text), defined for a volume of vegetation, further referred to as the voxel 𝑉 with 169 

volume denoted 𝑉 . The RDI is the ratio between the number of hits within the voxel (N?), to 170 

the number of beams that reaches the voxel (N): 171 

 1 − T λ = A λ ≈ 	  I =
N?
N

 (3) 
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When beams are aligned with one cell face for cubic voxels or when the geometry of voxels is 172 

spherical (Durrieu et al., 2008), the lengths of the different paths are equal. This is generally 173 

not true and a first order approximation of Eq. 1 can be obtained using (Béland et al., 2014b; 174 

Grau et al., 2017): 175 

 T ≈ e./B (4) 

where δ is the mean path length within the voxel. 176 

Taking the logarithm of the transmittance equation (Eq. 4) and combining with Eq. 3 leads to 177 

the usual estimator of the attenuation coefficient: 178 

 λ = −
log	  (1 − I)

δ
 (5) 

This estimator (later referred to as the usual Beer-Lambert estimator) assumes that the 179 

attenuation coefficient is constant in the voxel, that the vegetation elements are infinitely 180 

small and that path length variations are negligible. Unequal path lengths involve the variance 181 

of path length within voxels (Grau et al., 2017). An empirical correction that depends on 182 

voxel orientation is described in Béland et al. (2014b) for cubic voxels. Another approach is 183 

to use the secant method to solve the exponentially-weighted transmittance equation, since 184 

such an equation does not have an explicit solution (Bailey and Mahafee, 2017a). 185 

 λ is not defined when I = 1, i.e. when no beam travels beyond the voxel. This occurs with 186 

probability 1 − e./B F
 which is, for example, equal to 0.01 when 𝜆δ = 1 and N = 10. 187 

Although this probability is very low when N is high, such an event may happen quite often in 188 

any large voxelized scene, especially when the vegetation is dense. These cases can simply be 189 

ignored, as proposed in Béland et al. (2014a), considering these cases as “occluded”, but it 190 

will be shown later that it leads to biases and loss of efficiency. 191 

 192 

2.2. Modified Contact frequency formulation for TLS 193 
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The contact frequency of vegetation elements CF is the number of contacts per unit length of 194 

point quadrat (probe) (Warren Wilson, 1960): 195 

 
CF =

CJKF
JLM

Nδ
 (6) 

where CJK is the number of leaf contacts for the jth probing and δ the probe length, and 196 

assuming that the probing number N is large. It is related to plant area density in a similar 197 

manner as the attenuation coefficient: 198 

 PAD ≈ CF/G (7) 

With a TLS, the laser represents a virtual probe that is intercepted by vegetation. However, 199 

the contact number cannot exceed one and only a fraction of the volume is explored by the 200 

beam. A direct application of this method with TLS thus leads to an underestimation of the 201 

attenuation coefficient (Bailey and Mahafee, 2017a). This method is adapted in Béland et al., 202 

(2011) for TLS data, thank to the volume fraction concept and leads to: 203 

 
λ =

𝟏0OPQO
F
JLM

zJF
JLM

=
N?
Nz

=
I
z
 (8) 

where zJ is the length of the path actually explored (free path) by the jth beam and 𝟏S is the 204 

indicator function of event B (𝟏0OPQO = 1 if the jth beam hits vegetation inside the voxel and 0 205 

otherwise). 206 

This formulation assumes that the explored volume is statistically representative of the 207 

unexplored volumes. However, it does not assume the equality of path lengths (contrary to 208 

Beer-Lambert estimator). 209 

 210 

2.3. Accounting for the size of vegetation elements 211 

The finite size of elements (ie. the size of elements is larger than zero in the real world) 212 

induces a bias in the above estimators when the element size is not negligible when compared 213 

to voxel size (Béland et al., 2014a). Assuming that the beams are parallel, let SM and S be 214 
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respectively the cross sections of the element size and voxel volume, which will be assumed 215 

constant for simplicity. The probability that a given beam crosses the voxel containing p 216 

elements is 1 − UV
U

W
, as shown in Campbell and Norman (1998, chapter 15). 217 

The volume cross section is given by S = X
B

 , where δ is the path length. The contribution of 218 

a single leaf to the attenuation coefficient of the voxel V is:  219 

 λM =
SM
V
=
SM
S
1
𝛿

 (9) 

Since λ = pλM, the transmittance of the voxel is: 220 

 
T ≈ 1 −

SM
S

W
= 1 − λMδ

/
/V (10) 

When the element size is not neglected is, the Beer-Lambert estimator is modified as follow: 221 

 λ\ =
λMlog	   1 − I
log	   1 − λMδ

 (11) 

As show with slightly different notations in Béland et al. (2014a), λ\ =
/

. V
]V2

K^_	   M./VB
, which 222 

converges to λ when R = U
UV
= M

/VB
 is large, or equivalently, when λMδ tends to 0. 223 

 224 

In the discussion section of Béland et al. (2014a), the same correction factor is suggested to 225 

apply to the modified contact frequency, so that the modified contact frequency for finite size 226 

element would be: 227 

 
λ\ = −

λMδ
log	   1 − λMδ

I
z
 (12) 

 228 

Depending whether elements are small needles or broad leaves, λMδ typically range between 229 

2	  10.bδ.c and 5 10.dδ.c (See supplementary S1). This means that λMδ ranges between 230 

0.002 and 0.5 when the voxel size is about 10 cm, and between 0.0002 and 0.05 when the 231 

voxel size is 30 cm.  λMδ is smaller than 0.005 when the voxel size is on the order of 1 m. 232 
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 233 

3. Mathematical formulation 234 

 235 

In this section, we develop the mathematical framework leading to unbiased estimators for 236 

point, variance and confidence intervals of the attenuation coefficient. The proofs are given in 237 

Supplementaries S2 and S3. 238 

 239 

3.1. Set-up and notations 240 

We assume a finite number of elements and we rely on the notations defined in 2.3. For a 241 

given quantity A, such as an estimator, a variance or a confidence interval radius,  𝐴 denotes 242 

the quantity as derived from the Beer-Lambert law, whereas 𝐴 is derived from the Maximum 243 

Likelihood Estimator approach. As shown below, the MLE generalizes the Modified Contact 244 

Frequency introduced in Béland et al. (2011), so that these symbols are consistent with 245 

section 2 (Eq. 8).  Furthermore, the use of upper case letters, such as Λ, refers to our new 246 

estimators presented below, whereas lower case letters, such as λ, refers to the usual ones 247 

presented in the background section. 248 

 249 

We briefly present some stochastic geometry material and refer to the literature for a more 250 

detailed exposition (Stoyan et al., 1987; Schneider and Weil, 2008). p elementary objects 251 

identical in shape and size are located at random within the voxel V. If one representative of 252 

these objects is denoted B, the vegetation elements, denoted X, corresponds to the union of all 253 

objects: 254 

 
𝑋 = 𝐵 𝑥i

\

iLM

 (13) 

where 𝐵 𝑥i  denotes the element 𝐵 shifted to the random location 𝑥i ∈ 𝑉. 255 
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 256 

One special case of interest is the Boolean model, for which the number of objects p is 257 

distributed according to a Poisson distribution (Stoyan et al., 1987). A remarkable feature of 258 

Boolean models is that the intersection of a Boolean model by a random line is also a Boolean 259 

model with intensity λ = SM
W
X

, where SMis the cross-section of B perpendicular to the line. As 260 

a consequence, the lengths Y of segments with no intersection with X, called free paths in the 261 

present context, are distributed according to an exponential random variable with parameter λ: 262 

  P 𝑌 > 𝑦 = e.no, 𝑦 > 0 (14) 

When the object number is not assumed to be large, the distribution becomes: 263 

  P 𝑌 > y = 1 − 𝜆My n/nV (15) 

with λM =
UV
X

. 264 

Let M be the segment corresponding to the intersection between a beam and the voxel V. 265 

Depending on voxel shape and size, its length δ follows a distribution Δ. The distance actually 266 

traveled in voxel Z by a beam corresponds to: 267 

 Z = min 𝑌, Δ  (16) 

The probability distribution of Z is derived from Eq. 15: 268 

 
 fw(z; δ) =

λ 1 − λMz ///V.M	  when	  z < δ
1 − 𝜆Mδ n/nV	  when	  z = δ

 (17) 

In the Z distribution, the density of Y for Y>	  δ is cumulated at z =	  δ due to the “min” operator 269 

in Eq. 16. Note that there are two components of randomness in this set-up: a random 270 

realization of a Boolean model X, on the one hand (i.e. element positions for a vegetation 271 

sample) and a random beam M over the cross-section of the voxel S, on the other hand (i.e. 272 

instrument sampling).  273 

 274 
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Let us consider a given realization of the Boolean model X and N beams 𝑚} }~F
 distributed 275 

over the voxel. We can define the RDI (Eq. 3) as the fraction of beams hitting the canopy 276 

elements  as: 277 

 
I(𝑋, 𝑚} }~F

) =
N?(𝑋)
N

=
𝟏0O �,�� PQO ��

F
JLM

N
 (18) 

Let us now denote I�(𝑋) the asymptotic RDI, which is the expectation of I(𝑋) with respect to 278 

the instrument sampling (𝑖. 𝑒. N → ∞): 279 

 I�(X) = E� 𝟏� � P�  (19) 

 280 

3.2. Point, Variance and Confidence Interval of the relative density index (RDI) 281 

The RDI defined in Eq. (18) for N beams has the same expectation as the asymptotic RDI 282 

over all configurations X, since beams are drawn randomly across S.  283 

This expectation is, according to Eq. (15): 284 

 
𝐸� I�(X) = E�,� 𝟏� � P� =

1
S

P 𝑌 < 𝛿 𝑠 𝑑𝑠 =
�

1 −
1
S

1 − 𝜆Mδ(s) n/nV𝑑𝑠
�

 (20) 

As pointed out above, the variance of I has two components. The conditional variance 285 

formula provides: 286 

 Var I(X) = 𝐸� Var� I(X) + Var� 𝐸� I(X)

= 𝐸� Var� I(X)|I�(𝑋) + Var� I�(X)  
(21) 

Now, assuming that the N beams are independent and identically distributed, one gets  287 

Var� I (𝑋) = ��(�)(M.��(�))
F

, since I is simply a proportion estimated on a sample of size N.  288 

The variance Var� I�(𝑋)  is due to the variability of element positions in a vegetation sample. 289 

This variance becomes negligible when the vegetation sample is made of a large number of 290 

small area elements, but it cannot be evaluated in closed form for actual configurations of X. 291 

It is instead approximated by numerical simulations, as described in section 4 (for λMδ < 0.3):  292 
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  Var� I�(𝑋) ≈ 𝜎��
c I� 𝑋 = 0.230λMδI� 𝑋 M.��d.c.d�/VB 1 − I� 𝑋  (22) 

From now on, we drop the dependence to X and M for the ease of notations. Putting these 293 

results together leads to the following estimator for the variance of I:   294 

  𝜎�c =
� M.�
F

+ 𝜎��
c I, λMδ  (23) 

Hence to the following Wald confidence interval for the expectation of the asymptotic RDI, 295 

I�: 296 

 
 I ± 𝑧�/c

� M.�
F

+ 𝜎��
c (I, λMδ) (24) 

where 𝑧�/cis the usual 1 − �
c
 quantile of the standard Gaussian distribution. 297 

 298 

The Wald interval is known to have a lower-than-expected coverage probability when the 299 

empirical proportion (here, the RDI) is close to 0 or 1. It means that the actual value of λ is 300 

less frequently within the estimated interval than expected (Brown et al., 2001). As an 301 

example, it is obviously the case when I=0 (or 1), since the true value is supposed to be 0 (or 302 

1) at 100 %. This is problematic since both cases are quite frequent in TLS data. Among 303 

others, the Agresti-Coull interval is a simple alternative to the Wald interval recommended in 304 

Brown et al. (2001). Its formulation is similar to that of the Wald interval: 305 

  I� ± 𝑧�/c
�  M.� 
F 

+ 𝜎��
c (I�, λMδ) (25) 

with corrected values of “I” and “N” defined as follow: 306 

 

 
I� =

�¡
¢£/¤
¤

¤¥

M¡
¢£/¤
¤

¥

N� = N + 𝑧�/cc

 (26) 

This correction leads to confidence intervals that are not centered on I and wider than the 307 

Wald interval. Agresti and Coull interval is known to have a higher-than-expected coverage 308 
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probability when N is small, which is not fully satisfactory, but safer than the Wald interval 309 

(Brown et al., 2001). 310 

 311 

3.3. Point and Variance Estimation of the unbiased Beer-Lambert estimator 312 

The Beer-Lambert estimator derives from solving the transmittance of the voxel medium 313 

(section 2.1) and thus rely on the empirical relative density index. In supplementary S2, we 314 

extend this approach to define the unbiased Beer-Lambert estimator 𝛬, valid for close-to-315 

equal path lengths: 316 

 

𝛬 =
−
1
δ§

𝑙𝑜𝑔 1 − 𝐼 +
𝐼

2𝑁 1 − 𝐼
	  	  	  	  	  	  	  	  	  	  	  	  	  when	  𝐼 < 1

𝑙𝑜𝑔 2𝑁 + 2
δ§

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  when	  𝐼 = 1
 (27) 

with the mean “effective” path length: 317 

 
δ§ = 𝑚𝑒𝑎𝑛 −

log 1 − λMδJ
λM

 (28) 

When λM ≪
M
B
, it simplifies to δ§ ≈ δ (mean path length). 318 

 319 

The first term in Eq. (27) when I<1 accounts for the size of elements (Eq. (11)). The second 320 

term is a bias correction for the instrument sampling, that compensates a systematic bias 321 

caused by the convexity of the log function (See Supplementary S2 for details). Such a bias 322 

has never been reported before, to the best of our knowledge. 323 

When I=1, the above formulation is derived from the application of the Beer-Lambert law to 324 

the center of the Agresti-Coull interval, which is more robust than I. 325 

 326 

For unequal path lengths, the transmittance equation can be approximated as a second order 327 

polynomial in λ, which leads to the following unbiased estimator: 328 
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𝛬c =

1
𝑎§

1 − 1 − 2𝑎§𝛬  (29) 

with 𝛬 in Eq. (27) and 𝑎§ the ratio between empirical variance to mean of the effective path 329 

length: 330 

 
𝑎§ = 𝑣𝑎𝑟 −

log 1 − λMδJ
λM

𝑚𝑒𝑎𝑛 −
log 1 − λMδJ

λM
 (30) 

Notice that when λM ≪
M
B
, a§ ≈

²³
¤

B
, with 𝜎Qc the empirical variance of path lengths. 331 

 332 

The variances of both unbiased estimators Λ and Λc	  can be derived from the variance of the 333 

RDI (Eq. 23), as shown in Supplementary S2: 334 

 

𝜎µ
c =

1

δ§
c

𝐼
𝑁(1 − 𝐼)

+
𝜎��
c (I, λMδ)
(1 − 𝐼)c

1 −
1

2𝑁 1 − 𝐼

c
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  when	  𝐼 < 1

1

δ§
c 2 +

1
𝑁
+ 2𝑁 + 2 c𝜎��

c 2𝑁 + 1
2𝑁 + 2

, λMδ 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  when	  𝐼 = 1
 (31) 

and 335 

 𝜎µ¤
c = 𝜎µ

c 1 + 2a𝑒𝛬 + 4 a𝑒𝛬
2

 (32) 

These estimators account for the instrument sampling (with the 1/N term when I<1), the 336 

asymptotic variability of element positions between vegetation samples (terms with 𝜎��
c ) and 337 

the convexity of the log function (third factor when I<1). As above, the case corresponding to 338 

I=1 is based on the center of the Agresti-Coull interval. 339 

 340 

3.4. Point and Variance Estimation from Maximum Likelihood Estimation 341 

The following estimator is derived from Maximum Likelihood (Kay, 1993, Chapter 7), that 342 

uses the full information provided by the TLS, namely the actual distribution of free paths in 343 

the voxel z} }LM,F
 the N free paths. In supplementary S3, we compute the analytical MLE 344 

from the expected free path distribution (Eq. (17)). These derivations show that the modified 345 
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contact frequency proposed in Béland et al. (2011) is indeed the MLE, which demonstrates its 346 

asymptotic consistency when N is large. This formulation is extended to the case of elements 347 

of finite size, thanks to the “effective” mean free path: 348 

 
z§ = mean −

log 1 − 𝜆MzJ
𝜆M

 (33) 

The MLE is asymptotically-normal, meaning that its residuals become normal when N is 349 

large (Kai, 1993). However, the MLE is biased when the number of beams is finite. In 350 

Supplementary S3, we account for this bias, which leads to the following unbiased MLE:  351 

 
Λ =

I
z§
−
𝟏𝒛P𝜹𝑧§
N𝑧§c

 (34) 

with  352 

 
𝟏𝒛P𝜹𝑧§ = mean −

𝟏0OPQOlog 1 − 𝜆MzJ
𝜆M

 (35) 

Compared to the Beer-Lambert estimator, this approach does not require any correction for 353 

unequal path lengths.  354 

 355 

In supplementary S3, we rigorously compute the variance of Λ with bias correction for 356 

instrument sampling and the variability of element positions between vegetation samples: 357 

 
𝜎¹
c =

I
Nz§c

1 −
𝟏0PQ𝑧§
𝑁𝐼𝑧§

c

+
𝜎�∞
c Iº, λMδ
𝛿§c(1 − Iº)c

 (36) 

With 358 

 Iº = min I, 1 −
1

2𝑁 + 2
 (37) 

The factor involving 𝟏𝒛P𝜹𝑧§ expresses the bias correction for the instrument sampling and the 359 

term with 𝜎�∞
c  derives from the variability of vegetation samples, as for the variance of the 360 

unbiased Beer-Lambert estimator. 361 

 362 
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3.5. Cramer-Rao bound for variance 363 

The Cramer-Rao bound is the theoretical lower bound of the variance of unbiased estimators 364 

(Kay, 1993, Chapter 3), meaning that an unbiased estimator with variance as small as the 365 

Cramer-Rao bound is optimal. In Supplementary S3, we show that when the vegetation 366 

samples are not fixed (i.e. when TLS beams are shot on variable vegetation samples), the 367 

Cramer-Rao bound is: 368 

 
CRB/ =

λc

NI� λ
 (38) 

This analytical formulation is helpful, since the value of the Cramer-Rao bound can be 369 

analytically computed (integrating Eq. (20) to compute I� λ ), when both attenuation 370 

coefficient and voxel geometry are known. This is the case in the numerical simulations 371 

developed in sections 4 and 5, which thus provides a way to evaluate the efficiency of the 372 

unbiased estimators, that are expected to have empirical variances as close as possible to 373 

CRB/. A perfect match corresponds to the most efficient estimator. 374 

It is important to notice however, that this theoretical bound can never be achieved when the 375 

variability of vegetation samples has a significant contribution to the variance of the RDI, 376 

since this variability is not accounted for in this theoretical bound (see Supplementary S3 for 377 

more details). 378 

 379 

3.6. Estimating confidence intervals for a voxel or a group of voxel 380 

From unbiased estimators Λ and 𝜎¹
c, the confidence interval at a risk level 𝛼 can naturally be 381 

estimated as:  382 

  Λ ± 𝑧�/c 𝜎¹
c (39) 

However, such a formulation is expected to have the same limitations as the Wald interval for 383 

the RDI, when the probabilities of interception (RDI) are low or high. This interval is thus 384 
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expected to lead to lower-than-expected coverage probabilities in voxels with low and high 385 

density. As for the Agresti-Coull interval, an alternative is to replace I by Ic and N by Nc in 386 

estimation of Λ and 𝜎¹
c, leading to: 387 

  Λ� ± 𝑧�/c 𝜎¹
c
�
 (40) 

If estimations at voxel scale is a key outcome of TLS, the scale of interest is often larger, 388 

typically the individual plants, the horizontal slice of vegetation, or the forestry plot. In this 389 

case, the variable of interest is not the single voxel estimation, but the average attenuation 390 

coefficient in a group of voxels. For a group of 𝑛½ voxels and assuming independence between 391 

voxels, the confidence interval on the mean of attenuation coefficient estimators is: 392 

 1
𝑛½

Λ
¾¿

±
𝑧𝛼/2
𝑛½

𝜎Λ2
¾¿

 (41) 

The 95% errors, defined as the radius of the confidence interval at 95%, for a single voxel or a 393 

group of voxel are thus: 394 

 𝐸95¹ = 1.96𝜎¹ (42) 

And 395 

 
𝐸95¹

𝑛𝑣 =
1.96

𝑛𝑣
𝜎¹c

𝑛𝑣

 (43) 

Similar quantities can be defined for the unbiased Beer-Lambert estimators Λ and Λc, as well 396 

as the bound of the 95% error, based on the Cramer-Rao bound for variance, which is the 397 

lower bound of 95% error for an unbiased estimator (i.e. no unbiased estimator can lead to 398 

smaller errors). 399 

  400 
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4. Design of the numerical experiments 401 

 402 

4.1. Overview 403 

The aim of our numerical simulations is to compare the estimates of attenuation coefficients 404 

to their true values. Simple configurations are generated to simulate replicates of virtual TLS 405 

point clouds in voxels filled with idealized vegetation of known properties. The numerous 406 

replicates enable to compute various statistics through a MonteCarlo approach, to evaluate the 407 

consistency and efficiency of each estimator, as well as the consistency of variance and 408 

confidence interval estimators. For each estimator, we compute its expectation, variance and 409 

95 % errors. The 95 % errors are estimated as the 95th percentile of the absolute residuals and 410 

are evaluated for a single voxel and a group of voxels (here 𝑛½ = 100). We also compute the 411 

expectation of variance estimators, as well as the coverage probability of the estimated 412 

confident intervals, which is the empirical frequency at the true value of the attenuation 413 

coefficient belongs to the estimated confidence interval. 414 

These statistics are computed for various values of attenuation coefficients, element sizes, 415 

voxel sizes, and beam numbers. Simulations are run for two different configurations described 416 

below. The first configuration, described in details in subsection 4.2, assumes finite element 417 

size (meaning that λM > 0) and equal path lengths. Equal path lengths imply that the second 418 

order correction for the Beer-Lambert estimators (i.e. Λc) is not required. The computation of 419 

RDI and distance travelled is done over the actual distributions of vegetation elements 420 

(generated with random positions), each corresponding to a fixed vegetation sample X. 421 

Simulations are run for a large number of vegetation samples, which entails to compute the 422 

asymptotic variance of the RDI, 𝜎�∞
c , (when the beam number is infinite) for each value of 423 

attenuation coefficient and element size. The second set of simulations (subsection 4.3) is 424 

specifically designed to evaluate the correction for unequal path lengths involved in unbiased 425 
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Beer-Lambert estimator Λc. For simplicity, we assume that vegetation elements are infinitely 426 

small (λM = 0) and that the voxel is a sphere, so that the free-path distribution and the 427 

Cramer-Rao bound can be analytically solved (See Supplementary S4 for details). We 428 

separate both sets of simulations to facilitate the presentation of results. 429 

In order to simplify the numerical experiment design and the presentation of the results, we 430 

build dimensionless quantities, namely the beam depth (LJ = λδJ) and the voxel depth (L =431 

λδ). Likewise, yJ = λzJ is the free depth for beam j. We can notice that I can be computed 432 

from the distribution of depth yJ  since 𝟏 zJ < δJ = 𝟏 yJ < LJ . The element depth is LM =433 

λMδ. More generally, dimensionless quantities can be derived for all quantities of interest 434 

developed above, as shown in Supplementary S5. The practical interest of this substitution is 435 

that computations can be done for a series of voxel depth values, and easily extrapolated to λ 436 

by simply dividing results by δ, instead of running simulations for series of (λ, δ) values. 437 

 438 

4.2. Numerical simulations for finite-size elements and equal path lengths 439 

Simulated vegetation samples correspond to flat square elements that are randomly distributed 440 

in a voxel, parallel to one face of the voxel. The virtual beams are sent perpendicular to 441 

elements, so that the path lengths are equal to cube size (Figure 1). The voxel and element 442 

depths are L = λδ and LM = λMδ, respectively. 443 

 444 
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 445 

Fig. 1. Illustration of a numerical simulation of TLS beams over finite-size elements and equal path 446 

length δ. Each square element has a size equal to SM = λMδd = LMδ. 447 

 448 

For each value of L and LM tested (Table 1), we simulate 10000 vegetation samples on which 449 

we shoot M batches of N virtual beams, with N between 5 and 10000. Batches serve as 450 

replicates of TLS shooting, to compute the different statistics (estimator expectation, variance, 451 

95% error, variance and confidence interval estimator, confidence interval coverage 452 

probability). The batch numbers are selected so that the total number of beams MN is 453 

constant, equal to = 10Ä. This number is large enough for the convergence of the different 454 

statistics, despite the replicate number M decreases with N, since the variance of the estimates 455 

sharply decays with N. 456 

 457 

Table 1. Parameter values in numerical simulations 458 

Parameter Values 

Voxel depth (L) 0.05, 0.1, 0.5, 1,1.5, 2, 2.5, 3 

Beam number (N) 3,5,7,10,15,20,30,40,50,75,100,150,200,300,400, 500,750 1000,5000,10000 

Element depth (L1) 𝑆𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛	  4.2:	  0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5
𝑆𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛	  4.3: 0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   

Nb: in subsection 4.3, elements are assumed infinitely small so that L1=0. 459 

 460 
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We use simulations with the largest beam number (N = 10000 ≈ ∞) to estimate the 461 

asymptotic variance σ��
c , for various values of L1 and L. We remind that this variance is due 462 

to the variability of element position between vegetation samples X. When LM < 0.3, which is 463 

the case for most vegetation when voxels are greater than 10 cm (See Supplementary S1), 464 

σ��
c can be estimated from a simple empirical function of L1 and RDI (Fig. 2 and Eq. (22)). 465 

  466 

Fig. 2. Empirical model for the variance of the asymptotic relative density index I�. 𝜎��
c  is caused by 467 

the variability of element positions between vegetation samples. 468 

 469 

4.3. Numerical simulations for unequal path lengths 470 

In a sphere with radius R, the voxel depth is: 471 

 
L = λδ = λ

V
S
= λ

4
3 πR

d

πRc
=
4
3
λR (44) 

The distribution of dimensionless optical depth LJ is, with u between 0 and 1 (Supplementary 472 

S4): 473 

 PDF LJ =
3
2 L 1 − uc = 2u (45) 
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For each value of L (Table 1), we simulate a total of 108 virtual beams with lengths LJ  and 474 

the corresponding free path lengths yJ , that respectively follow Eq. (45) and the exponential 475 

law. As in subsection 4.2, virtual beams are grouped in batches of N beams to simulate M 476 

replicates of TLS shooting and to compute the same statistics as above. 477 

 478 

5. Numerical simulation results 479 

In this section, we show the statistics described in section 4. Subsection 5.1. corresponds to 480 

finite size element simulations (described in subsection 4.2), whereas subsection 5.2. 481 

corresponds to unequal path simulation (described in subsection 4.3). Expectation, variance 482 

and 95% error enable to compare the consistency and efficiency of the usual estimators (λ and 483 

λ) and the new ones (Λ, Λc and Λ). We also show the expectation of the variance estimators 484 

(𝜎¹
c, 𝜎¹¤

c and 𝜎¹
c), the confidence interval radiuses (𝐸95Λ, 𝐸95Λ2and 𝐸95¹), and the coverage 485 

probabilities of estimated confidence intervals. 486 

 487 

5.1. Estimator performance for finite size elements 488 

 489 

5.1.1 Estimator consistency 490 

Figure 3 shows the expectation of estimator derived from the MLE, as a function of the beam 491 

number. Blue dots corresponds to the modified contact frequency estimator λ (Eq. 8), which is 492 

the biased MLE for infinitely small elements. Green dots corresponds to the unbiased MLE Λ 493 

(Eq. 34), that accounts for element size and beam number. Since expectations are normalized 494 

by the true value of λ, estimators are consistent when expectations equal one, and deviations 495 

from 1 quantifies the bias. Subplots A, B and C correspond to small elements (L1=0.001) for 496 

three voxel depths L, whereas subplots D, E and F correspond to “larger” elements compared 497 

to voxel size (L1=0.1) for the same values of voxel depths. 498 
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Even when elements are small, the modified contact frequency is positively biased when N is 499 

small (subplots A, B, C). Vertical blue lines show the thresholds of N for which the bias of λ 500 

is larger than 1%. These thresholds range between N=30 and N=75, depending on L. When 501 

elements are larger (subplots D, E, F), the positive biases remain for large values of N, so that 502 

the 1% threshold is not reached. On the contrary, the unbiased MLE Λ (green dots) shows 503 

biases always lower than 1% (green lines) when elements are small, even when N is as small 504 

as 3 for L1=0.001 (subplots A, B, C) and 5 when L1=0.1 (subplots D, E, F). 505 

 506 
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Fig. 3. Expectations of the attenuation coefficient estimators derived from the MLE, as a function of 507 

the beam number. Blue dots corresponds to the modified contact frequency estimator λ (Eq. 8), which 508 

is the biased MLE for infinitely small elements. Green dots corresponds to the unbiased MLE Λ (Eq. 509 

34), that accounts for element size and beam number. Estimators are normalized by their true value λ, 510 

so that they are consistent when the expectation equals to one. The vertical lines correspond to the 511 

lowest values of N leading to a bias smaller than 1% in blue and green for respectively the biased and 512 

unbiased estimators. 513 

 514 

Figure 4 is similar to figure 3, but for the usual (λ) and unbiased (Λ) Beer-Lambert estimators. 515 

Trends are similar with two main differences. First, the biases are slightly larger with Beer-516 

Lambert estimators than with the MLE when the vegetation density is low to moderate (L<=1, 517 

subplot A, B, D and E), whether bias are corrected or not. Second, the bias of the usual Beer-518 

Lambert estimator decreases until becoming negative for small values of N when the 519 

vegetation density is high (subplots C and F). Such a decay is attributed to the occurrence of 520 

cases in which all beams are intercepted inside the voxel (I=1), referred to as “occluded” in 521 

Béland et al. (2014a). In this cases, the usual Beer-Lambert estimator is +	  ∞, but is ignored in 522 

expectation computation to avoid divergence. Attenuation coefficient estimates are thus 523 

bounded by K^_	  (F)
B

, leading to this negative bias of increasing magnitude when N is small. 524 

This trend is also visible for Λ, but it is far less pronounced and it occurs for lower values of 525 

N. This demonstrates the benefit of the definition of Λ, which is extended when I=1 with 526 

Agresti-Coull interval centers. The range of consistency of Λ, however, is clearly narrower 527 

than the one of the unbiased MLE Λ. 528 

 529 

 530 
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 531 

Fig. 4. Same as Figure 3 for the usual and unbiased Beer-Lambert estimators. 532 

Expectations of the Beer-Lambert-attenuation-coefficient estimators, as a function of the beam 533 

number. Blue dots corresponds the usual Beer-Lambert estimator (λ). Green dots corresponds to the 534 

unbiased  Beer-Lambert estimator (Λ), that accounts for element size and beam number and extended 535 

definition when I=1. Estimators are normalized by their true value λ, so that they are consistent when 536 

the expectation equals to one. The vertical lines correspond to the lowest values of N leading to a bias 537 

smaller than 1% in blue and green, for respectively the biased and unbiased estimators. 538 

 539 
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The computations of biases are done for all values of parameters in Table 1 and lead to the 540 

range of validity for three levels of consistency (1%, 5%, 10%) for the four estimators 541 

summarized in Table 2. As expected from Figures 3 and 4, the usual Beer-Lambert and 542 

modified contact frequency are biased in a much wider range than the corrected indices 543 

introduced in section 3, and generally requires smaller elements and a larger beam number to 544 

be consistent. Also, the biases of the Beer-Lambert estimators increase with density, which 545 

leads to less straightforward formulations of range of consistency, since their definition vary 546 

with both L1 and L. MLE thus has wider range of validity than Beer-Lambert estimators. 547 

 548 

Table 2. Range of consistency of the four estimators of attenuation coefficient for three consistency 549 

thresholds (biases smaller than 1, 5 and 10 %). NB: According to numerical simulations, the bias 550 

thresholds are never reached for values of L1 and L that are out of the ranges provided below (even 551 

when N =10000). 552 

Inde

x 

Consistency (1%) Consistency (5%) Consistency (10%) 

λ 𝐿M ≤ 0.01	  and	  N ≥ 100 𝐿M ≤ 0.01	  and	  N ≥ 20
𝐿M ≤ 0.05	  and	  N ≥ 30 

𝐿M ≤ 0.01	  and	  N ≥ 10
𝐿M ≤ 0.1	  and	  N ≥ 20  

 

Λ 𝐿M ≤ 0.01	  and	  N ≥ 3
𝐿M ≤ 0.1	  and	  N ≥ 5
𝐿M ≤ 0.2	  and	  N ≥ 15
𝐿M ≤ 0.3	  and	  N ≥ 30

 

𝐿M ≤ 0.05	  and	  N ≥ 3
𝐿M ≤ 0.1	  	  and	  N ≥ 5
𝐿M ≤ 0.3	  and	  N ≥ 10

 
𝐿M ≤ 0.1	  and	  N ≥ 3
𝐿M ≤ 0.2	  	  and	  N ≥ 5
𝐿M ≤ 0.3	  and	  N ≥ 7
𝐿M ≤ 0.5	  and	  N ≥ 10

 

λ 𝐿 ≤ 2	  and	  𝐿M ≤ 0.01	  and	  N ≥ 100 	  𝐿M ≤ 0.05	  and	  N ≥ 40 𝐿 ≤ 2	  and	  𝐿M ≤ 0.01	  and	  N ≥ 10
𝐿 ≤ 2.5	  and	  𝐿M ≤ 0.1	  and	  N ≥ 20
𝐿 ≤ 3	  and	  𝐿M ≤ 0.1	  and	  N ≥ 30

 

Λ 𝐿 ≤ 0.5	  and	  𝐿M ≤ 0.2	  and	  N ≥ 7
	  𝐿 ≤ 1	  and	  𝐿M ≤ 0.2	  and	  N ≥ 10
𝐿 ≤ 1.5	  and	  𝐿M ≤ 0.2	  and	  N ≥ 15
𝐿 ≤ 2	  and	  𝐿M ≤ 0.05	  and	  N ≥ 40

𝐿 ≤ 2.5	  and	  𝐿M ≤ 0.005	  and	  N ≥ 75
𝐿 ≤ 3	  and	  𝐿M ≤ 0.001	  and	  N ≥ 75

 

𝐿 ≤ 1	  and	  𝐿M ≤ 0.1	  and	  N ≥ 5
	  𝐿 ≤ 1.5	  and	  𝐿M ≤ 0.2	  and	  N ≥ 10
𝐿 ≤ 2	  and	  𝐿M ≤ 0.2	  and	  N ≥ 15
𝐿 ≤ 2.5	  and	  𝐿M ≤ 0.2	  and	  N ≥ 40
𝐿 ≤ 3	  and	  𝐿M ≤ 0.1	  and	  N ≥ 75

 

𝐿 ≤ 1.5	  and	  𝐿M ≤ 0.2	  and	  N ≥ 5
	  𝐿 ≤ 2	  and	  𝐿M ≤ 0.3	  and	  N ≥ 10
𝐿 ≤ 2.5	  and	  𝐿M ≤ 0.3	  and	  N ≥ 20
𝐿 ≤ 3	  and	  𝐿M ≤ 0.3	  and	  N ≥ 40

 

 553 

5.1.2 Estimator efficiency 554 
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Figure 5 shows the empirical variances (multiplied by 𝛿c for the generality of results) of 555 

estimator derived from the MLE, similarly to Figure 3. As expected, the variances decay with 556 

the beam number. When the elements are large and the density is moderate to high (subplots 557 

E and F), variances remain significantly larger than zero, even for large beam numbers, 558 

because of the variability between vegetation samples. The variances of the biased and 559 

unbiased estimators are similar in magnitude, the former being slightly larger when the beam 560 

number is small. Both variances are very close to the theoretical Cramer-Rao bound (in 561 

black), when L1 is small (subplots A, B and C). Since Λ is unbiased when L1 is small, it can 562 

thus be considered as efficient. When the elements are  large and the vegetation is dense 563 

(subplots E and F), the variance of Λ is much larger than the Cramer-Rao bound, even when N 564 

is large. This is because the Cramer-Rao bound does not account for asymptotic variability 565 

due to the variability of vegetation samples. 566 

The green dashed lines corresponds to the expectation of the estimator of the variance of Λ, 567 

namely 𝜎¹
c (Eq. 36). Its expectation is very close to the empirical expectation of the variance 568 

of  Λ (green dots), demonstrating the consistency of our variance estimator when the beam 569 

number is larger than 5. 570 

 571 
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 572 

Fig. 5. Normalized variances of attenuation coefficient estimators derived from the MLE, as a function 573 

of the beam number. Normalized variances correspond to variances multiplied by 𝛿c. Blue dots 574 

corresponds to the variance of the modified contact frequency estimator λ. Green dots corresponds to 575 

the variance of the unbiased MLE Λ.  Green dashed lines correspond to the dimensionless expectation 576 

of the variance estimator 𝜎¹
c. The black line corresponds to Cramer-Rao bound for the variance of 577 

unbiased estimator. 578 

 579 
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Figure 6 is similar to Figure 5 for the variances of Beer-Lambert estimators. Although trends 580 

are similar, it is worth noting that the variance of Λ is greater than the Cramer-Rao bound for 581 

small elements when vegetation is dense (Fig. 6C), showing that Λ is suboptimal and less 582 

efficient than the MLE. Also, the expectation of the variance estimator 𝜎¹
c can significantly 583 

overestimate the empirical variance, showing a lack of consistency for this estimator. This 584 

situation mostly occurs in range of data where Λ itself is biased (dense vegetation, low 585 

number of beams). The variance of the basic Beer-Lambert law can often be lower than the 586 

Cramer-Rao bound. This is simply another evidence that this estimator is strongly biased (due 587 

to the I=1 cases), since it would otherwise be greater than the Cramer-Rao bound. 588 

 589 
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 590 

Fig. 6. Same as Figure 5 for Beer-Lambert estimators. Normalized variances of Beer-Lambert 591 

attenuation coefficient estimators, as a function of the beam number. Normalized variances correspond 592 

to variances multiplied by 𝛿c. Blue dots corresponds to the variance of the usual Beer-Lambert 593 

estimator λ. Green dots corresponds to the variance of the unbiased Beer-Lambert estimator Λ.  Green 594 

dashed lines correspond to the dimensionless expectation of the variance estimator 𝜎¹
c. The black line 595 

corresponds to Cramer-Rao bound for the variance of unbiased estimator. 596 

 597 

5.1.3 Coverage probabilities of the estimated confidence intervals 598 
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Figure 7 shows the coverage probabilities of the estimated confidence interval based on 599 

unbiased MLE, Λ ± 𝑧�/c 𝜎¹
c for three confidence levels (50, 90 and 95%). When the 600 

confidence intervals are correctly estimated, empirical coverage probabilities should match 601 

the confidence level (dashed lines). Estimated confidence intervals are satisfactory in most 602 

cases, with the exception of low density when the beam number is low (subplots A and B), for 603 

which the true value is less frequently in the confidence interval than expected.  604 

 605 

 606 

 607 

  608 
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 609 

Fig. 7. Coverage probabilities of the estimated confidence interval Λ ± 𝑧�/c 𝜎¹
c (computed with I), 610 

function of the beam number, for 3 levels of confidence (50, 90 and 95%). 611 

 612 

As explained in section 3.5, the alternative interval estimation based on Agresti-Coull 613 

correction (Eq. (40)) leads to higher-than-expected coverage rates, as shown in Figure 8, 614 

which is safer when density is low. Very similar intervals can be obtained for the unbiased 615 

Beer-Lambert Λ (not shown). 616 
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 617 

Fig. 8. Coverage probabilities of the estimated confidence interval Λ� ± 𝑧�/c 𝜎¹
c
�
 (based on the 618 

Agresti-Coull values Ic and Nc), function of the beam number, for 3 confidence levels (50, 90 and 619 

95%). 620 

 621 

Coverage probabilities are computed for all simulated cases. For a given confidence level 622 

(90%, 95%), we can determine the range of parameter values (beam number, element and 623 

voxel depths) for which the coverage probabilities match the expected value (0.9, 0.95), 624 

within 5% for both the usual formulation of confidence interval (Eq. (39)) and for the 625 

“Agresti-Coull” interval (Eq. (40)). We find that using the “Agresti-Coull” interval increases 626 

the range of validity, when L is estimated lower than 0.5, but that the usual formulation 627 

performs better for higher densities. We thus adopt the following partical rule 628 

 

 
Λ� ± 𝑧£

¤
𝜎¹
c
�
, 	  	  when	  	  𝐿 ≤ 0.5

Λ ± 𝑧£
¤
𝜎¹
c, 	  	  	  when	  	  𝐿 > 0.5

 (46) 

 629 

We summarize the ranges of validity of confidence intervals defined as in Eq. 46 in Table 3. 630 

Confidence intervals are consistent in a fairly large range of parameters. As in the results 631 

presented above, the range of validity of the unbiased “Beer-Lambert” confidence interval is 632 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024


 36 

not as wide as the one of the unbiased MLE, especially when the voxel depth is larger than 2, 633 

for which more than 100 beams are required. 634 

 635 

Table 3. Range of validity of the confidence intervals at rate 𝛼 = 0.90 and 0.95. We consider that the 636 

confidence interval is consistent, when the empirical probability reaches the expected level within 5%. 637 

When L is estimated lower than 0.5, we use the “Agresti-Coull” confidence interval, whereas the usual 638 

formulation is used otherwise (Eq. 46). 639 

Index 𝛼 = 0.90 and Coverage probability within 

0.9 ± 5	  % 

𝛼 = 0.95 and coverage probability within 0.95 ±

5	  % 

Λ 𝐿 ≥ 0.1	  and	  𝐿M ≤ 0.1	  and	  N ≥ 10
	  𝐿M ≤ 0.1	  and	  N ≥ 100  

𝐿 ≥ 0.1	  and	  𝐿M ≤ 0.1	  and	  N ≥ 10
	  𝐿M ≤ 0.1	  and	  N ≥ 20  

Λ 𝐿 ∈ 0.5; 2 	  and	  𝐿M ≤ 0.05	  and	  N ≥ 40
	  𝐿M ≤ 0.01	  and	  N ≥ 100
	  𝐿M ≤ 0.05	  and	  N ≥ 200

 
𝐿 ≤ 2	  and	  𝐿M ≤ 0.05	  and	  N ≥ 30

	  𝐿 ≤ 2.5	  and	  𝐿M ≤ 0.01	  and	  N ≥ 100
	  𝐿M ≤ 0.05	  and	  N ≥ 150

 

 640 

 641 

5.1.4. 95% errors for a single voxel and a group of voxels 642 

 Figure 9 shows the expectation of the 95% errors for the MLE estimators in the same setting 643 

as before. When the beam number is small and the density is low, this percentage can largely 644 

exceed 100%. In these cases, the estimates remain very uncertain, although close to optimal 645 

(Cramer-Rao-95%-error bound in black). The accuracy increases with vegetation density and 646 

beam number. However, the 95% errors remain very high even for large beam number, when 647 

elements are large because of the variability of vegetation samples (subplots E and F). At the 648 

scale of a single voxel, using λ or Λ leads to similar errors, which may be disappointing. This 649 

is explained by the fact that the bias corrections accounted for in Λ are significant in a range 650 

of parameter values for which variances are fairly large. Results are very different, however, 651 

when errors are computed after averaging over several voxels (here, 100 voxels), which leads 652 

to much smaller errors (Figure 10): using the unbiased estimator (Λ) rather than the usual 653 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024


 37 

modified contact frequency (λ) leads to a reduction of the error on the order of 50%,  typically 654 

in cases with low beam number or large elements, demonstrating the interest of bias 655 

corrections. When elements are large, 95%-errors are below 10% with Λ, when the beam 656 

number is greater than 100. 657 

The expectation of the radiuses of the confidence interval 𝐸95¹ and 𝐸95¹
¾¿ (green dashed line 658 

in Figure 9 and 10) are very close to the expectation of the 95% error, showing again that the 659 

estimated confidence intervals are consistent. 660 

 661 
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Fig. 9. Expectations of the 95% error, expressed in percentage of λ, as the 95th percentile of the 662 

absolute residual to λ for λ (blue dots) and Λ (green dots). We show for comparison the estimated 663 

radius of the confidence interval 𝐸95¹ (green dashed line) and the radius bound derived from the 664 

Cramer Rao bound 𝐸95ÓÔÕ (black line). 665 

 666 

 667 

Fig. 10. Same as Fig. 9 for an average over 100 voxels. Expectations of the 95% error over nv=100 668 

voxels, expressed in percentage of λ, as the 95th percentile of the absolute averaged residual to λ for λ 669 

(blue dots) and Λ (green dots). We show for comparison the estimated radius of the confidence 670 
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interval 𝐸95¹
¾½ (green dashed line) and the radius bound derived from the Cramer Rao bound 𝐸95ÓÔÕ¾½  671 

(black line). 672 

 673 

Figures 11 and 12 show similar trends to Figures 9 and 10, for both biased and unbiased Beer-674 

Lambert estimators. When blue dots are missing (usual Beer-Lambert), they correspond to 675 

cases where I=1 in more than 5% of the voxel, so that the 95% error is in this case infinite. As 676 

expected from previous results, the estimator of the radius of the 95% confident interval 677 

(green dashed lines) is not consistent for the average over 100 voxels, in ranges where when Λ 678 

is biased (typically L and L1 large, Fig. 12F).  679 
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 680 

Fig. 11. Same as Fig. 9 for the Beer-Lambert estimators. Expectations of the 95% error, expressed in 681 

percentage of λ, as the 95th percentile of the absolute residual to λ for λ (blue dots) and Λ (green dots). 682 

We show for comparison the estimated radius of the confidence interval 𝐸95¹ (green dashed line) and 683 

the radius bound derived from the Cramer Rao bound 𝐸95ÓÔÕ (black line). 684 

 685 

 686 
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 687 

Fig. 12. Same as Fig. 10 for the Beer-Lambert estimators. Expectations of the 95% error over nv=100 688 

voxels, expressed in percentage of λ, as the 95th percentile of the absolute averaged residual to λ for λ 689 

(blue dots) and Λ (green dots). We show for comparison the estimated radius of the confidence 690 

interval 𝐸95¹
¾½ (green dashed line) and the radius bound derived from the Cramer Rao bound 𝐸95ÓÔÕ¾½  691 

(black line). 692 

 693 

 694 

  695 
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5.2. Estimator performance for unequal path lengths 696 

 697 

In this subsection, we show the statistics of estimators computed with simulations described 698 

in subsection 4.3, in the context of a spherical voxel (unequal path lengths). Since MLE 699 

performance is similar to the results shown in the previous section, it is not shown again. 700 

Here, we focus on the comparison between Beer-Lambert estimators λ and Λc (similar to Λ, 701 

but which includes the correction for unequal path lengths). This is of major importance, since 702 

Beer-Lambert law is mostly applied to cubic voxels, for which path lengths are generally not 703 

equal. In this subsection, we assume that elements are infinitely small for simplicity (L1=0). 704 

 705 

5.2.1 Estimator consistency 706 

Figure 13 shows the expectations of λ and Λc similarly to Fig. 4. For low density (Fig. 13A), 707 

the expectation of  λ and Λc are similar to those obtained with equal path lengths (Fig. 4A). 708 

When density is higher (Fig. 13 B and C), the basic Beer-Lambert estimator λ	  is negatively 709 

biased, and the bias does not tend to zero when the beam number is large. 710 

 711 

Fig. 13. Same as Figure 4 for the unequal path lengths. Expectations of the Beer-Lambert-attenuation-712 

coefficient estimators, as a function of the beam number. Blue dots corresponds the usual Beer-713 

Lambert estimator (λ). Green dots corresponds to the unbiased Beer-Lambert estimator (Λc), that 714 
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accounts for unequal path length, element size and beam number and extended definition when I=1. 715 

Estimators are normalized by their true value λ, so that they are consistent when the expectation equals 716 

to one. The vertical lines correspond to the lowest values of N leading to a bias smaller than 1% in 717 

blue and green, for respectively the biased and unbiased estimators. 718 

 719 

5.2.2 Estimator efficiency 720 

Figure 14 show the variances of λ and Λc  similarly to Fig. 6. For low density (Fig. 14A), the 721 

variances of  λ and Λc are similar to those obtained with equal path lengths (Fig. 6A). When 722 

density is higher (Fig. 14 B and C), the variance of Λc (Green dots) is much larger, which is 723 

mostly explained by the variability of the empirical path lengths. 𝜎¹¤
c  (green dashed line) 724 

provides consistent estimators for the variance of Λc, at least when the beam number is larger 725 

than 10. This variance, however, is significantly larger than the Cramer-Rao bound (black 726 

line), showing that  Λc is suboptimal when N is smaller than 100, contrary to the MLE, that 727 

reaches the Cramer-Rao bound (not shown). Again, λ being biased, its variance cannot be 728 

assessed against the Cramer-Rao bound to evaluate its efficiency.  729 

 730 

Fig. 14. Same as Figure 6 for unequal path lengths. Normalized variances of Beer-Lambert attenuation 731 

coefficient estimators, as a function of the beam number. Normalized variances correspond to 732 

variances multiplied by 𝛿c. Blue dots corresponds to the variance of the usual Beer-Lambert estimator 733 
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λ. Green dots corresponds to the variance of the unbiased Beer-Lambert estimator Λc.  Green dashed 734 

lines correspond to the dimensionless expectation of the variance estimator 𝜎¹¤
c . The black line 735 

corresponds to Cramer-Rao bound for the variance of unbiased estimator. 736 

 737 

5.2.3. 95% error of estimators for a single and a group of voxels 738 

The coverage probabilities of the estimated confidence interval Λc ± 𝑧𝛼/2 𝜎¹¤
2  are similar to 739 

those shown for Λ ± 𝑧𝛼/2 𝜎¹
2  in Figure 8 (and thus not shown). More interestingly, Figures 15 740 

and 16 show the expectation of the 95% error, as in Figure 11 and 12. The 95% errors are 741 

significantly reduced at the scale of a single voxel when the density is high and N is large 742 

(Fig. 15C). As for the other bias correction, the error reduction is limited in other cases since 743 

estimators are too uncertain. When averaged at the scale of several voxels, the benefit of the 744 

correction for unequal path lengths is clearly visible when the beam number is moderate and 745 

large (Fig. 16B and C). In these cases, 95% errors are always greater than 7 and 12%, even 746 

when the beam number is large. Bias correction leads to an important reduction of the error, 747 

that becomes close to the Cramer-Rao bound. However, contrary to unbiased MLE for which 748 

the Cramer Rao bound is reached with unequal path length (not shown here, but logical since 749 

the formulation is not affected by the path length), the Beer-Lambert estimator is not optimal 750 

even after bias corrections. This is especially true when the beam number is small, because of 751 

the variability induced by the empirical correction factor ae. This demonstrates that the 752 

unbiased MLE is clearly more efficient than the (unbiased) Beer-Lambert estimator, since 753 

those estimators are mostly computed in cubic voxels. 754 

 755 
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 756 

 757 

Fig. 15. Same as Fig. 11 for the unequal path lengths. Expectations of the 95% error, expressed in 758 

percentage of λ, as the 95th percentile of the absolute residual to λ for λ (blue dots) and Λc (green 759 

dots). We show for comparison the estimated radius of the confidence interval 𝐸95Λ2  (green dashed 760 

line) and the radius bound derived from the Cramer Rao bound 𝐸95ÓÔÕ (black line). 761 

 762 

 763 

Fig. 16. Same as Fig. 12 for unequal path length. Expectations of the 95% error over nv=100 voxels, 764 

expressed in percentage of λ, as the 95th percentile of the absolute averaged residual to λ for λ (blue 765 

dots) and Λc (green dots). We show for comparison the estimated radius of the confidence interval 766 

𝐸95¹¤
¾½ (green dashed line) and the radius bound derived from the Cramer Rao bound 𝐸95ÓÔÕ¾½  (black 767 

line). 768 

 769 
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 770 

 771 

  772 
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5. Discussion 773 

 774 

The method proposed here is based on a mathematical formulation of the estimation problem 775 

in a formal statistical framework. Technical derivations are detailed in several supplementary 776 

materials for reference, to facilitate the reading of the manuscript. This theoretical part is 777 

completed with numerical simulations, for validation and determination of the range of 778 

validity of our new estimators. As every modeling approach, both mathematical formulation 779 

and simulations are based on assumptions that are not necessarily valid in the field. Here, we 780 

assume that the spatial distribution of beams is random, whereas the actual one has a periodic 781 

pattern, potentially altered by occlusion. Also, we assume simple square leaves for our 782 

vegetation elements. More realistic patterns for beam shooting and vegetation elements can be 783 

simulated (Grau et al., 2017). However, a drawback of this later approach is that it limits both 784 

theoretical derivations and simulation number. The benefits of our simplifying assumptions 785 

are that the mathematical framework can be deeply explored and that the cost of numerical 786 

simulations is very limited, so that a full statistical analysis of estimator performance can be 787 

done, over a wide range of parameter values (here element size, voxel size and beam number). 788 

 789 

Our derivations entails to propose some new ready-to-use, analytical estimators for the 790 

attenuation coefficient, which is proportional to PAD/LAD. These estimators generalize the 791 

ones proposed in several pioneering studies. In this sense, our unbiased Beer-Lambert 792 

estimator combines the effects of finite-element size and unequal path lengths that are already 793 

identified respectively in Béland et al. (2014a), and Béland et al. (2014b) and Grau et al. 794 

(2017). Regarding the effect of the element size, we choose to explicitly correct our estimator 795 

for the associated bias, rather than to restrict its range of validity to largest voxels, as in 796 

Béland et al. (2014a). For unequal path lengths, our formulation is more general than the 797 
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empirical correction proposed in Béland et al. (2014b), since it does not assume a particular 798 

shape for the voxel. Contrary to the secant method, used for example in Bailey and Mahafee 799 

(2017b), our formulation is analytical and easy to implement. Also, our Beer-Lambert 800 

estimators are defined even when the RDI is equal to one, whereas earlier formulation 801 

considered this special case as “occluded” (Béland et al., 2014a), leading to a negative bias as 802 

shown above. Our approach also demonstrates that the modified contact frequency, 803 

introduced in Béland et al. (2011), is indeed the Maximum Likelihood Estimator of the 804 

mathematical problem. It extends the modified contact frequency initially developed for 805 

infinitely small elements to the case of finite-size elements in a theoretically-based 806 

formulation. This formulation slightly differs from the one proposed in the discussion in 807 

Béland et al. (2014a), in which the correction term that accounts for finite-element size is the 808 

same as for the Beer-Lambert law (see Eq. (12)). Such a proposition is not supported by the 809 

Maximum Likelihood, but numerical consequences are probably limited. More importantly, 810 

our formulation includes some bias corrections that depend on the beam number, for both 811 

approaches (Beer-Lambert and MLE), whereas usual estimators are shown to be positively 812 

biased to more than 20 % when the beam number is small. To the best of our knowledge, such 813 

an effect has never been reported before. 814 

 815 

Numerical simulations show that the new estimators are consistent for a much wider range of 816 

parameter values (element size, attenuation coefficient, beam number), than the usual ones. 817 

The range of consistency of the unbiased MLE Λ is wider than the one of the unbiased Beer-818 

Lambert estimator. Interestingly, the beam number required to reach consistency of the 819 

unbiased MLE depends on the element depth 𝐿M only. Contrary to the unbiased Beer-Lambert 820 

estimator, for which a larger number of beams is required when the vegetation density 821 

increases, the unbiased MLE is not affected by the actual value of the attenuation coefficient. 822 
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This is practically convenient, since the attenuation coefficient is unknown prior to the 823 

computation of the estimates when dealing with field data. When 𝐿M ≤ 0.1, which is the case 824 

for most vegetation when the voxel size is larger than 5 cm,  Λ is consistent (bias smaller than 825 

1%) as soon as the beam number is larger than 5. This is important when computing the 826 

attenuation in small voxels, because the beam number in often low (e.g. Béland et al., 2009), 827 

especially when vegetation is dense because of occlusion. Another potential application is 828 

airborne LiDAR, for which the point density is much lower than TLS. For comparison, more 829 

than 100 beams are required in vegetation with 𝐿M ≤ 0.01 and 𝐿 ≤ 2 to reach the same 830 

consistency with the usual Beer-Lambert estimator as with the unbiased MLE. Another 831 

benefit of the MLE when compared to the Beer-Lambert estimator is that it does not require 832 

any bias correction when path lengths are unequal. This is all the more important, that the bias 833 

correction for unequal path lengths tends to reduce the efficiency of this estimator (in 834 

comparison with Cramer-Rao bound). We also demonstrate that the unbiased MLE is 835 

efficient, at least when the element size is small, since it reaches the Cramer-Rao bound. This 836 

means that no unbiased estimator can have a smaller error than this estimator, so that the 837 

unbiased MLE can be considered as optimal. This result is of major importance, since it 838 

shows that there is no need for further correction, as long as the assumptions leading to these 839 

results are valid. 840 

 841 

Our mathematical derivations allow us to derive estimators of the variance and hence, 842 

confidence interval for the unbiased estimators. Analyzing their coverage properties shows 843 

that they are generally consistent, especially when using the formulation based on both the 844 

“Agresti-Coull” interval and the basic interval, depending whether the voxel density is low or 845 

high (Eq. 46). Providing such confidence intervals fill a gap for voxel-based approach, as 846 

done earlier for gap fraction methods in Zhao et al. (2015). The first outcome of our 847 
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confidence interval estimates is that the prediction at voxel scale is uncertain, especially when 848 

the voxels are small with errors larger than 100%, since the beam number is low and the 849 

variability of the vegetation sample is high. When elements are large, uncertainty remains 850 

high, even when scanning density is very high, because of the variability of element positions 851 

within vegetation samples. The confidence intervals of the mean attenuation coefficient in a 852 

larger volume (eventually discretized in small voxels) is much narrower, since the total beam 853 

number is larger and the impact of the variability of vegetation samples is dampened. Our 854 

numerical results, however, might be affected by our assumptions (random position, square 855 

flat leaves, random beams), so that it would be worthwhile in the future to evaluate the 856 

asymptotic residual variability in the context of realistic vegetation, for example following the 857 

approach detailed in Grau et al. (2017). 858 

 859 

Until now, most of the evaluation of the performance of voxel-based estimators was based on 860 

the analysis of residual error between estimations and field data. The different sources of bias 861 

and dispersion were thus merged. We believe that the applications of the new estimators and 862 

their confidence interval should help to choose the appropriate resolution. Small voxels lead 863 

to a smaller probability to get larger gaps that invalidate the assumption of random 864 

distribution and results in an underestimation of LAD (Béland et al., 2014a). In other words, 865 

transmission laws are wider-than-exponential in presence of spatial correlations (Davis and 866 

Marshak, 2004; Pimont et al., 2009; Larsen and Clark, 2014). The question of resolution is 867 

critical, since the recommendations vary among studies from some millimeters to 2 m (e.g. 868 

Hosoi and Asama, 2006; Grau et al. 2017; Béland et al., 2011; Béland et al., 2014a; Pimont et 869 

al., 2015; Bailey and Mahafee, 2017b). Among others, these studies deal with various 870 

vegetation (various element size from needles to large leaves, various spatial distribution, 871 

single tree vs forestry plot, etc.) as well as various scanning density (from single scan to high 872 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024


 51 

density scanning). Also, the formulations vary among studies, some biases being corrected in 873 

some studies, while not corrected in others. Most of them are affected by the positive biases 874 

caused by the beam number and the element size (with the exception of Béland et al., 2014a 875 

in which element size sensitivity is evaluated). Such biases are stronger at high resolution 876 

since the beam number is lower and the element path is larger. Some of them are affected by 877 

the negative biases of the usual Beer-Lambert estimator when path lengths are unequal, or 878 

when the RDI is equal to 1. Again, such biases both vary with voxel resolution and 879 

orientation. A general use of the unbiased MLE Λ, for instance, should cancel these biases and 880 

thus gives the opportunity to focus on the remaining sources of bias and dispersion pointed 881 

out in the introduction. Among them, we can cite the TLS “flaws” (partial hit and detection 882 

threshold) and the remaining vegetation “flaws” (element orientation and clumping, leaf and 883 

wood separation). Vegetation heterogeneity is especially concerned by the issue of the voxel 884 

size. At the end, the computation of confidence intervals could also help determine the 885 

resolution that minimizes errors, since the resolution that minimizes the confidence interval 886 

radius of the average attenuation coefficient within a given volume could be selected. 887 

 888 

6. Conclusion 889 

 890 

The present work provides an innovative approach of TLS point clouds, based on both 891 

analytical derivations and numerical simulations to propose some new efficient estimators of 892 

the attenuation coefficient, which is proportional to the LAD/PAD. These estimators are 893 

designed for TLS point clouds of high density, so that they mostly concern TLS, although 894 

their consistency with low beam number is also promising for their application to airborne 895 

scanner. Among them, the unbiased MLE is consistent and efficient in a wider range of 896 

parameter values than the usual estimators. It accounts for statistical biases associated with 897 
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beam number and element size. Although the biases caused by partial hit and clumping at 898 

larger scale are not included, this new estimator should improve the choice of voxel 899 

resolution, since it corrects several biases that depends on resolution and that might have been 900 

mixed up in some earlier studies. Also, this work provides some estimators for the confidence 901 

intervals of the attenuation coefficient within a volume containing one or several voxels, 902 

increasing our knowledge of PAD/LAD regarding measurement accuracy by TLS, which is 903 

probably lower than expected when voxels are small, and again contributes to the 904 

determination of the best resolution. 905 

 906 

 907 
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Supplementary Material 1032 

Supplementary S1. Expected range of the optical depth of an element of vegetation in a 1033 

voxel 1034 

Following the definition of λM in Eq. (9), the optical depth of an element in a cubic voxel of size δ is 1035 

 LM = λMδ =
SM
S
≈
SM
δc

 (S1-1) 

For a needle of radius r and length l, this leads to: 1036 

 
λMδ ≈

2πrl
4δc

 (S1-2) 

For a (small) needle of diameter 2r = 0.5 mm and length l = 5 cm, we have: 1037 

 λMδ�Ö¾ ≈ 2	  10.bδ.c (S1-3) 

For a flat leaf of radius r, this leads to: 1038 

 
λMδ ≈

2πrc

4δc
 (S1-4) 

For a (large) leaf of diameter 2r = 10 cm, we have: 1039 

 λMδ�×Ø ≈ 5	  10.dδ.c (S1-5) 

 1040 

 1041 

  1042 
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Supplementary S2. Point estimators and their variance based on Beer-Lambert law 1043 

The usual Beer-Lambert estimator is based on the RDI. It assumes that (i) a mean path length δ (~V/S) is 1044 

suitable to account for unequal path length in the voxel and (ii) −log	  (1 − I) is a good estimator 𝜅 of 𝜅 =1045 

−𝑙𝑜𝑔(1 − 𝐸(𝐼)) (Note that 𝜅 is the optical depth of the voxel). However, in both cases, the non-linearity of the 1046 

log function limits the validity of such assumptions and makes the standard estimator 𝜆 a biased estimator of 𝜆. 1047 

 1048 

 Taking the log(1-x) of Eq. (20), we have: 1049 

 
log 1 − 𝐸 I = log

1
S

1 − 𝜆Mδ(s) n/nVdS
Ú∈U

 (S2-1) 

The Lemma proved below enables to approximate the logarithm in (S2-1) and gives a second order 1050 

approximation of log 1 − 𝐸 I , as a function of the actual attenuation coefficient 𝜆. Combining (S2-1) with the 1051 

Lemma leads to: 1052 

 log 1 − 𝐸 I ≈ −δ§𝜆 +
1
2
𝜎QÛ
c 𝜆c (S2-2) 

where the effective mean path length δ§ and its variance 𝜎QÛ
c 	  are defined as the mean and variance of the 1053 

effective path lengths δ§,} = −
ÜÝÞ M.nVB�

nV
. 1054 

We then consider the issue of the bias associated with log 1 − I . A bias correction can be computed applying 1055 

the approximation S6-5 to the function g x = log	  (1 − x), which depends on g" I  and the variance of I (given 1056 

by Eq. 23). An unbiased estimator of 𝜅 is thus 1057 

 
𝜅 = −log 1 − E I = − log 1 − I −

1
2
I(1 − I)
N

+ 𝜎��
c 	   1 − I .c (S2-3) 

Combining (S2-2) and (S2-3) leads to a second order polynomial in 𝜆 that can be solved to derive the corrected 1058 

estimator Λc accounting for unequal path lengths (S2-7). 1059 

 
log 1 − I −

1
2
I 1 − I
N

+ 𝜎��
c 	   1 − I .c = −δ§𝜆 +

1
2
𝜎QÛ
c 𝜆c (S2-4) 

We first derive the estimator for nearly equal path length Λ. When path lengths are nearly constant (𝜎QÛ
c ≈ 0), the 1060 

equation S2-4 in 𝜆 leads to: 1061 

 
Λ = −

1
δ§

log 1 − I +
I

2N(1 − I)
+

𝜎��
c

2(1 − I)c
≈ −

1
δ§

log 1 − I +
I

2N(1 − I)
 (S2-5) 
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Numerical simulations show that 
²á�
¤

c(M.�)¤
 is always very small compared to log(1-I) in the range of interest. It is 1062 

thus neglected in the rest of the study. 1063 

 1064 

For unequal path length, the second order polynomial in λ of (S2-4) can be rewritten (since by definition of Λ, 1065 

log 1 − 𝐸 I = −δ§Λ	  ): 1066 

 1
2
𝜎QÛ
c λc − δ§λ + δ§Λ = 0 (S2-6) 

Assuming that 2
²³Û
¤

BÛ
Λ, is smaller than 1, we can solve the polynomial and keep the smallest root. This leads to 1067 

the Λc estimator that accounts for unequal path lengths: 1068 

 
Λc =

δ§
𝜎QÛ
c 1 − 1 − 2

𝜎QÛ
c

δ§
Λ  (S2-7) 

The above indices are not defined when I=1, since the Beer-Lambert approach does not provide any insight 1069 

regarding the attenuation coefficient rather than “probably high”. As explained in section 3.2, the center of the 1070 

confidence interval can be estimated as a function of N, by the Agresti-Coull interval. With 𝑧�/cc = 1, it is: 1071 

 
 I� =

M¡ V
¤¥

M¡V¥
= 1 −

V
¤¥
M¡V¥

= 1 −	  	   M
câ¡c

 (S2-8) 

Since Iã is at the center of the confidence interval, − K^_ M.� 
BÛ

  is a more robust estimator for 𝜆 in this context:  1072 

  Λ = K^_ cF¡c
BÛ

 (S2-9) 

The estimator of the variance of Λ is derived from (S6-2). Let g x = − log 1 − x + ä
cF(M.ä)

 1073 

 
gå x =

1
1 − x

−
1 − x − x −1
2N 1 − x c =

1
1 − x

1 −
1

2N 1 − x
 (S2-10) 

 We can thus define the estimator of variance of Λ as: 1074 

 
𝜎¹
c =

𝜎�c

δ§ 1 − I c 1 −
1

2N 1 − E(I)

c

 

 

(S2-11) 

Estimating the variance of Λc as defined in (S2-7) can be done using (S6-2): 1075 

 

𝜎¹¤
c = 𝜎¹

c δ§
𝜎QÛ
c

1
2 2

𝜎QÛ
c

δ§

1 − 2
𝜎QÛ
c

δ§
Λ

c

=
𝜎¹¤
c

1 − 2
𝜎QÛ
c

δ§
Λ
≈ 𝜎¹¤

c 1 + 2
𝜎QÛ
c

δ§
Λ + 4

𝜎QÛ
c

δ§
Λ

c

 (S2-12) 
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 1076 

 1077 

Proof of lemma (Eq. S2-2) 1078 

With	  g x = log	  (𝑥), the integral formulation of (S6-1) leads to: 1079 

 1
S

log 1 − 𝜆Mδ(s) n/nV dS
Ú∈U

≈ log
1
S

1 − 𝜆Mδ s
n
nVdS

Ú∈U

−
1
2
𝑣𝑎𝑟 1 − 𝜆Mδ(s) n/nV

1 − 𝜆Mδ(s) n/nV
c  (S2-13) 

The left member is: 1080 

 

 

1
S

log 1 − 𝜆Mδ(s) n/nV dS
Ú∈U

=
𝜆
𝜆M
log 1 − 𝜆Mδ = −δ§𝜆 

 

(S2-14) 

With g x = exp	  (𝜆𝑥), 𝑣𝑎𝑟 1 − 𝜆Mδ(s) n/nV = 𝑣𝑎𝑟 𝑔 ÜÝÞ M.nVB(Ú)
nV

 1081 

According to (S6-2), 1082 

 
𝑣𝑎𝑟 1 − 𝜆Mδ(s) n/nV ≈ 𝑔å

𝑙𝑜𝑔 1 − 𝜆Mδ s
𝜆M

c

𝑣𝑎𝑟
𝑙𝑜𝑔 1 − 𝜆Mδ s

𝜆M

= 𝜆c𝑒𝑥𝑝 𝜆
𝑙𝑜𝑔 1 − 𝜆Mδ s

𝜆M

c

𝑣𝑎𝑟 𝛿§  

 

(S2-15) 

Since at the first order, g x = g x , 1083 

we can write, 𝑒𝑥𝑝 𝜆 ÜÝÞ M.nVB Ú
nV

≈ 𝑒𝑥𝑝 𝜆 ÜÝÞ M.nVB Ú
nV

= 1 − 𝜆Mδ(s) n/nV, and then:  1084 

 1
2
𝑣𝑎𝑟 1 − 𝜆Mδ(s) n/nV

1 − 𝜆Mδ(s) n/nV
c ≈

1
2
𝜆c𝑣𝑎𝑟 𝛿§  

 

(S2-16)  

Combining this with the above results leads to: 1085 

 
log

1
S

1 − 𝜆Mδ s
n
nVdS

Ú∈U

≈ −δ§𝜆 +
1
2
𝜎QÛ
c 𝜆c 

 

(S2-17)  

  1086 
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Supplementary S3. Point and variance estimators based on MLE 1087 

S3.1. Log likelihood and MLE of the attenuation coefficient 1088 

Let use denote z} }LM,F
 the N free paths with respective path lengths δ} }LM,F

.  1089 

From Eq. (17), the likelihood of Z is: 1090 

 
ℒ λ; zM, z, … , zF = fw zJ; δJ =

â

}LM

λ 1 − λMzJ
///V.M

0OPBO

1 − λMzJ
///V

0OLBO

 (S3-1) 

The ML estimator is the value λ that cancels the first derivative of ℒ (Kay, 1993, chapter 7). Deriving the 1091 

logarithm of the likelihood and equating to zero provides 1092 

 dlogℒ
dλ

=
N?
λ
+

log 1 − 𝜆MzJ
𝜆M

F

JLM

= 0 (S3-2) 

Hence, with z§} = −
K^_ M.nV0O

nV
 1093 

 
𝑀𝐿𝐸/ =

𝜆MN?
log 1 − 𝜆MzJF

JLM
=

I
	  z§

 (S3-3) 

 1094 

S3.2. Bias correction terms for the MLE 1095 

The bias correction for the MLE is derived from (S6-6) with f 𝑥, 𝑦 = ä
ê
, since the MLE is �

ëÛ
. The three terms 1096 

corresponding to bias corrections are, assuming that beams are independent: 1097 

 
−
1
2
𝜎�c
𝜕c𝑓
𝜕𝑥c

𝐼, 𝑧§ = −
1
2
𝜎�c×0 = 0 (S3-4) 

 1098 

 
−
1
2
𝜎ëÛ
c 𝜕

c𝑓
𝜕𝑦c

𝐼, 𝑧§ = −
1
2
𝜎ëÛ
c 2I
𝑧§d

= −
I

𝑁𝑧§d
𝑣𝑎𝑟 𝑧§  (S3-5) 

 1099 

 
−𝜎�,ëÛ

𝜕c𝑓
𝜕𝑥𝜕𝑦

𝐼, 𝑧§ = 𝜎�,ëÛ
1
𝑧§c

=
1

𝑁𝑧§c
𝑐𝑜𝑣𝑎𝑟 𝟏0OPQO, 𝑧§  (S3-6) 

Combining S3-4, S3-5, and S3-6 leads to: 1100 

 Λ =
I
𝑧§
−

I
𝑁𝑧§d

𝑣𝑎𝑟 𝑧§ +
1

𝑁𝑧§c
𝑐𝑜𝑣𝑎𝑟 𝟏0OPQO, 𝑧§  (S3-7) 

Although practically computable for a distribution of zJ  and 𝛿J , the variance of the estimator can not be 1101 

analytically derived, so that it is not possible to estimate the variance and thus the confidence interval for the 1102 
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estimation. The next subsection is dedicated to the development of analytical estimator for 𝑣𝑎𝑟 𝑧§  and 1103 

𝑐𝑜𝑣𝑎𝑟 𝟏0OPQO, 𝑧§ . 1104 

 1105 

S3.3. Estimates for 𝑣𝑎𝑟 𝑧§  and 𝑐𝑜𝑣𝑎𝑟 𝟏0OPQO, 𝑧§  1106 

From variance formulae: 1107 

 𝑣𝑎𝑟 𝑧§ = 𝐸 𝑧§c − 𝐸 𝑧§ c (S3-8) 

From the probability distribution (Eq. (17)) and definition of 𝑧§, the expectation of 𝑧§ is: 1108 

 

 

 

𝐸 𝑧§ =
1
S

−
log 1 − λMz

λM
λ 1 − λMz ///V.M𝑑𝑧

B Ú

�

+ −
log 1 − λMδ(s)

λM
1 − 𝜆Mδ(s) n/nV 𝑑𝑠

�

 
(S3-9) 

Integrating by parts the integral leads to: 1109 

 

 

 

𝐸 𝑧§ =
1
S

log 1 − λMz
λM

1 − λMz
/
/V

�

B Ú

�

− −
1

1 − λMz
1 − λMz

/
/V𝑑𝑧

B Ú

�

−
log 1 − λMδ s

λM
1 − 𝜆Mδ s

n
nV

𝑑𝑠

=
1
S

1 − λMz
/
/V
.M𝑑𝑧

B Ú

�

𝑑𝑠 =
𝑃 𝑍 < 𝛿

𝜆
=

�

𝐸 𝟏0OPQO
𝜆

 

(S3-10) 

This demonstrates that:  1110 

 

 

 

𝜆 =
𝐸 𝟏0OPQO
𝐸 𝑧§

=
𝐼�
𝑧§�

 
(S3-11) 

Similarly,  1111 

 

 

 

𝐸 𝑧§c =
1
S

log 1 − λMz
λM

c

λ 1 − λMz ///V.M𝑑𝑧

B Ú

�

+
log 1 − λMδ(s)

λM

c

1 − 𝜆Mδ(s) n/nV 𝑑𝑠
�

 
(S3-12) 

Integrating twice by parts the integral leads to: 1112 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024


 64 

 

 

 

𝐸 𝑧§c =
1
S

−
log 1 − λMz

λM

c

1 − λMz
/
/V

�

B Ú

�

−
2

1 − λMz
log 1 − λMz

λM
1 − λMz

/
/V𝑑𝑧

B Ú

�

+
log 1 − λMδ s

λM

c

1

− 𝜆Mδ s
n
nV 𝑑𝑠 =

2
λ
1
S

−
log 1 − λMz

λM
λ 1 − λMz

/
/V
.M𝑑𝑧

B Ú

�

𝑑𝑠
�

=
2
λ
𝐸 𝟏0OPQOz§  

(S3-13) 

Thus, 

  

𝑣𝑎𝑟 𝑧§ =
2
λ
𝐸 𝟏0OPQOz§ − 𝐸 𝑧§ c (S3-14) 

And 𝑐𝑜𝑣𝑎𝑟 𝟏0OPQO, 𝑧§ = 𝐸 𝟏0OPQO𝑧§ − 𝐸 𝟏0OPQO 𝐸 𝑧§  (S3-15) 

 1113 

S3.4. Point estimator 1114 

Plugging S3-14 and S3-15 in, S3-7 leads to: 1115 

 Λ =
I
𝑧§
−
1
𝑁

I
𝑧§d

2
λ
𝐸 𝟏0OPQOz§ − 𝐸 𝑧§ c +

1
𝑁𝑧§c

𝐸 𝟏0OPQO𝑧§ − 𝐸 𝟏0OPQO 𝐸 𝑧§  (S3-16) 

And since 𝐸 𝟏0OPQO ≈ 𝐼, 𝐸 𝑧§ ≈ 𝑧§, 𝐸 𝟏0OPQO𝑧§ ≈ 𝟏0ñPQñ𝑧§ and 𝜆 ≈ �
ëÛ

:   1116 

 
Λ =

I
𝑧§
−
𝟏0ñPQñ𝑧§
𝑁𝑧§c

 (S3-17) 

 1117 

S3.5. Variance estimator 1118 

The variance for the MLE is derived from (S6-4) with f 𝑥, 𝑦 = ä
ê
, since the MLE is �

ëÛ
. The three terms 1119 

corresponding to bias corrections are: 1120 

 
𝜎�c

𝜕𝑓
𝜕𝑥

c

𝐼, 𝑧§ =
𝜎�c

𝑧§c
=
𝐼(1 − 𝐼)
𝑁𝑧§c

=
𝐼

𝑁𝑧§c
−

𝐼c

𝑁𝑧§c
 (S3-18) 

 1121 

 
𝜎ëÛ
c 𝜕𝑓

𝜕𝑦

c

𝐼, 𝑧§ =
𝑣𝑎𝑟 𝑧§
𝑁

Ic

𝑧§ò
=
1
𝑁

2
λ
𝟏0ñPQñ𝑧§−𝑧§

c Ic

𝑧§ò
=
2
λ

Ic

𝑁𝑧§ò
𝟏0ñPQñ𝑧§ −

Ic

𝑁𝑧§c
 (S3-19) 

 1122 
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2𝜎�,ëÛ

𝜕𝑓
𝜕𝑥

𝐼, 𝑧§
𝜕𝑓
𝜕𝑦

𝐼, 𝑧§ = 2
𝟏0ñPQñ𝑧§ − 𝐼𝑧§

𝑁
1
𝑧§

−
I
𝑧§c

= −𝟏0ñPQñ𝑧§
2𝐼
𝑁𝑧§d

+
2𝐼c

𝑁𝑧§c
 

(S3-20) 

Since 𝜆 ≈ �
ëÛ

, summing  S3-18 to S3-20 leads to: 1123 

 𝑣𝑎𝑟
𝐼
𝑧§

≈
𝐼

𝑁𝑧§c
 (S3-21) 

(S3-14) can be rewritten: 1124 

 
Λ =

I
𝑧§

1 −
𝟏0ñPQñ𝑧§
𝑁𝐼𝑧§

= MLEn 1 −
𝟏0ñPQñ𝑧§
𝑁𝐼𝑧§

 (S3-22) 

MLEn is corrected by a factor of which the variance is assumed to be small when compared to the variance of the 1125 

standard MLE, so that, we can write (when I>0): 1126 

 
𝜎¹
c =

𝐼
𝑁𝑧§c

1 −
𝟏0ñPQñ𝑧§
𝑁𝐼𝑧§

c

 (S3-23) 

This formulation does not account for the asymptotic variability of attenuation coefficient estimators, caused by 1127 

the variability of element positions in vegetation samples. However, this asymptotic variability can be estimated 1128 

from Eq. (31):  1129 

 
lim
â→�

𝜎µ
c =

𝜎��
c I, λMδ

δ§
c 1 − 𝐼 c

 (S3-24) 

And thus: 1130 

 
𝜎¹
c =

𝐼
𝑁𝑧§c

1 −
𝟏0ñPQñ𝑧§
𝑁𝐼𝑧§

c

+
𝜎�∞
c Iº, λMδ
𝛿§c(1 − Iº)c

 (S3-25) 

With Iº defined as deal with case I=1 as in Supplementary S2: 1131 

 Iº = min I, 1 −
1

2𝑁 + 2
 (S3-26) 

S3.6. Cramer Rao bound 1132 

The Fisher information (Kay, 1993, Chapter 3) measures the amount of information that is carried about the 1133 

attenuation coefficient, by the set of distances travelled by beams within a voxel 𝑥Ö Ö~â. It is defined as: 1134 

 
Ιô λ = Ε

dlogℒ
dλ

c

= −Ε
dclogℒ
dλc

 (S3-27) 

Since the log likelihood function of Z (S3-1) is twice differentiable, the Fisher information can be expressed as: 1135 

 
Ιô λ =

Ε N?
λc

=
NI� λ
λc

 (S3-28) 
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The Cramer-Rao bound is the inverse of the Fisher Information: 1136 

 
CRB/ =

λc

NI� λ
 (S3-28) 

In the case of a spherical voxel, the Cramer-Rao bound can be analytically computed (see section S4.2).   1137 
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Supplementary S4. Technical derivation in a spherical voxel 1138 

S4.1. Distribution of optical depths in a spherical voxel 1139 

In this subsection, we present the derivation leading to the PDF of optical depths LJ  in a spherical voxel, 1140 

required for the numerical simulation described in subsection 4.3. 1141 

 1142 

If r is the distance between the beam and the sphere center, the path length of the beam within the sphere is: 1143 

 LJ = λδJ = λ2 Rc − rc (S4-1) 

 1144 

 1145 

Fig. S4-1. Illustration of the numerical simulation of a TLS beam crossing a spherical voxel with radius R and 1146 

path length δ?. 1147 

 1148 

Assuming a constant beam density within the sphere, the beam density with length LJ is:  1149 

 
𝑃 𝜆𝛿} 𝑟 ≤ 𝐿} < 𝜆𝛿} 𝑟 + 𝑑𝑟 =

2𝜋𝑟𝑑𝑟
𝜋𝑅c

=
2𝑟𝑑𝑟
𝑅c

 (S4-2) 

With u = ø
Ô
 between 0 and 1 and ℎ 𝑢 = 1 − uc, it becomes: 1150 

 𝑃 𝜆2𝑅ℎ 𝑢 ≤ 𝐿} < 𝜆2𝑅ℎ 𝑢 + 𝑑𝑢 = 2𝑢𝑑𝑢 (S4-3) 

Or equivalently, using (44): 1151 

 𝑃 𝐿} 𝑢 ≤ 𝐿} < 𝐿} 𝑢 + 𝑑𝑢 = 2𝑢𝑑𝑢 (S4-4) 

with 𝐿} 𝑢 = d
c
L 1 − uc 1152 

 1153 

S4.2. Cramer-Rao bound for dimensionless spherical voxels 1154 

As defined in Supplementary S5.2, the Cramer-Rao bound for a spherical voxel is given by: 1155 
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 CRBú =
ú¤

Fû �
  (S4-5) 

For the Beer-Lambert law, the expectation of the relative density index E(I) can be expressed as a function of the 1156 

optical depth Li: 1157 

 
E I = 1 − e.úü ý 2udu

M

�
 (S4-6) 

With y = d
c
L 1 − uc, dy = d

c
L M

M.ý¤
M
c
(−2udu) so that udu = ò

�ú¤
𝑦dy  and: 1158 

 
e.úü ø 2udu =
M

�
−

8
9Lc

e.êydy
�

d
cú

=
8
9Lc

e.êydy
d
cú

�
 (S4-7) 

Integrating by parts: 1159 

 
e.úü ø 2udu =
M

�

8
9Lc

−ye.ê �

d
cú − −e.êdy

d
cú

�
=

8
9Lc

1 − e.
d
cú −

3
2
Le.

d
cú  (S4-8) 

Which leads to: 1160 

 E I = 1 −
8
9Lc

1 − e.
d
cú −

3
2
Le.

d
cú  (S4-9) 

Thus 1161 

 CRBú =
ú¤

F M. ÿ
!"¤

M.#$
%
¤".%¤ú#

$%¤"
  (S4-10) 

 1162 

  1163 
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Supplementary S5: Dimensionless quantities used in numerical simulations 1164 

S5.1. Finite element simulations (Described in section 4.2): 1165 

The dimensionless quantities of interest for these numerical simulations are: 1166 

 
𝟏§ =

δ§
δ
= −

log 1 − λMδ
λMδ

= −
log 1 − LM

LM
 (S5-1) 

 l = λδ = − log 1 − I 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1
+∞	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1

 (S5-2) 

 

L = Λδ =
−
1
1§

log 1 − I +
I

2N(1 − I)
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1

1
1§
log 2N + 2 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1

 (S5-3) 

 

𝜎ú
c = 𝜎¹

c𝛿c =

𝐼
1§c(1 − 𝐼)

1
𝑁
+ ℎ�(I, LM) 1 −

1
2𝑁 1 − 𝐼

c

	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1

2𝑁 − 1
1§c

1
𝑁
+ ℎ�

1
2𝑁 + 2

, LM 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1
 (S5-4) 

 
y§ = λz§ = −λ

log 1 − λMz'
λM	  

= −
L
LM	  
	   log 1 −

LM
L
y'  (S5-5) 

 
𝟏oPúy§ = λ𝟏ëPBy§ = −λ

𝟏ëPBlog 1 − λMz'
λM	  

= −
L
LM	  
	  𝟏oPúlog 1 −

LM
L
y'  (S5-6) 

 l = λδ =
L
y
I (S5-7) 

 
L = Λδ =

L
y#

I −
𝟏oPúy§
Ny§

 (S5-8) 

 
𝜎ú
c = 𝜎¹

c𝛿c =
LcI
Ny§c

1 −
𝟏y<𝐿𝑦𝑒
𝑁𝐼𝑦𝑒

2

+
𝜎�∞
c Iº, LM

1§c(1 − Iº)c
 (S5-9) 

 CRBú =
ú¤

Fû �
= ú¤

F M. M.(V )/)V
  (S5-10) 

 1167 

S5.2. Unequal path length simulations (Described in section 4.3) 1168 

The ratio of the volume to cross section of the voxel X
U
 is δ�, the limit of δ when N tends to infinity, since a 1169 

constant surface density of beams is assumed. Thus, the asymptotic optical depth is: 1170 

 L = λ
V
S
= λδ� (S5-11) 

With 1171 

 L§ = λδ§ = λδ (S5-12) 
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and 1172 

 𝜎(c = 𝜎Qcλc (S5-13) 

   

The dimensionless quantities of interest are: 1173 

 

 
1§ =

L§
L

 
(S5-14) 

 
l = λδ = −

1
1§
log 1 − I 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1

+∞	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1
 (S5-15) 

 

L = Λδ =
−
1
1§

log 1 − I +
I

2N(1 − I)
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1

1
1§
log 2N + 2 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1

 (S5-16) 

 
Lc = Λc

V
S
=
V
S
δ
𝜎Qc

1 − 1 − 2
𝜎Qc

δ
Λ =

LL§
𝜎úc

1 − 1 − 2
𝜎úc

LL§
L  (S5-17) 

 

𝜎ú
c = 𝜎¹

c V
S

c

=

𝐼
1§c𝑁(1 − 𝐼)

1 −
1

2𝑁 1 − 𝐼

c

	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 < 1

2 − 1
𝑁

1§c
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑤ℎ𝑒𝑛	  𝐼 = 1

 

 

(S5-18) 

 
𝜎ú¤
c = 𝜎¹¤

c V
S

c

= 𝜎ú
c 1 +

𝜎úc

LL§
L

c

 (S5-19) 

 CRBú =
ú¤

F M. ÿ
!"¤

M.#$
%
¤".%¤ú#

$%¤"
  (S5-20) 

  1174 
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Supplementary S6. Empirical expectation and variance of the function f of random 1175 

variable X or two random variables X and Y and method for bias correction. 1176 

Here, f is assumed continue and twice differentiable with continuous second derivative. Then the following 1177 

second order approximations hold: 1178 

 1179 

 f(X) ≈ f X +
1
2
𝜎�c𝑓åå(𝑋) (S6-1) 

 Var f X ≈ f′ X
c
𝜎�c (S6-2) 

 
f(X, Y) ≈ f X, Y +

1
2
𝜎�c
𝜕c𝑓
𝜕𝑥c

X, Y +
1
2
𝜎,c
𝜕c𝑓
𝜕𝑦c

X, Y + 𝜎�,,
𝜕c𝑓
𝜕𝑥𝜕𝑦

X, Y  (S6-3) 

 
Var f X, Y ≈

𝜕𝑓
𝜕𝑥

X, Y
c

𝜎�c +
𝜕𝑓
𝜕𝑦

X, Y
c

𝜎,c + 2
𝜕𝑓
𝜕𝑥

X, Y
𝜕𝑓
𝜕𝑦

X, Y 𝜎�,, (S6-4) 

 1180 

(S6-1) and (S6-3) are used to compute the bias correction for the estimators of f X  and f X, Y , since 1181 

 
f(X) −

1
2
𝜎�c𝑓åå(𝑋) ≈ f X  (S6-5) 

And 1182 

 
f(X, Y) −

1
2
𝜎�c
𝜕c𝑓
𝜕𝑥c

X, Y −
1
2
𝜎,c
𝜕c𝑓
𝜕𝑦c

X, Y − 𝜎�,,
𝜕c𝑓
𝜕𝑥𝜕𝑦

X, Y ≈ f X, Y  (S6-6) 

 1183 

Proof: 1184 

 1185 

The proof of (S6-1) is the following. For a set of N value x} of the random variable X: 1186 

 f x} = f x- + x} − x- ≈ f x- + x} − x- 𝑓å(x-) +
1
2
x} − x-

c
𝑓åå(x-)  

Summing over N and dividing by N leads to: 1187 

 1
𝑁

f(x})
â

}LM

≈ f x- +
𝑓å x-
𝑁

x} − x-

â

}LM

+
1
2
𝑓åå x-
𝑁

x} − x-
c

â

}LM

  

The second term is by definition equal to 0. Thus, with 𝜎�c the usual unbiased estimates for variance: 1188 

 𝑓(𝑥-) ≈ f x- +
1
2
𝑁 − 1
𝑁

𝜎�c𝑓åå x- ≈ f x- +
1
2
𝜎�c𝑓åå x-   

 1189 
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The proof of (S6-2) is similar: 1190 

 f x} − f x-
c
≈ x} − x- 𝑓å(x-)

c
  

Thus, 1191 

 1
𝑁 − 1

f x} − f x-
c

â

}LM

≈
𝑓å x-

c

𝑁 − 1
x} − x-

c
â

}LM

  

So that, 1192 

 1
𝑁 − 1

f x} − f x-
c

â

}LM

≈ 𝑓å x-
c
𝜎�c  

 1193 

Similar derivations for a function of two variables lead to (S6-3) and (S6-4). Then (S6-5) and (S6-6) follow. 1194 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2017                   doi:10.20944/preprints201709.0131.v1

Peer-reviewed version available at Remote Sensing of Environment 2018, 215, 342-370; doi:10.1016/j.rse.2018.06.024

http://dx.doi.org/10.20944/preprints201709.0131.v1
https://doi.org/10.1016/j.rse.2018.06.024

