J. Dalous, Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation, Biophys. J, vol.94, pp.1063-1074, 2008.

M. Théry, A. Jiménez-dalmaroni, V. Racine, M. Bornens, and F. Jülicher, Experimental and theoretical study of mitotic spindle orientation, Nature, vol.447, pp.493-496, 2007.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, pp.677-689, 2006.

E. Farge, Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium, Curr. Biol, vol.13, pp.1365-1377, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-02440678

O. Hamant, Developmental patterning by mechanical signals in Arabidopsis, Science, vol.322, pp.1650-1655, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412612

B. Aigouy, Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila, Cell, vol.142, pp.773-786, 2010.

Y. Pan, I. Heemskerk, C. Ibar, B. I. Shraiman, and K. D. Irvine, Differential growth triggers mechanical feedback that elevates Hippo signaling, Proc. Natl Acad. Sci. USA, vol.113, pp.6974-6983, 2016.

N. Hervieux, A mechanical feedback restricts sepal growth and shape in arabidopsis, Curr. Biol, vol.26, pp.1019-1028, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636042

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, Appreciating force and shapethe rise of mechanotransduction in cell biology, Nat. Rev. Mol. Cell Biol, vol.15, pp.825-833, 2014.

E. S. Haswell, R. Phillips, and D. C. Rees, Mechanosensitive channels: what can they do and how do they do it?, Structure, vol.19, pp.1356-1369, 2011.

M. Yu, mDia1 senses both force and torque during F-actin filament polymerization, Nat. Commun, vol.8, p.1650, 2017.

V. I. Risca, Actin filament curvature biases branching direction, Proc. Natl Acad. Sci. USA, vol.109, pp.2913-2918, 2012.

F. Gittes, B. Mickey, J. Nettleton, and J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, J. Cell Biol, vol.120, pp.923-934, 1993.

P. Green and A. King, A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture, Aust. J. Biol. Sci, vol.19, pp.421-437, 1966.

Z. Hejnowicz, A. Rusin, and T. Rusin, Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl, J. Plant Growth. Regul, vol.19, pp.31-44, 2000.

S. Dumont and T. J. Mitchison, Force and length in the mitotic spindle, Curr. Biol, vol.19, pp.749-761, 2009.

P. B. Green, Mechanism for plant cellular morphogenesis, Science, vol.138, pp.1404-1405, 1962.

F. Corson, Turning a plant tissue into a living cell froth through isotropic growth, Proc. Natl Acad. Sci. USA, vol.106, pp.8453-8458, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00412929

A. Elliott and S. L. Shaw, Update: plant cortical microtubule arrays, Plant Physiol, vol.176, pp.94-105, 2018.

D. W. Ehrhardt and S. L. Shaw, Microtubule dynamics and organization in the plant cortical array, Annu. Rev. Plant Biol, vol.57, pp.859-875, 2006.

R. C. Moore, M. Zhang, L. Cassimeris, and R. J. Cyr, In vitro assembled plant microtubules exhibit a high state of dynamic instability, Cell Motil. Cytoskelet, vol.38, pp.278-286, 1997.

V. Seltzer, Arabidopsis GCP2 and GCP3 are part of a soluble ?-tubulin complex and have nuclear envelope targeting domains: Targeting of ?-tubulin complex proteins, Plant J, vol.52, pp.322-331, 2007.

M. Nakamura, J. J. Lindeboom, M. Saltini, B. M. Mulder, and D. W. Ehrhardt, SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays, J. Cell Biol, vol.217, pp.915-927, 2018.

R. Dixit and R. Cyr, The cortical microtubule array: from dynamics to organization, Plant Cell, vol.16, pp.2546-2552, 2004.

G. O. Wasteneys and J. C. Ambrose, Spatial organization of plant cortical microtubules: close encounters of the 2D kind, Trends Cell Biol, vol.19, pp.62-71, 2009.

S. L. Shaw, R. Kamyar, and D. W. Ehrhardt, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science, vol.300, pp.1715-1718, 2003.

G. Chomicki, R. Wightman, and S. R. Turner, A specific class of short treadmilling microtubules enhances cortical microtubule alignment, Mol. Plant, vol.9, pp.1214-1216, 2016.

L. Schaedel, Microtubules self-repair in response to mechanical stress, Nat. Mater, vol.14, pp.1156-1163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218413

Y. Fan, G. M. Burkart, and R. Dixit, The arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends, Curr. Biol, vol.28, pp.987-994, 2018.

M. Uyttewaal, Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis, Cell, vol.149, pp.439-451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004210

V. Mirabet, The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues, PLoS Comput. Biol, vol.14, p.1006011, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624527

A. Muroyama and T. Lechler, Microtubule organization, dynamics and functions in differentiated cells, Development, vol.144, pp.3012-3021, 2017.

M. Nakamura, D. W. Ehrhardt, and T. Hashimoto, Microtubule and katanindependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array, Nat. Cell Biol, vol.12, pp.1064-1070, 2010.

M. Cosentino-lagomarsino, Microtubule organization in threedimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach, Biophys. J, vol.92, pp.1046-1057, 2007.

M. S. Islam, Role of confinement in the active self-organization of kinesin-driven microtubules, Sens. Actuat. B-Chem, vol.247, pp.53-60, 2017.

C. Ambrose, J. F. Allard, E. N. Cytrynbaum, and G. O. Wasteneys, A CLASPmodulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis, Nat. Commun, vol.2, p.430, 2011.

F. P. Beer and E. R. Johnston, Mechanics of material, 1992.

A. Sampathkumar, Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells, vol.3, p.1967, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634790

A. Sapala, Why plants make puzzle cells, and how their shape emerges, vol.7, p.32794, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02622500

A. M. Kabir, Biomolecular motor modulates mechanical property of microtubule, Biomacromolecules, vol.15, pp.1797-1805, 2014.

A. D. Franck, Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis, Nat. Cell Biol, vol.9, pp.832-837, 2007.

A. Trushko, E. Schäffer, and J. Howard, The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force, Proc. Natl Acad. Sci. USA, vol.110, pp.14670-14675, 2013.

D. Inoue, Sensing surface mechanical deformation using active probes driven by motor proteins, Nat. Commun, vol.7, p.12557, 2016.

G. J. Brouhard and L. M. Rice, Microtubule dynamics: an interplay of biochemistry and mechanics, Nat. Rev. Mol. Cell Biol, vol.19, pp.451-463, 2018.

R. Zhang, G. M. Alushin, A. Brown, and E. Nogales, Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins, Cell, vol.162, pp.849-859, 2015.

G. M. Alushin, High-resolution microtubule structures reveal the structural transitions in ??-tubulin upon GTP hydrolysis, Cell, vol.157, pp.1117-1129, 2014.

F. Sainsbury, Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment, Plant J, vol.56, pp.116-131, 2008.

C. L. Wymer, S. A. Wymer, D. J. Cosgrove, and R. J. Cyr, Plant cell growth responds to external forces and the response requires intact microtubules, Plant Physiol, vol.110, pp.425-430, 1996.

I. Kaverina, Tensile stress stimulates microtubule outgrowth in living cells, J. Cell Sci, vol.115, pp.2283-2291, 2002.

A. R. Paredez, C. R. Somerville, and D. W. Ehrhardt, Visualization of cellulose synthase demonstrates functional association with microtubules, Science, vol.312, pp.1491-1495, 2006.

E. Jacques, J. Verbelen, and K. Vissenberg, Mechanical stress in Arabidopsis leaves orients microtubules in a 'continuous' supracellular pattern, BMC Plant Biol, vol.13, p.163, 2013.

S. Robinson and C. Kuhlemeier, Global compression reorients cortical microtubules in arabidopsis hypocotyl epidermis and promotes growth, Curr. Biol, vol.28, pp.1794-1802, 2018.

S. Verger, Y. Long, A. Boudaoud, and O. Hamant, A tension-adhesion feedback loop in plant epidermis, vol.7, p.34460, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621933

A. Creff, L. Brocard, and G. Ingram, A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat, Nat. Commun, vol.6, p.6382, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636195

A. R. Hardham, D. Takemoto, and R. G. White, Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack, BMC Plant Biol, vol.8, p.63, 2008.

J. Chan, G. Calder, S. Fox, and C. Lloyd, Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells, Nat. Cell Biol, vol.9, pp.171-175, 2007.

L. Beauzamy, M. Louveaux, O. Hamant, and A. Boudaoud, Mechanically, the shoot apical meristem of arabidopsis behaves like a shell inflated by a pressure of about 1 MPa, Front. Plant Sci, vol.6, p.1038, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02630877

A. Burian, A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem, J. Exp. Bot, vol.64, pp.5753-5767, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204036

M. G. Heisler, Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport, PLoS Biol, vol.8, p.1000516, 2010.

T. Li, Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche, Nat. Commun, vol.10, p.726, 2019.

J. Dumais and C. R. Steele, New evidence for the role of mechanical forces in the shoot apical meristem, J. Plant Growth Regul, vol.19, pp.7-18, 2000.

U. Kutschera and K. J. Niklas, The epidermal-growth-control theory of stem elongation: an old and a new perspective, J. Plant Physiol, vol.164, pp.1395-1409, 2007.

S. Savaldi-goldstein, C. Peto, and J. Chory, The epidermis both drives and restricts plant shoot growth, Nature, vol.446, pp.199-202, 2007.

I. I. Vaseva, The plant hormone ethylene restricts Arabidopsis growth via the epidermis, Proc. Natl Acad. Sci, vol.115, pp.4130-4139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02302903

O. Ali and J. Traas, Force-driven polymerization and turgor-induced wall expansion, Trends Plant Sci, vol.21, pp.398-409, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398409

E. R. Rojas, S. Hotton, and J. Dumais, Chemically mediated mechanical expansion of the pollen tube cell wall, Biophys. J, vol.101, pp.1844-1853, 2011.

C. T. Anderson, I. S. Wallace, and C. R. Somerville, Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls, Proc. Natl Acad. Sci, vol.109, pp.1329-1334, 2012.

D. J. Cosgrove, Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol, vol.6, pp.850-861, 2005.

D. J. Cosgrove, Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes, J. Exp. Bot, vol.67, pp.463-476, 2016.

T. Hamada, R. Sugimoto, T. Nagasaki, and M. Takagi, Photochemical control of membrane raft organization, Soft Matter, vol.7, pp.220-224, 2011.

R. Himmelspach, R. E. Williamson, and G. O. Wasteneys, Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization, Plant J. Cell Mol. Biol, vol.36, pp.565-575, 2003.

D. Borowska-wykr?t and D. Kwiatkowska, Folding, Wrinkling, and Buckling in Plant Cell Walls, pp.209-233, 2018.

K. Hématy, A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis, Curr. Biol, vol.17, pp.922-931, 2007.

S. Wolf, K. Hématy, and H. Höfte, Growth control and cell wall signaling in plants, Annu. Rev. Plant Biol, vol.63, pp.381-407, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053127

W. Feng, The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2 + signaling, Curr. Biol, vol.28, pp.666-675, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625236

B. D. Kohorn, The state of cell wall pectin monitored by wall associated kinases: a model, Plant Signal. Behav, vol.10, p.1035854, 2015.

I. W. Manfield, Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis, Plant J. Cell Mol. Biol, vol.40, pp.260-275, 2004.

J. J. Lindeboom, A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing, Science, vol.342, p.1245533, 2013.

L. Vineyard, A. Elliott, S. Dhingra, J. R. Lucas, and S. L. Shaw, Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells, Plant Cell, vol.25, pp.662-676, 2013.

C. Aumeier, Self-repair promotes microtubule rescue, Nat. Cell Biol, vol.18, pp.1054-1064, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416168

J. D. Díaz-valencia, Drosophila katanin-60 depolymerizes and severs at microtubule defects, Biophys. J, vol.100, pp.2440-2449, 2011.

D. Portran, L. Schaedel, Z. Xu, M. Théry, and M. V. Nachury, Tubulin acetylation protects long-lived microtubules against mechanical ageing, Nat. Cell Biol, vol.19, pp.391-398, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515539

Z. Xu, Microtubules acquire resistance from mechanical breakage through intralumenal acetylation, Science, vol.356, pp.328-332, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581091

D. Portran, MAP65/Ase1 promote microtubule flexibility, Mol. Biol. Cell, vol.24, pp.1964-1973, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843029

R. B. Nicklas, The forces that move chromosomes in mitosis, Annu. Rev. Biophys. Biophys. Chem, vol.17, pp.431-449, 1988.

B. Akiyoshi, Tension directly stabilizes reconstituted kinetochoremicrotubule attachments, Nature, vol.468, pp.576-579, 2010.

M. Dembo, D. C. Torney, K. Saxman, and D. Hammer, The reaction-limited kinetics of membrane-to-surface adhesion and detachment, Proc. R. Soc. Lond. B Biol. Sci, vol.234, pp.55-83, 1988.

R. Galletti, S. Verger, O. Hamant, and G. C. Ingram, Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity?, Development, vol.143, pp.3249-3258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606967

A. Guérin, S. Gravelle, and J. Dumais, Forces behind plant cell division, Proc. Natl Acad. Sci, vol.113, pp.8891-8893, 2016.

A. M. Kabir, Buckling of microtubules on a, 2D Elastic Medium. Sci. Rep, vol.5, p.17222, 2015.

A. Goldbeter and D. E. Koshland, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl Acad. Sci. USA, vol.78, pp.6840-6844, 1981.

Z. Liu, S. Persson, and C. Sánchez-rodríguez, At the border: the plasma membrane-cell wall continuum, J. Exp. Bot, vol.66, pp.1553-1563, 2015.

Z. Liu, S. Persson, and Y. Zhang, The connection of cytoskeletal network with plasma membrane and the cell wall, J. Integr. Plant Biol, vol.57, pp.330-340, 2015.

Y. Oda, Emerging roles of cortical microtubule-membrane interactions, J. Plant Res, vol.131, pp.5-14, 2018.

A. Martinière, Cell wall constrains lateral diffusion of plant plasmamembrane proteins, Proc. Natl Acad. Sci. USA, vol.109, pp.12805-12810, 2012.

J. C. Ambrose and G. O. Wasteneys, CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules, Mol. Biol. Cell, vol.19, pp.4730-4737, 2008.

Q. Zhang and W. Zhang, Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells, Protein Cell, vol.7, pp.81-88, 2016.

T. Stanislas, A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana, BMC Biol, vol.16, p.20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02348886

A. Gouget, Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis, Plant Physiol, vol.140, pp.81-90, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00117132

H. Canut, High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall, Plant J. Cell Mol. Biol, vol.16, pp.63-71, 1998.

M. Bringmann, Cracking the elusive alignment hypothesis: the microtubulecellulose synthase nexus unraveled, Trends Plant Sci, vol.17, pp.666-674, 2012.

Z. Liu, Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in arabidopsis, Dev. Cell, vol.38, pp.305-315, 2016.