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Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French 26 

case study. 27 

Abstract 28 

Plant available water capacity (AWC) refers to the maximum amount of water that a soil can store and 29 

provide to plant roots. Spatial predictions of AWC through digital soil mapping at high resolution and 30 

national extent provide relevant information for upscaling ecological and hydrological models, and 31 

assessment of the provision of ecosystem services like water quantity and quality regulation, carbon 32 

sequestration, and provision of food and raw materials. However, the spatial predictions of AWC are 33 

prone to errors and uncertainties. Moreover, this digital soil mapping process requires using pedotransfer 34 

functions (PTFs) due to the lack of sufficient georeferenced measurements of the upper (i.e., soil 35 

moisture at field capacity, ���) and lower (i.e., soil moisture at permanent wilting point, ����) limits 36 

of soil moisture contents defining AWC. This adds an additional source of uncertainty to the final 37 

estimates of AWC. The objectives of this study were: 1) to predict AWC for mainland France following 38 

the GlobalSoilMap (GSM) project specifications on depth intervals and uncertainty, and 2) to quantify 39 

the uncertainty of AWC accounting for uncertainty of the soil input variables and the PTFs’ coefficients. 40 

We first predicted the soil input properties by GSM layer (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 41 

cm), and then applied PTFs for estimating ���, ����, and volumetric AWC (cm3 cm-3). The volume of 42 

coarse elements by GSM layer was subtracted before aggregating AWC to estimated soil depth for a 43 

maximum of 2 m. The uncertainty of AWC was quantified by first-order Taylor analysis. Independent 44 

evaluation indicated that clay had the lowest R2 (clay R2 = 0.27, silt R2 = 0.43 and sand R2 = 0.46) and 45 

RMSE (clay RMSE = 128 g kg-1, silt RMSE = 139 g kg-1 and sand RMSE = 172 g kg-1) from the three 46 

particle size fractions. However, the model for coarse elements had the worst predictive performance 47 

(R2 = 0.14 and RMSE = 21 %) among all AWC input variables. The performance of the GSM predictions 48 

for ��� and ���� had a R2 of 0.21 and 0.29. When the PTFs were applied to the spatial predictions of 49 

sand and clay, the RMSE for ��� and ���� had a relative increase of 25 % and 36 % respectively 50 

compared to when they were applied to measured horizon data. Across the majority of mainland France, 51 

the main sources of uncertainty of elementary AWC were coarse elements and soil texture, but the 52 
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contribution of uncertainty of PTFs’ coefficients increased in areas dominated by very sandy and clayey 53 

textures. An advantage of the produced maps of ���, ���� and AWC is that the end users can 54 

incorporate associated uncertainties into ecological and agricultural modelling, and decision-making 55 

processes involved in soil and water planning. 56 

Keywords: soil available water capacity, digital soil mapping, pedotransfer function, soil moisture at 57 

field capacity, soil moisture at permanent wilting point. 58 

1. Introduction1 59 

Soil available water capacity (AWC) refers to the maximum amount of water that a soil can store and 60 

release to plant roots (Veihmeyer and Hendrickson, 1927), and is a key property for many ecological 61 

and hydrological processes. AWC is operationally calculated as the difference between soil moisture at 62 

field capacity (���) (i.e., soil moisture remaining in the soil after water has drained by gravitational 63 

force) and soil moisture content at permanent wilting point (����) (i.e., soil water retained so strongly 64 

that it is no longer available for plant roots, so plants wither and cannot recover their turgidity) (Silva et 65 

al., 2014). AWC is an important variable for agricultural and land use planning, for optimizing irrigation 66 

and crop growth of cultivated soils (Tetegan et al., 2015), for assessing soil drought risk (Schwärzel et 67 

al., 2009; Poggio et al., 2010; Leenaars et al., 2018), and estimating transport and leaching of pollutants 68 

(Marchetti et al. 1997).  69 

Many agricultural and ecological models have AWC, ���, or ���� as input variables [e.g., STICS 70 

(Brisson et al., 1998), CENTURY (Parton et al., 1987), APSIM (O’Leary et al., 2016) SWAT (Arnold 71 

et al., 1987; Arnold and Fohrer, 2005)]. Thus, spatially explicit predictions of AWC at high resolution 72 

are relevant for upscaling simulation models at regional or national scale, and assessing the provision of 73 

some ecosystem services (eg., Dominati et al., 2010) like water quantity and quality regulation, carbon 74 

                                                                 

1
 Abbreviations: available water capacity, AWC; digital soil mapping, DSM; GlobalSoilMap, GSM; 

French soil mapping and inventory program dataset, IGCS; French soil monitoring network, RMQS; 

pedotransfer function, PTF; soil moisture at field capacity, ���; soil moisture at permanent wilting point,  

����. 
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sequestration and provision of food, feed, fuel and fiber. Furthermore, uncertainty and scenario analysis 75 

should also include the uncertainty of AWC estimates when forecasting carbon sequestration, crop yield 76 

and biomass production, and planning efficient water use (Leenaars et al., 2018). Therefore, information 77 

of AWC and its spatial variability is important for planning (Poggio et al., 2010), and can help 78 

researchers and policy-makers towards the achievement of several United Nations Sustainable 79 

Development Goals (e.g., ensuring food security and promoting sustainable agriculture, mitigating 80 

climate change, and sustainable water management). 81 

Measuring soil hydraulic properties is time-consuming and requires many human and economic 82 

resources. National soil databases rarely contain sufficient georeferenced AWC measurements for 83 

applying geostatistical or regression models (Padarian et al., 2014; Viscarra Rossel et al., 2015), and 84 

therefore indirect estimates of AWC are calculated at some stage of the digital soil mapping (DSM) 85 

process with pedotransfer functions (Poggio et al., 2010; Hong et al., 2013; Ugbaje and Reuter, 2013). 86 

Pedotransfer functions (PTFs) are used for translating readily available data (e.g., physical and chemical 87 

soil properties) into the data we need (e.g., soil water content) (Bouma, 1989). PTFs estimating soil 88 

hydraulic properties often have soil texture class or particle size distribution, bulk density, soil organic 89 

carbon, cation exchange capacity, and horizon type among the predictor variables (Wösten et al., 1999; 90 

Nemes et al., 2003; Al Majou et al., 2008b; Tóth et al., 2015, Román Dobarco et al. 2019).  91 

AWC predictions with a very high relative error (coefficient of variation) may not be useful for certain 92 

applications, e.g. modelling crop yield (Folberth et al., 2016), because the estimates of ecological or 93 

agricultural processes produced with unreliable AWC predictions will have consequently a large 94 

uncertainty. Hence, to know if the AWC maps can be useful for modelling and decision-making, the 95 

AWC maps should provide a measure of the reliability of the predictions and quantified uncertainty 96 

(Poggio et al., 2010). Different sources of error are propagated in the process of mapping AWC: 97 

measurement errors of the soil profile data, errors due to the PTFs structure and parameters, errors 98 

derived from setting the upper and lower limits of AWC in terms of soil water potential, errors derived 99 

from the spatial extrapolation, errors of the environmental covariates used for regression modelling 100 

(Heuvelink et al., 1989; Carré et al., 2007). Poggio et al. (2010) combined general additive models 101 
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(GAM) and geostatistical models for mapping AWC after applying PTFs to individual horizons. They 102 

accounted for the uncertainty of the model trend and the local and spatial uncertainty, but did not include 103 

the uncertainty due to the PTFs. The uncertainty of soil hydraulic properties due to errors in the PTFs is 104 

sometimes small compared to the uncertainty of soil input data (Minasny et al., 1999). Additionally, 105 

identifying which input variable (or variables) account for most of the uncertainty of AWC can help to 106 

prioritize the input data needed to build DSM products or PTFs that require more improvement. 107 

AWC is included in the soil properties of the GlobalSoilMap project (GSM), which aims to produce a 108 

digital soil map of the world at 3-arc second resolution providing estimates of uncertainty, following a 109 

bottom-up approach (Sanchez et al., 2009; Arrouays et al., 2014). Although AWC is still rarely mapped 110 

(Ugbaje and Reuter, 2013), the number of studies on AWC are increasing in the DSM literature from 111 

national (Hong et al., 2013, Padarian et al., 2014) to continental extent (Wösten et al., 1999; Ballabio et 112 

al., 2016; Tóth et al., 2016). GSM products for AWC are already available for Scotland (Poggio et al., 113 

2010), Nigeria (Ugbaje and Reter, 2013), and Australia (Viscarra Rossel et al., 2015). The objectives of 114 

this study were: 1) to predict AWC for mainland France following the GSM specifications, and 2) to 115 

quantify the uncertainty of AWC accounting for uncertainty of the soil input variables and the PTFs’ 116 

coefficients. The incorporation of the uncertainty due to the PTFs’ coefficients into the AWC spatial 117 

modelling is a novelty relative to previous studies at national extent. 118 

2. Methods 119 

2.1 General framework 120 

AWC is a composite soil property that depends on the difference between the soil moisture at field 121 

capacity and at permanent wilting point, on the volume of coarse elements and their ability to store 122 

water, and on the total thickness of the soil profile. Under the assumption that the coarse elements are 123 

inert and do not contribute to the AWC, the AWC for a unit of soil volume, or elementary AWC, is 124 

defined as: 125 

elementary AWC (�������) = (��� −  ����)(1 − ��)  [1] 126 

When we consider a soil layer or profile, the total AWC is calculated with the formula: 127 

��� (��) = (��� −  ����)(1 − ��)       [2] 128 
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Where ��� is the volumetric water content at field capacity of the fine fraction (cm3 cm-3), ���� is the 129 

volumetric water content at permanent wilting point of the fine fraction (cm3 cm-3), ��  is the volume 130 

fraction of coarse elements, and d is the depth of the soil profile or the thickness of the soil layer 131 

considered (mm). 132 

In the DSM literature there are both 1) studies that applied PTFs to horizon or profile data and estimated 133 

AWC prior to the spatialization (Vanderlinden et al., 2005; Poggio et al., 2010; Hong et al., 2013), and 134 

2) studies that spatialized the input soil variables first, and then applied the PTFs and equation 2 (Ugbaje 135 

and Reuter, 2013). Applying first the PTFs to horizon data or weighed averages of input properties by 136 

profile and then interpolating AWC estimates simplifies the DSM process, and can provide better results 137 

than spatializing soil properties first and then applying the PTFs (Styc and Lagacherie, 2018). 138 

Conversely, the spatial interpolation or spatial modelling of AWC based on environmental-soil 139 

relationships should better take place before applying the PTFs because this enables a more efficient use 140 

of the spatial distribution characteristics of individual inputs (Heuvelink and Pebesma, 1999), especially 141 

for those that are not usually correlated (e.g., soil profile thickness and soil texture). The PTFs’ input 142 

variables are often correlated in the feature space (i.e., n-dimensional space with all the independent 143 

variables) or have some degree of spatial correlation. Thus, their correlation should be considered at 144 

spatial interpolation for obtaining plausible estimates of AWC and quantifying its uncertainty more 145 

accurately (Heuvelink et al., 2016). 146 

In this study, we first generated maps of the PTFs’ soil input properties by each GSM depth interval, 147 

taking into account the correlation among variables within each interval but omitting the correlation 148 

between different layers. Then we applied suitable PTFs for calculating ��� and ���� by depth interval 149 

(Figure 1). Al Majou et al (2008a) found that ��� measured in situ corresponded best to soil moisture 150 

measured at the laboratory at a soil water potential of -10 kPa or pF = 2.0 (�!.#) for horizons sampled in 151 

France, mainly in the Paris basin. We hypothesized that pF = 2.0 represents ��� across France and ���� 152 

corresponds to soil moisture at a soil water potential of -1580 kPa or pF = 4.2 (�$.!). Finally, we summed 153 

the AWC spatial predictions of each depth interval to the predicted soil thickness, modelled previously 154 

by Lacoste et al. (2016), for a maximum of 2 m: 155 
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��� =  ∑ (1 − �&)(���& − ����& ) '&(&)*      [3] 156 

 157 

where h = 1,…,6 is each of the GSM depth intervals, �& is the proportion of soil occupied by coarse 158 

elements, ���&  is the soil moisture at field capacity (cm3 cm-3) in horizon h, ����&  is the soil moisture 159 

content at permanent wilting point (cm3 cm-3), and '& is the effective thickness (i.e. truncated using soil 160 

profile thickness estimates) of the horizon in mm. 161 

2.2 Soil data 162 

2.2.1 Calibration data from the French Soil Mapping and Inventory program  163 

For the DSM model, the calibration data of particle size distribution and coarse elements came from the 164 

French soil mapping and inventory program dataset (Inventaire Gestion et Conservation des Sols: IGCS) 165 

(Laroche et al., 2014). Data from 81,671 soil profiles and soil cores was extracted from the IGCS dataset. 166 

The IGCS observations were originally collected for different studies with the objective of delineating 167 

soil-mapping units (Arrouays et al., 2004). Hence, the distribution of the observations was irregular 168 

through mainland France (Mulder et al., 2016). Whereas some areas were densely sampled, several areas 169 

had very few data or were even practically empty of observations (Figure 2). The horizon data of the 170 

profiles was standardized for the six depth intervals specified by the GlobalSoilMap project (i.e., 0–5 171 

cm; 5–15 cm; 15–30 cm; 30–60 cm; 60–100 cm; 100–200 cm) (Table 1). For that purpose, we applied 172 

equal-area quadratic splines (Bishop et al., 1999) to soil profile data for estimating the average values 173 

of input soil properties by depth interval as explained in Mulder et al. (2016).  174 

2.2.2 Evaluation data for soil input properties: French soil monitoring network 175 

The French soil monitoring network (Réseau de Mesures de la Qualité des Sols: RMQS) is based on a 176 

systematic random grid of 16 km by 16 km that covers metropolitan France with approximately 2200 177 

sites (Jolivet et al., 2006). Hence, we used data from the first RMQS campaign (2000-2012) as an 178 

independent evaluation sample for particle size distribution and coarse elements predictions (Brus et al., 179 

2011). At each RMQS site, a soil pit of approximately 120 cm by 90 cm was dug to the appearance of 180 

parent material, and fully described. Samples were collected from each horizon of the soil profile and 181 

analyzed at the laboratory for determining the content of sand, silt, and clay using the pipette method 182 
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(ISO 13317-2:2001). The soil surveyors estimated visually the content of coarse elements (% volume) 183 

on the three faces of the soil pit. In May 2018, the database had data of particle size distribution from 184 

1622 RMQS sites. The particle size distribution of some RMQS sites mostly located in forested areas 185 

have not been analyzed in the laboratory yet (Figure 3). Similarly, soil profile data of coarse elements 186 

was available for 1662 RMQS sites. 187 

2.2.3 Evaluation data for soil hydraulic properties: GEVARNOVIA 188 

The GEVARNOVIA dataset compiled data of physical and chemical properties for 831 horizons 189 

collected between 1973 to 2016 by different French institutes (ARVALIS-Institut du végétal, GEVES, 190 

INRA, Terres-Inovia) (Cousin et al., 2016), of which 308 horizons came from 108 georeferenced sites. 191 

The soil horizons were not sampled following any systematic sampling scheme, and were located mainly 192 

in the southwest or northern half of France (Figure 3). The land use was mostly agricultural, with cereals, 193 

(wheat, corn, sorghum, oats), sugar beet, and oleaginous crops (rapeseed, sunflower), and some pastures. 194 

The parent material varied between loamy materials, calcareous rocks, alluvial deposits, sandy aeolian 195 

deposits, and crystalline rocks. This independent evaluation dataset had measurements of particle size 196 

distribution, coarse elements, bulk density, and volumetric soil moisture content measured on soil 197 

aggregates after equilibrium at -10 kPa (θ2.0) and at -1580 kPa (θ4.2).  198 

2.2.4 Data pretreatment 199 

Particle size distribution constitutes compositional data (i.e., sand, silt, and clay vary between 0 and 200 

1000 g kg-1, and sum up to 1000 g kg-1) that is subject to non-stochastic constraints (Lark and Bishop, 201 

2007). As compositional data, their distributions cannot be drawn from the real space ℝ�, but from the 202 

two-dimensional simplex plane ,! embedded in this space (Lark and Bishop, 2007). Hence, to avoid 203 

negative spurious correlations between the components, and guarantee that their predictions sum up to 204 

a constant, the distributions of sand, silt, and clay should not be analyzed independently but based on 205 

their ratios (Odeh et al., 2003). Aitchison (1986) proposed the additive log-ratio transformation (alr), 206 

which is defined as: 207 

- = ./0(1) = 2ln 234
35

6 , ln 238
39

6 , … , ln 235;4
35

66     [4] 208 
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where 1 =  <=*, =!, … , => ?@ is a composition of D elements, such as =A > 0 ∀ E = 1,2, … G and ∑ =A>A)* =209 

H, where k is a constant. The inverse alr transformation is defined as: 210 

1 =  IJK (L)
MN IJK (L)  H     [5] 211 

where exp(w) represents the vector <exp(Q*) , exp(Q!) , … , exp(Q>�*) , 1 ? and j is a vector of length D 212 

with all elements equal to 1 (Lark and Bishop, 2007). The alr transformation is commonly applied for 213 

modelling particle size distribution with regression or geostatistical models (Odeh et al., 2003; Lark and 214 

Bishop, 2007; Buchanan et al., 2012; Akpa et al., 2014; Ciampalini et al., 2014; Huang et al., 2014; 215 

Poggio and Gimona, 2017). We applied the alr function of the rgr R package (Garrett, 2015) to obtain 216 

the alr-transformed variables: 217 

�/.RSTU = ln 2 VTSW
XSYZ6     [6] 218 

[E/'STU = ln 2 XAT\
XSYZ6     [7] 219 

We used sand as the denominator after comparing the evaluation statistics and spatial structure of the 220 

model residuals of the three combinations in preliminary tests (results not shown) (Poggio and Gimona, 221 

2017).  222 

2.3 Modelling soil input properties 223 

The DSM process of the soil input properties was based on quantitative relationships between the 224 

calibration data and environmental variables related to soil genesis and spatial distribution, as per the 225 

scorpan framework (McBratney et al., 2003). The scorpan model is an extension of the soil genesis 226 

model by Jenny (1941), in which the soil system is function of the soil forming factors climate (cl), 227 

organisms (o), relief (r), parent material (p), and time (t) (soil = f(cl,o,r,p,t)). In addition, the scorpan 228 

model includes soil (s) and spatial position (n) as factors for predicting the spatial distribution of soil 229 

properties (McBratney et al., 2003) plus and error term (ϵ): 230 

[]E/ = ^([, �, ], 0, _, ., `) + b     [8] 231 

Where � is climate and . is time.  232 

2.3.1 Environmental covariates 233 
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We selected 44 covariates describing the scorpan factors soil, climate, vegetation, relief and parent 234 

material (Table 2). Climatic variables came from the French SAFRAN atmospheric analysis system 235 

(Durand et al. 1993). We used a Digital Elevation Model from SRTM (Shuttle Radar Topography 236 

Mission) at 90 m (USGS, 2004) to derive primary and secondary relief covariates in ArcGIS (ESRI, 237 

Redlands, WA). Soil and parent material were characterized by predominant soil type and parent 238 

material by soil mapping unit of the French Soil Geographical Database (Gis Sol, 2011), erosion rates 239 

(Cerdan et al., 2010), geophysical gravimetric data, and the Index of River Network Development and 240 

Persistence (IRNDP). Vegetation and land use were classified according to Corine Land Cover 2006 241 

data (European Environmental Agency, 2007), ECOCIMAP-II (Faroux et al., 2003), and BD Foret 242 

(Institut National de l’Information Géographique et Forestière, 2012). Two vegetation indices derived 243 

from remote sensing data were used to describe the photosynthetic capacity of the vegetation cover, the 244 

enhanced vegetation index (EVI) and the normalized difference vegetation index (NDVI) (Huete et al., 245 

2002). The MOD13A1 MODIS/Terra Vegetation Indices 16-day composite products at 500 m resolution 246 

were retrieved from the online NASA Earthdata Search, courtesy of the NASA EOSDIS Land Processes 247 

Distributed Active Archive Center (LP DAAC) (https://earthdata.nasa.gov/) (Didan, 2015). The 248 

vegetation indices were collected for the months of January (i.e., minimum vegetation activity) and June 249 

(i.e., maximum vegetation activity) for the period 2002-2014. The median of these vegetation indices 250 

over the 13 years for each month were used as covariates. All the covariates were projected to the 251 

Lambert 93 (EPSG: 2154) associated to the Réseau Géodésique Français 1993 (RGF93), aligned with 252 

the SRTM, and resampled to 90 m resolution using nearest neighbor interpolation. Data pre-processing 253 

was done in GRASS (GRASS Development Team, 2016), the R software v.3.2.2 (R Core Team, 2015), 254 

and the Geospatial Data Abstraction Library v.2.0.1 (GDAL/OGR contributors, 2015). 255 

2.3.2 Soil spatial predictive models 256 

We evaluated the correlation among clayalr, siltalr, and coarse elements in the feature space as well as the 257 

spatial correlation prior to modelling their spatial distribution. In preliminary tests, we also evaluated 258 

the spatial correlation and correlation in the feature space of the residuals of the models (Supplemental 259 

material S2 p.1). After checking the lack of correlation between coarse elements and the alr-variables, 260 



11 

 

the weak spatial structure of the residuals of coarse elements and preliminary mapping exercises of 261 

AWC (Román Dobarco et al., 2018) we decided to model separately and differently the alr-variables 262 

and the coarse elements.   263 

We predicted the alr-variables with a regression-cokriging model (Odeh et al., 1994; Hengl et al., 2007). 264 

Cubist models for clayalr and siltalr were fitted using the environmental covariates describing scorpan 265 

factors (Table 2) by GSM depth interval. The Cubist algorithm is a hybridized model that combines 266 

tree-based models and linear models. The terminal nodes of the regression tree (leaves) consist on a 267 

linear model (Quinlan, 1992). The parameters of the Cubist models were: committees=20, extrapolation 268 

= 5, and unbiased=TRUE. We calculated the model residuals at the calibration points, and then fitted a 269 

linear model of coregionalisation (LMCR) between the residuals of both variables for each GSM depth 270 

interval using the algorithm presented by Goulard and Voltz (1992). The LMCR had two components, 271 

a nugget and a spherical variogram. We then interpolated spatially the residuals of clayalr and siltalr by 272 

ordinary co-kriging using the closest 10 observations. The final predictions were calculated by adding 273 

the kriged residuals to the Cubist predictions  and back-transformed to the original scale (equation 5). 274 

The kriging variance of the residuals of the alr-variables was used afterwards for estimating the 275 

prediction uncertainty (see section 2.5). 276 

We modelled coarse elements with quantile regression forests (Meinshausen, 2006) for its ability to 277 

provide accurate estimates of uncertainty of predicted soil properties (Vaysse and Lagacherie, 2017). 278 

Quantile regression forests is a generalization of random forest models (Breiman, 2001). Random forests 279 

is a very popular machine-learning tool for classification or regression that provides an ensemble 280 

prediction based on many regression trees. For each regression tree and node, the algorithm incorporates 281 

randomness by selecting randomly a subset of features to split on . Quantile regression forest not only 282 

provides robust estimates of the conditional mean, but also of the full conditional distribution of the 283 

response variable. Whereas random forests keeps the mean value of observations at the nodes, quantile 284 

regression forests keeps the values of all observations at the nodes, and can infer estimates for 285 

conditional quantiles, prediction intervals, or other statistics from the distribution (Meinshausen, 2006). 286 

A detailed description of random forests and quantile random forests can be found in Breiman (2001) 287 
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and Meinshausen (2006) respectively. We fitted quantile regression forest models for coarse elements 288 

by GSM depth, with the settings ntree = 1000 (number of trees), nodesize = 20 (minimum number of 289 

observations in terminal nodes), and the default mtry (number of variables randomly sampled as 290 

candidates at each split), which in this case was 14. We predicted the mean, the 5th percentile, the 95th 291 

percentile, and the standard deviation of coarse elements by GSM depth.  292 

Finally, we mapped clayalr, siltalr, sand, clay, silt, coarse elements, and their respective standard 293 

deviations at 90 m resolution for mainland France. The calculation of the standard deviation of the back-294 

transformed sand, clay, and silt is explained in the Supplemental material S1. 295 

2.4 Functional digital soil mapping of AWC 296 

2.4.1 Pedotransfer functions 297 

The volumetric soil moisture content (cm3 cm-3) at field capacity or pF = 2.0 (θ2.0) and at permanent 298 

wilting point or pF = 4.2 (θ4.2) for the fine fraction were estimated using PTFs developed by Román 299 

Dobarco et al. (2019) with the French SOLHYDRO database (Bruand et al., 2003; Al Majou et al., 300 

2008b). These PTFs use the content of clay (%) and sand (%) as predictor variables:  301 

θ2.0= 0.278 + 2.45 10-3 clay – 1.35 10-3 sand [9] 302 

θ4.2= 0.08 + 4.01 10-3 clay – 2.93 10-4 sand [10] 303 

The uncertainty of the PTFs’ coefficients was calculated by non-parametric bootstrapping (Efron and 304 

Tibshirani, 1993). The variance-covariance matrices of the PTFs’ coefficients are presented in Table 3.  305 

These PTFs were chosen because: 1) the calibration dataset is representative of a large proportion of 306 

sand and clay contents found across France, 2) estimates of uncertainty for the PTFs’ coefficients are 307 

available, and 3) the propagation of error due to both soil input variables and PTFs’ coefficients can be 308 

easily calculated with first order Taylor series.  309 

2.5 Uncertainty analysis 310 

We applied a first order Taylor analysis to calculate the variance of θFC (i.e., θ2.0), θPWP (i.e., θ4.2), 311 

elementary AWC and total AWC estimates. The estimates’ variance is considered here as a proxy of 312 

prediction uncertainty (Heuvelink et al., 1989). This method relies on the approximation of these 313 
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estimates (equations 1, 3, 9 and 10 respectively), and of the intermediate variables estimates (i.e. clay, 314 

silt, and sand with equation 5). Let Y be an estimate of a given soil property with  315 

c = ^(1) 316 

where f is a continuously differentiable function from ℝY into ℝ and z the vector of the n input variables 317 

of f. The approximation of f uses a truncated Taylor series centered on the mean values of the n input 318 

variables μ =  <d*, d!, … , dY?@ (Heuvelink et al., 1989). The variance of Y=f(z) is calculated with the 319 

formula (Heuvelink et al., 1989): 320 

e.0(c) ≈ ∑ g∑ ghMijMji
kl
k3m

(n) kl
k3o

(n)pYi)* pYM)*       [11] 321 

 322 

where  =M and =i can be soil input variables or PTFs’ coefficients, hMi is the correlation of =M and =i, jM 323 

and  ji are the standard deviation of the of =M and =i, 
kl
k3m

(n) and 
kl

k3o
(n) are the partial derivatives of 324 

f(z) around n. These partial derivatives reflect the model (that is the f function) sensitivity to the input 325 

variables =M and =i. Hence, the variance of a soil property Y (equation 11) can be decomposed in the 326 

sum of different terms that consist on the multiplication of the squared model sensitivity by a variance 327 

or covariance of different input variables that represent their uncertainty (Dietze, 2017; Heuvelink et al., 328 

1989). 329 

We considered two sources of uncertainty that influence ���, ����, elementary AWC, and total AWC 330 

estimates: the coefficients (named hereafter sA, i in [0, 2]) of both PTFs, and the soil input properties of 331 

the PTFs and elementary AWC computation (namely clay, sand and coarse elements). Because the 332 

PTFs’ coefficients and the spatial predictions of the input soil properties were determined independently, 333 

we assumed that the correlation between their errors was zero (Heuvelink et al., 1989). Hence, the 334 

variance estimates for ��� and ���� (equations 9 and 10) can be summarized as the sum of two terms, 335 

1) the product of the sensitivity and uncertainty of the soil input variables, and 2) the product of 336 

sensitivity and uncertainty of the PTFs’ coefficients: 337 

e.0(�) = ∑ htuATmtuATojtuATmjtuATo
kl

ktuATm
kl

ktuATo
+ ∑ hvmvojvmjvo

kl
kvm

kl
kvo

         [12] 338 

 339 
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The variance of the elementary AWC was similarly decomposed in four groups of sources of 340 

uncertainty, given that coarse elements and particle size fractions were uncorrelated, representing: 341 

coarse elements, particle size distribution, and the two PTFs. We considered the correlation among the 342 

coefficients of each PTF, but omitted the correlation between the coefficients of both PTFs because they 343 

were fitted independently. In the case of clayalr and siltalr, the error associated to their spatial variation 344 

was represented by the cokriging variance. Quantile regression models gave directly the standard 345 

deviation of coarse elements predictions (Vaysse and Lagacherie, 2017). 346 

Finally, the variance of total AWC was decomposed into the same four groups. We did not consider the 347 

uncertainty of soil profile thickness because that would have required computationally and time 348 

demanding Monte Carlo simulations, which would be prohibitive at the desired resolution (e.g., 10 349 

simulations at 2000 pixels required approximately 10 hours with our High Performance Computing 350 

facilities, Román Dobarco et al. (2017)). The calculation of the variances by first order Taylor analysis 351 

is explained in detail in the Supplemental material S1. 352 

2.6 Evaluation of the functional DSM predictions 353 

Observed horizon data from the RMQS were used for independent evaluation of the predictions of clay, 354 

sand, silt, and coarse elements. The measurements of GEVARNOVIA horizons were compared with the 355 

predictions of volumetric soil moisture contents of the fine fraction (θFC, θPWP). This dataset is not 356 

representative of all the pedoclimatic conditions in France and therefore the evaluation statistics may be 357 

biased and not suitable for evaluating the whole France DSM approach. However, it is the best data 358 

available on θFC and θPWP in France at the moment. For each independent observation (i.e. an observation 359 

of a soil property on a given soil horizon), we calculated the weighted average of the GSM predictions 360 

overlapping the horizon attached to the observation. This was done because the sample support differed 361 

between the evaluation dataset and the predictions. Hence, a prediction was calculated as Rw =362 

 ∑ \x
\  yz{AYA)* , where Rw is the estimated value, n is the number of GSM layers overlapping the horizon, 363 

yz{A is the GSM prediction for the layer i, t is the total thickness of the horizon (cm), and 'A is the 364 

thickness (cm) of the GSM layer i that overlaps the predicted horizon. The evaluation statistics consisted 365 

on the root mean square error (RMSE), coefficient of determination (R2), Lin’s concordance correlation 366 
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coefficient (Lin, 1989), and the bias, or mean error of prediction. The concordance evaluates both the 367 

accuracy and the precision of the prediction, and it is defined as: 368 

|� = !}~��~�
~��8�~�8�(Ww��W�)8     [13] 369 

where Rw� and R� are the means of the predicted and observed values, jWw!and jW! their respective variances, 370 

and | the correlation between predicted and observed values. |�can range between -1 and 1, and a value 371 

closer to 1 indicates a better fit with the 45° line, or agreement between predictions and observations. 372 

In addition, we assessed the estimation of the prediction uncertainty with the prediction interval 373 

coverage probability (PICP) (Shrestha and Solomatine, 2006). 374 

���� =  Vu�Y\ (���x� Wx� ���x)
Y  Q 100     [14] 375 

where n is the number of observations in the evaluation dataset, and the numerator the counts that an 376 

observation RA  fits within its prediction limits. For a 90 % confidence level, the uncertainty is optimally 377 

estimated when the PICP value is close to 90 %. The prediction interval limits for the estimates of the 378 

observed horizon data were calculated as Rw  ± 1.64 j��  assuming a normal distribution of the estimated 379 

variance (j��
!) around the mean (Rw). The variance of the prediction estimates for the observed horizons 380 

was calculated by Taylor series analysis (equation 11), accounting for the global correlation between 381 

different GSM layers for the same soil property. For one given soil property, the global correlation 382 

coefficients were calculated with all the pixel values for each pair of GSM maps representing the GSM 383 

layers. 384 

3. Results 385 

3.1 Spatial structure of model residuals 386 

The linear model of coregionalization parameters are reported in the table 4. The range varied among 387 

depths between 160 km at 15–30 cm depth and 252 km for the layer 60–100 cm. Supplemental material 388 

S2 p.1a shows the estimates of the cross- and autovariograms of the regression model residuals. The 389 

regression residuals of the alr-transformed variables were correlated both spatially (Supplemental 390 

material S2 p.1a) and in the feature space (Supplemental material S2 p.1.b) across all depths. The coarse 391 
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elements residuals were not correlated or had a weak correlation (r  < 0.2) with either of the alr-392 

transformed variables in any depth, neither untransformed (Supplemental material S2 p.1.b), or after log 393 

transformation (data not shown). The empirical variograms of coarse elements residuals showed some 394 

spatial correlation. However, as previous maps produced by regression-kriging of log-transformed 395 

coarse elements were unsatisfactory, we decided to exclude the spatial correlation from the model 396 

(Román Dobarco et al., 2018). All variograms appear somewhat erratic (Supplemental material S2 397 

p.1.a), which is likely due to the presence of some clusters of points in the dataset (Marchant et al, 2013).  398 

3.2 Independent evaluation 399 

The evaluation statistics for the back-transformed clay, silt, and sand predictions for RMQS horizons 400 

indicated that clay had lower R2 and concordance coefficient than silt and sand (Table 4). The RMSE 401 

increased following the trend clay < silt < sand (Table 5). The DSM predictions tended to underestimate 402 

clay content, as indicated by a bias of -15 g kg-1. On the other hand, the bias of silt was 19 g kg-1, and 403 

the predictions for sand had the smallest bias, of - 3 g kg-1. Small contents of clay, silt, and sand were 404 

overestimated while high contents were often largely underestimated (Figure 4). However, the 405 

prediction error for the particle size fractions did not show any pattern related to the average depth of 406 

the RMQS horizons. Overall, many predictions were dispersed in the scatterplots and fell far from the 407 

1:1 line (Figure 4) and predictions exhibited a RMSE up to 172 g kg-1 (Table 5). In comparison with the 408 

particle size fractions the predictions for coarse elements had the lowest R2 and concordance coefficient 409 

and a RMSE of 21% (Table 5). The quantile regression forests model strongly underestimated relatively 410 

stony soils (> 25 %) and overestimated small contents of coarse elements (Figure 4.d). The prediction 411 

error of RMQS horizons with small coarse elements content (< 20 %) increased to some extent with the 412 

average horizon depth (Figure 4.d).  413 

The PICP suggested that the uncertainty associated to coarse elements and clay predictions was 414 

underestimated (76% and 83 % respectively), but it was close to the expected value of 90 % for silt (86 415 

%) and it was nearly perfect for sand, with a PICP of 90 % (Table 5). 416 

The performance of the DSM predictions for soil moisture at field capacity and soil moisture at 417 

permanent wilting point had a R2 of 0.21 and 0.29, and concordance coefficients of 0.37 and 0.47 418 
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respectively. The RMSE and the bias were greater for ��� than for ���� (Table 6). The PICP indicated 419 

a large underestimation of the prediction uncertainty, with PICP = 71 % for ��� and PICP = 77 % for 420 

����. The predictive performance of the PTFs with measured sand and clay was also better for ���� 421 

than for ���, and in both cases, the PICP was smaller than the optimal 90 % (Table 6). The 422 

underestimation of higher soil moisture contents at both water potentials increased for the DSM 423 

predictions in comparison to applying the PTFs with measured clay and sand (Figure 5). 424 

The DSM predictions underestimated the soil moisture content at both potentials for fine and very fine 425 

soil texture classes whereas the DSM predictions tended to overestimate the soil moisture contents of 426 

coarse textured soils (Figure 6.a and 6.b). The prediction error by texture class was more or less 427 

homogeneous among classes when the PTF was applied directly on measured clay and sand data for ��� 428 

(Figure 6.c). The PTF overestimated ���� for very fine texture but the prediction error was smaller for 429 

the other texture classes (Figure 6.d). 430 

 431 

3.2 Spatial distribution of AWC 432 

The soil AWC to a maximum depth of 2 m had higher estimated values in northern and southwestern 433 

France, and along the Rhone river valley (north-south axis in eastern France) (Figure 7). The uncertainty 434 

associated to the total AWC followed a similar pattern in its spatial distribution, with higher standard 435 

deviation in the north, southwest, and sparse areas in the centre (Sologne) and east (Rhone valley) of 436 

France (Figure 7). The higher AWC corresponded mainly to deeper soils or moderately deep soils with 437 

silty textures. The relative error (coefficient of variation) was greater than 20 % in most part of France 438 

and was greater than 30 % in some areas in the west, in the south along the Mediterranean coast, and in 439 

the east (Figure 7). 440 

3.3 Contribution of different sources of uncertainty to the variance of soil moisture at field 441 

capacity 442 

We present the results of the decomposition of variance associated to spatial predictions of soil moisture 443 

at field capacity for the layer 15-30 cm as an example. The results for soil moisture at permanent wilting 444 

point and for the other depths are similar and we provide additional figures in the Supplemental material 445 
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S2. The first term of equation 12, or variance associated to soil input properties, is expanded into its 446 

different components, the first related to clayalr, the second to siltalr and the third to the interaction term 447 

between clayalr and siltalr: 448 

e.0(�)XuAT = ∑ �]e(z]E/M, z]E/i) kl
ktuATm

kl
ktuATo

=  jVTSW���
! ( kl

kVTSW���
)! +  jXAT\���

! 2 kl
kXAT\���

6! +449 

2 hVTSW���,XAT\���jVTSW���jXAT\���
kl

kVTSW���
kl

kXAT\���
       [15] 450 

where  e.0(�)XuAT is the variance term of the soil moisture at field capacity associated to soil input 451 

variables, jVTSW���
!  and  jXAT\���

!  are the co-kriging variances of clayalr and siltalr, 
kl

kVTSW���
  and 

kl
kXAT\���

 are 452 

respectively the sensitivities of the PTF (equation 9) to clayalr and siltalr, and hVTSW���,XAT\���  is the is the 453 

correlation between clayalr and siltalr. 454 

The sensitivity of elementary soil moisture at field capacity (cm3 cm-3) to clayalr had higher values in 455 

areas with higher predicted values for clayalr (Figure 8 and Figure 9.a). The sensitivity for siltalr had 456 

negative values where predictions for siltalr were positive, and positive values where siltalr predictions 457 

were negative (Figure 8 and Figure 9.b). The terms resulting from the multiplication of clayalr sensitivity 458 

and variance, and the interaction term had higher absolute values in similar regions, but counteracted 459 

each other because they had different signs. The total variance (Figure 9.f) was higher in zones with 460 

greater co-kriged residual variance (Figure 8.c and 8.d), and where the clayalr term was greater, in 461 

absolute value, than the interaction term (Figure 9). 462 

The second term of equation 12 corresponded to the variance of soil moisture related to the PTF 463 

coefficients: 464 

e.0(�)v =  ∑ �]e(sM, si) kl
kvm

kl
kvo

=  jv�
! 2 kl

kv�
6! + jv4

! 2 kl
kv4

6! +  jv8
! 2 kl

kv8
6! +465 

 2 �]e(s#, s*) kl
kv�

kl
kv4

+   2 �]e(s#, s!) kl
kv�

kl
kv8

+   2 �]e(s*, s!) kl
kv4

kl
kv8

       [16] 466 

where e.0(�)�@� is the variance term of the soil moisture at field capacity associated to PTF 467 

coefficients, jv�
! , jv4

! ,  jv8
! , �]e(s#, s*), �]e(s#, s!),  �]e(s*, s!) are the elements of the variance-468 
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covariance matrix for the PTF (in this example at field capacity,  Table 3), and 
kl
kvx

  �E'ℎ E = 0, 1, 2 are 469 

the sensitivities of the PTF (equation 9) to the PTF coefficients.  470 

In the case of the PTFs, the variance and covariance of the different terms are spatially constant (Table 471 

3). Therefore, the spatial distribution of the uncertainty (and its different terms) depends on the 472 

sensitivity of the PTF to its coefficients (
kl

kvm
kl

kvo
). We should clarify that 

kl
kv�

= 1, 
kl

kv4
 equals the clay 473 

predictions (%), and 
kl

kv8
 the sand predictions (%). Therefore, the sensitivity of both PTFs to the clay and 474 

sand coefficients is higher in areas where clay and sand contents are respectively higher (Figure 10). 475 

Estimates of clay are higher in the northeast of France, and some areas of southwest. The predictions 476 

for sand are higher in the centre (Massif Central) and other areas with predominance of sandy textures 477 

(Les Vosges in the northeast, the Sologne in the centre, and les Landes in the southwest). The covariance 478 

between the intercept and clay and sand (�]e(s#, s*) and �]e(s#, s!)) is negative for both PTFs (Table 479 

3), which resulted in negative values in their interaction terms (Figure 10.c and 10.d). The components 480 

of clay and sand coefficients and their interaction were positive (Figure 10.e, 10.f, and 10.g). The 481 

uncertainty due to the PTFs’ coefficients had higher values in those areas where the sensitivity to the 482 

sand coefficient was greatest (Figure 10.b and Figure 10.h). The maximum value of the variance 483 

associated to the PTFs’ coefficients is three times smaller than the maximum value of the variance 484 

associated to soil input variables (0.00012 vs 0.004). 485 

3.4 Contribution of different sources of uncertainty to the variance of elementary AWC 486 

The decomposition of the variance of elementary AWC for the six GSM layers into different 487 

components showed how, in terms of magnitude, the variance associated to the coarse elements and 488 

particle size fractions were the most important over mainland France (Supplementary material S2). At 489 

the same time, the terms of AWC variance associated to both PTFs’ coefficients had small values across 490 

the whole area. The sensitivity of the elementary AWC to PTFs’ coefficients was greater than the 491 

sensitivities to coarse elements, and particle size fractions (Supplemental material S2), but this was 492 

compensated by smaller values of the variance-covariance of the PTFs’ coefficients (Table 3), resulting 493 

in small values of the terms related to the PTFs’ coefficients on the variance in the Taylor series analysis. 494 
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Conversely, smaller sensitivities to coarse elements, clayalr and siltalr but higher variances (Figure 8) 495 

resulted in higher variance associated to these terms. Noteworthy, the variance term that corresponded 496 

to the interaction between both alr-variables had a negative sign and reduced the final variance 497 

(Supplemental material S2). 498 

Across the six GSM layers, the standard deviation of elementary AWC (cm3 cm-3) was higher near 499 

mountainous regions in the south and southeast, and some areas in the west and east of France 500 

(Supplemental material S2 p.5). The standard deviation of elementary AWC increased with soil depth 501 

(Supplemental material S2 p.6). The main contribution (%) to the variance in these areas corresponded 502 

to the term associated to the coarse elements (red areas in Supplemental material S2 p.6). In regions 503 

with lower variance of elementary AWC and mostly low elementary AWC, the main sources of 504 

uncertainty for the top soil layers were the PTFs (southwest and centre) (blue in  Supplemental material 505 

S2 p.6) and soil texture (north) (green in Supplemental material S2 p.6). The contribution (%) of coarse 506 

elements to the variance in the southwest and centre increased for the 30–60 cm, 60–100 cm, and 100–507 

200 cm while the contribution (%) of the PTFs decreased (Supplemental material S2 p.7). Conversely, 508 

the contribution (%) of coarse elements to the variance of elementary AWC in the north decreased with 509 

depth. 510 

4. Discussion 511 

4.1 Previous estimates of AWC in metropolitan France  512 

This study presented the first map of AWC for metropolitan France that provides uncertainty estimates 513 

following GlobalSoilMap specifications (Arrouays et al., 2014). An advantage of the produced maps of 514 

���, ���� and AWC is that the potential end users can incorporate estimated uncertainties into 515 

ecological and agricultural modelling and perform uncertainty propagation analysis or sensitivity 516 

analysis. It is important to stress that since the role of soil thickness was not included in the uncertainty 517 

analysis for total AWC, the calculated variance should be considered a conservative uncertainty 518 

estimate. We have improved the precision of the estimates of AWC for mainland France compared to a 519 

previous map produced by Al Majou et al., (2008b). Al Majou et al., (2008b) applied their PTFs with 520 

information on horizon type, horizon thickness, texture, and bulk density provided by the descriptions 521 
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of soil typological unit (STU) from the 1:1 000 000 Soil Geographical Database of France (King et al., 522 

1995). In these previous studies, the AWC by soil mapping unit was calculated based on the proportion 523 

of STU present in each soil mapping unit (Al Majou et al., 2008b). The predictions of this study are 524 

provided at a specific resolution (90 m) whereas Al Majou et al. (2008b) provided AWC values by 525 

polygons. The spatial patterns in both maps are similar overall, although our estimates are smaller than 526 

the AWC predicted by Al Majou et al. (2008b) in the southeast and northeast France, but higher in the 527 

north. 528 

Piedallu et al. (2011) also predicted AWC for metropolitan France by first estimating the total AWC of 529 

120,902 soil profiles from the French National Forest Inventory with class-PTFs (i.e., average values of 530 

AWC are assigned by classes defined by texture and horizon type) developed by Al Majou et al. (2008b), 531 

and then extrapolating spatially with ordinary kriging. The general pattern of AWC was similar between 532 

the map by Piedallu et al. (2011) and this study. Piedallu et al. (2001) used texture class estimated by 533 

the surveyors in the field, which may enlarge the measurement error compared to laboratory analysis of 534 

particle size distribution. However, the high density of observations across metropolitan France may 535 

compensate partly the error in the input texture data resulting in a good description of the spatial pattern 536 

of AWC. The approach followed by Piedallu et al. (2011) makes the maps suitable for forested areas, 537 

since the soil profiles were located in forests and the greater distance between the locations in 538 

agricultural land to the soil profiles involves larger uncertainty at these predicted locations. Conversely, 539 

the data on particle size fractions distribution and coarse elements used to calibrate our models were not 540 

distributed homogeneously across mainland France (Figure 2). In some areas, such as in the south near 541 

the Massif Central and in the southwestern coast, the lower density of observations resulted in higher 542 

uncertainty of clayalr and siltalr (Figure 8) that propagated into the uncertainty of ��� and ���� (Figure 543 

9). However, particle size fraction was not the main source of uncertainty for elementary AWC in these 544 

areas (Figure 11). 545 

4.2 General approach for mapping AWC  546 

There are multiple modelling trajectories for mapping AWC depending on at which step are applied the 547 

PTFs and the spatial extrapolation (Styc and Lagacherie, 2018). We first modelled spatially the AWC 548 
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input variables, and when possible, jointly, as for particle size distribution, with the aim of capturing 549 

their spatial patterns and the relationships between the soil forming factors and the soil properties, thus 550 

improving the accuracy of AWC predictions. This approach is similar to that followed by Ugbaje and 551 

Reuter (2013) for GlobalSoilMap AWC for Nigeria and Tóth at al. (2017) for the European Soil 552 

Hydraulic Database (EU-SoilHydroGrids). The methodology chosen for predicting AWC has the 553 

advantage that 1) the results can be easily updated when more accurate predictions for the soil input 554 

properties or more reliable PTFs are available and 2) some input soil properties (here particle size 555 

distribution) come as a side product of AWC estimation.  556 

The predictions of particle size distribution had similar R2 (Table 5) than previous GlobalSoilMap 557 

products for France (Mulder et al., 2016), which had R2 between 0.25 – 0.44 for clay, 0.21 – 0.42 for 558 

silt, and 0.19 – 0.33 for sand. The concordance coefficients by Mulder et al. (2016) ranged between 0.34 559 

– 0.53 for clay, 0.37 – 0.61 for silt, and 0.46 – 0.63 for sand, which are comparable to the 0.49, 0.43, 560 

and 0.66 of this study (Table 5). This is not surprising because both studies shared the data from the 561 

IGCS in the calibration dataset (although Mulder et al. (2016) merged this dataset with the RMQS one), 562 

some of the environmental covariates, and applied the cubist algorithm. However, predicting particle 563 

size distribution with regression-cokriging allowed us to account for the spatial correlation between 564 

particle size fractions of the same GSM layer, hence quantifying the uncertainty of AWC more 565 

accurately. On the other hand, the results for coarse elements were less accurate and precise in this study, 566 

with R2 = 0.14 and a concordance coefficient of 0.26 compared to a R2 between 0.17 – 0.28 and a 567 

concordance coefficient between 0.30 – 0.46 by Mulder et al. (2016) for log transformed coarse 568 

elements. One possible explanation for this slight performance discrepancy could be, at least for topsoil 569 

layers, the better precision of RMQS observations (compared to the IGCS), which was not used for 570 

training the models in the present study. Mapping coarse elements is specially challenging. The 571 

calibration and evaluation data (volume of coarse elements) was estimated visually by the soil surveyors. 572 

More precise methods for measuring the volume of coarse elements are very time consuming and can 573 

only be applied in a limited number of sites in national soil monitoring surveys (Jolivet et al., 2018). 574 

More generally, we were not able to capture the spatial patterns of distribution of coarse elements, 575 

especially in deep layers. Indeed, the input data itself may be partly biased, as coarse elements in surface 576 
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layers are much more easily estimated than in deeper ones, especially when doing observations by 577 

coring. It is also possible that the chosen covariates did not represent well the processes driving the 578 

distribution of coarse elements, or these were not accurate enough (e.g., the scale of parent material was 579 

1:1 000 000). Nevertheless, next versions of GlobalSoilMap with more accurate predictions on coarse 580 

elements can be incorporated in the proposed AWC modelling framework for reducing the prediction 581 

error and uncertainty of AWC predictions. 582 

Styc and Lagacherie (2018) compared six possible trajectories for mapping AWC in the Languedoc-583 

Roussillon (France). The modelling approach with best performance consisted in using weighed mean 584 

values of the soil input properties involved in the calculation of AWC by profile as training data for 585 

DSM and then applying the PTFs, partly because the averaging smooths the variability of soil properties 586 

facilitating the spatial modelling (Styc and Lagacherie, 2018). Mapping approaches based on 587 

information from modal soil profiles by soil mapping units can produce very suitable maps when the 588 

soil maps have sufficient detail (Hong et al., 2013), although they omit the variability within soil 589 

mapping units and estimates of uncertainty are often missing. Poggio et al. (2010) calculated the AWC 590 

by horizon with a PTF and then mapped AWC combining regression and geostatistics. They considered 591 

two sources of uncertainty for the AWC predictions: 1) the uncertainty of the trend described by general 592 

additive models, and 2) the uncertainty linked to the spatial extrapolation of the model residuals, 593 

omitting uncertainty related to PTFs. They used sequential Gaussian simulations for quantifying the 594 

spatial uncertainty, which provides more accurate estimates of the uncertainty than the Taylor series 595 

analysis and allows the characterization of the probability distribution of AWC for each pixel, but at 596 

high resolution is very computationally demanding. 597 

4.3 Importance of different sources of uncertainty 598 

The contribution of each source of uncertainty to the elementary AWC variance varied spatially. Across 599 

the majority of the study area, the main source of uncertainty of elementary AWC was soil input data, 600 

either particle size distribution, or coarse elements content. Without excluding the areas where estimated 601 

soil depth is shallower than the GSM layer, the terms associated to coarse elements were dominant. 602 

However, the contribution of particle size distribution gained importance in deeper GSM layers (60–603 
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100 and 100–200 cm) when excluding areas based on the estimated soil depth by Lacoste et al. (2016).  604 

In areas of very sandy and clayey textures the PTFs contributed more to AWC uncertainty. This 605 

highlights the importance of developing more reliable PTFs for very coarse and very clayey soils, that 606 

although occurring with less frequency, can occupy extensive areas in France (e.g., sandy soils in the 607 

Landes of Gascony). 608 

It is also likely that the large prediction error of ��� and ���� estimated with PTFs (Figures 5.b and 609 

5.d) is partly due to the large range in mineral composition within particle size fractions included in the 610 

PTFs (i.e., clay and sand) and their influence on AWC. Most of the silty horizons in France (especially 611 

in the upper layers), come from loessic aeolian deposits (Arrouays et al., 2011; Bertran et al., 2016). 612 

Their size and mineral composition are rather homogeneous. Therefore, their contribution to AWC is 613 

mainly determined by the micro-pores formed by stacking particles of nearly equal sizes and similar 614 

adsorption properties On the contrary, clay mineralogy in France is very diverse, mainly depending on 615 

the parent material from which clay minerals derive and their subsequent evolution by pedogenesis (van 616 

Ranst et al., 1995). Similarly, the nature of sands is very diverse in their mineral composition (e.g. pure 617 

quartz in the Landes of Gascony, micas and feldspathich sands in the Armorican Massif in Brittany). 618 

Moreover, their size and shape are very diverse and may influence their capacity to retain water 619 

(Chrétien, 1971).  620 

The capacity of the Taylor analysis for identifying the sources contributing most to the total uncertainty 621 

is limited due to the interaction terms and because the variance terms resulting from the product of the 622 

model squared sensitivity to input variables and their variance involve variables from different groups 623 

(e.g., the variance term of PTFs involves siltalr and clayalr predictions). Hence, it is hard to identify which 624 

variable has the variance that we should reduce with the least expense in modelling time or resources 625 

required for additional sampling. Therefore, future studies aiming to improve the AWC predictions and 626 

to reduce the prediction uncertainty, should first identify the group of soil input variables contributing 627 

most in their study area with a global sensitivity analysis. As indicated above, improving the predictions 628 

of coarse elements content and particle size fractions, and studying the influence of coarse elements, 629 

clay and sand nature on soil moisture content should be among the highest priorities. The effect of clayalr 630 
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and siltalr interpolation onto ��� and ���� prediction performance (Figure 5.a and 5.c) is another 631 

argument for these priorities. A more complete assessment of AWC uncertainty should include the effect 632 

of soil depth uncertainty. The latter will likely have an important effect on total AWC uncertainty given 633 

its linear relationship with total AWC. The RMSE of soil depth predictions used in this study was 40 634 

cm (Lacoste et al., 2016), suggesting that our estimate of AWC variance largely underestimates the 635 

uncertainty. It does not concern the assessment of the uncertainty of elementary AWC (at soil layer 636 

level) we provide here. 637 

4.4 Limitations of the produced maps and future directions 638 

The predictive ability of the spatial predictions for ��� and ���� decreased considerably in comparison 639 

to applying the PTFs to measured horizon data (Table 6). The change in R2 for ��� and ���� was of 640 

ΔR2 = - 0.33, which in relative terms consisted in a 61 % and 53% reduction compared to the R2 of the 641 

PTFs. The RMSE increased in ΔRMSE = 0.013 cm3 cm-3 for ��� and ΔRMSE = 0.015 cm3 cm-3 for 642 

���� that suppose a relative increase of 25 % and 36 % respectively compared to the RMSE of the 643 

PTFs. We acknowledge that we could evaluate the spatial predictions of ��� and ����, which is not 644 

always possible for soil hydraulic properties due to the lack of georeferenced observations. However, 645 

the evaluation statistics are of limited validity at national extent due to the sample size, distribution and 646 

representativeness of pedoclimatic conditions of the evaluation dataset (Table 6 and Figure 3). Ongoing 647 

work for France is currently being carried out, for gathering unbiased references of soil water content at 648 

different potentials, using the French soil monitoring network (RMQS, Jolivet et al. 2006). The larger 649 

prediction error for ��� and ���� spatial predictions were associated to an overestimation of soil 650 

moisture for coarse texture, and an underestimation for fine and very fine texture classes (Figure 6). This 651 

is likely related to the inability to predict the spatial distribution of clay content in some regions, and in 652 

particular, to the underestimation of high clay contents (Table 5 and Figure 4). It is also likely that 653 

important drivers such as mineralogical composition of clay and sand are also missing in the PTFs. It is 654 

possible that we need more accurate covariates for capturing the processes driving the spatial distribution 655 

of clay content and mineralogy assuming the latter could be incorporated into PTFs (e.g., soil geology 656 

map, gamma-ray spectrometry). Another source of error is that the soil profiles were not distributed 657 
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evenly throughout the study area, but were clustered instead. Clustering led to some artifacts during the 658 

cokriging step (Padarian et al., 2014; Marchant et al., 2013) despite the benefit of including the 659 

correlation between soil particle fractions within a GSM layer. We did not include the spatial correlation 660 

among soil properties of multiple layers, which may also have improved the estimates of AWC and its 661 

uncertainty (Heuvelink et al., 2016). Angelini et al. (2017) applied structural equation modelling (SEM) 662 

to DSM, incorporating pedological knowledge of the interrelations among soil properties and soil 663 

processes, and predicting several soil properties at multiple layers simultaneously. Recently, Angelini 664 

and Heuvelink (2018) expanded the SEM for soil properties with a geostatistical approach, including 665 

the spatial correlation of the model residuals. This methodology could be interesting for mapping AWC, 666 

as it would incorporate the interrelations between all soil properties defining AWC (particle size 667 

distribution, bulk density, soil organic carbon, soil depth, coarse elements, etc.), within and between soil 668 

layers. 669 

We selected PTFs that could incorporate the uncertainty of their coefficients into the AWC predictions 670 

and that can be applied to the majority of the study area (Román Dobarco et al., 2019). However, the 671 

PTFs by Tetegan et al. (2011) may be more suitable for soils developed from sedimentary rocks, with 672 

the additional advantage that they accounted for the capacity of coarse elements for storing water and 673 

contributing to AWC. Spatial soil inference systems (Lagacherie and McBratney, 2006) predicting 674 

AWC across large areas could apply the most appropriate PTF for each pixel. Another possible 675 

limitation is that both the DSM learning dataset (IGCS) and the PTFs deal mostly with cultivated soils. 676 

The proposed predictions might not be accurate for other soils such as forest soils, where soil properties 677 

other than particle size distribution such as soil organic carbon content and the frequent high amount of 678 

coarse elements might shift soils outside of the validity domain of PTFs used here (Román Dobarco et 679 

al., 2019). 680 

Another future development is related to the definition of the available water content itself. We set ��� 681 

at pF = 2.0 for metropolitan France based on samples collected mainly in in the Paris basin and southwest 682 

of France (Al Majou et al., 2008a). For this set of samples, Bruand et al. (2004) indicated that ��� at the 683 

field corresponded, in the laboratory, to soil moisture content for soil matric potentials between pF = 1.5 684 
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and pF = 2.0. Hence, our predictions may underestimate AWC. Conversely, the ���  is often considered 685 

at pF = 2.5 by European PTFs (Toth et al., 2015). The definition of ��� regarding the soil water potential 686 

is another factor that influences the uncertainty of AWC. The ongoing expansion of the database of soil 687 

hydraulic properties for France will support the choice of the optimum upper limit of AWC, which may 688 

not be the same for different horizon types. 689 

4.5 Conclusions  690 

This study presented spatial predictions of AWC for mainland France following GlobalSoilMap 691 

specifications to a maximum depth of 2 m. We incorporated two sources of error (spatial estimates of 692 

soil input properties and PTFs’ coefficients) in the uncertainty analysis carried out with first order Taylor 693 

series analysis. The continuous computing and statistical developments will allow improving the 694 

quantification of AWC uncertainty with a feasible computing time in future studies, for example with 695 

stochastic simulations or Bayesian simulations (Poggio et al., 2016; Beguin et al., 2017; Huang et al., 696 

2017), which would ultimately allow the characterization of the probability distribution of AWC 697 

estimates on a pixel base. Overall, this study provides the first estimate of AWC uncertainty, by soil 698 

layers or at the whole soil profile level, for mainland France that can be incorporated into ecological and 699 

agricultural modelling. The end-users of the AWC maps will be essential for evaluating the usefulness 700 

of the maps for assessing the provision of ecosystem services and modelling ecological processes, and 701 

to indicate limitations in their exploitation due to the AWC prediction uncertainty.  702 

The reproducible modelling framework allows replacing each component of the AWC calculation 703 

(PTFs, soil input properties) when more accurate maps are developed thanks to the selection of 704 

covariates that characterize better the processes driving the spatial distribution of soil input properties, 705 

the implementation of new regression algorithms, and the acquisition of new soil profile data. Indeed, 706 

key aspects for improving AWC estimates are expanding the calibration data on coarse elements 707 

(especially for deeper layers), incorporating the nature and soil hydraulic properties of coarse elements 708 

into the calculation, improving the estimates of clay and sand and their mineralogy, and improving the 709 

prediction of soil depth. According to our initial objectives, a major output of this study is the method 710 

we developed to estimate the uncertainty of AWC predictions by taking into account both uncertainties 711 
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linked to the soil input variables and to the PTFs’ coefficients. The second major output is the prediction 712 

of AWC and its uncertainty for mainland France according to international specifications, which 713 

provides this country a nearly complete set of the mandatory attributes to be predicted according to the 714 

GlobalSoilMap initiative. 715 

 716 

Acknowledgements 717 

This study was carried in the framework of the Groupement d'intérêt scientifique Sol (Gis Sol) and 718 

financed by the French Environment and Energy Management Agency (ADEME), the contract number 719 

is 32000753. The GEVARNOVIA dataset was created with contributions from INRA, ARVALIS-720 

Institut du végétal, GEVES, and Terres-Inovia. We would like to thank Alain Bouthier, Marie-	Hélène 721 

Bernicot, Luc Champolivier, and Aya Labidi for sharing the GEVARNOVIA dataset for the analyses 722 

included in this article. We would also like to thank Anne Richer-de-Forges for her help with the 723 

calibration dataset for coarse elements, and Line Boulonne and Jean-Philippe Chenu for their help 724 

with the RMQS dataset. 725 

 726 

References 727 

Achache, J., Debeglia, N., Grandjean, G., Guillen, A., Le Bel, L., Ledru, P., et al., 1997. 728 

GEOFRANCE 3D: l'imagerie géologique et géophysique 3D du sous-sol de la France. Mém. 729 

Société Géologique Fr. 53–71. 730 

Aitchison, J., 1982. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B Methodol. 44 731 

(2), 139–177. 732 

Akpa, S.I.C., Odeh, I.O.A., Bishop, T.F.A., Hartemink, A.E., 2014. Digital mapping of soil particle-733 

size fractions for Nigeria. Soil Sci. Soc. Am. J. 78 (6), 1953–1966. 734 

doi:10.2136/sssaj2014.05.0202. 735 

Al Majou, H., Bruand, A., Duval, O. 2008a. Use of in situ volumetric water content at field capacity to 736 

improve prediction of soil water retention properties. Can. J. Soil Sci., 88(4), 533–541. 737 

Al Majou, H., Bruand, A., Duval, O., Le Bas, C., Vautier, A., 2008b. Prediction of soil water retention 738 

properties after stratification by combining texture, bulk density and the type of horizon. Soil 739 

Use Manage. 24(4), 383–391. doi:10.1111/j.1475-2743.2008.00180.x. 740 

Angelini, M.E., Heuvelink, G.B, 2018. Including spatial correlation in structural equation modelling of 741 

soil properties. Spat. Stat., 25, 35–51. doi.org/10.1016/j.spasta.2018.04.003. 742 



29 

 

Angelini, M.E., Heuvelink, G.B., Kempen, B., 2017. Multivariate mapping of soil with structural 743 

equation modelling. Eur. J. Soil Sci., 68, 575–591. doi:10.1111/ejss.12446. 744 

Arnold, J. G., and J. R. Williams. 1987. Validation of SWRRB: Simulator for water resources in rural 745 

basins. J. Water Resour. Plan. Manage. ASCE113(2): 243-256. 746 

Arnold, J. G., and N. Fohrer. 2005. SWAT2000: Current capabilities and research opportunities in 747 

applied watershed modeling. Hydrol. Process. 19(3): 563-572. 748 

Arrouays, D., Hardy, R., Schnebelen, N., Le Bas, C., Eimberck, M., Roque, J., et al., 2004. Le 749 

programme inventaire gestion et conservation des sols en France. Etude Gest. Sols, 11 (3), 750 

187–197. https://prodinra.inra.fr/record/75841. 751 

Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S.Y., et al., 752 

2014. GlobalSoilMap: toward a fine-resolution global grid of soil properties. Adv. Agron. 125 753 

(125), 93–134. doi.org/10.1016/B978-0-12-800137-0.00003-0. 754 

Arrouays, D., Saby, N.P.A., Thioulouse, J., Jolivet, C., Boulonne, L., Ratié, C., 2011. Large trends in 755 

French topsoil characteristics are revealed by spatially constrained multivariate analysis. 756 

Geoderma 161, 107–114. doi.org/10.1016/j.geoderma.2010.12.002. 757 

Ballabio, C., Panagos, P., Monatanarella, L., 2016. Mapping topsoil physical properties at European 758 

scale using the LUCAS database. Geoderma 261, 110–123. 759 

doi.org/10.1016/j.geoderma.2015.07.006. 760 

Beguin, J., Fuglstad, G.A., Mansuy, N., Paré, D., 2017. Predicting soil properties in the Canadian 761 

boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. 762 

Geoderma, 306, 195–205. doi.org/10.1016/j.geoderma.2017.06.016. 763 

Bertran, P., Liard, M., Sitzia, L., Tissoux, H., 2016. A map of Pleistocene aeolian deposits in Western 764 

Europe, with special emphasis on France. J. Quaternary Sci., 31: 844-856 e2909. 765 

doi:10.1002/jqs.2909. 766 

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth functions with 767 

equal-area quadratic smoothing splines. Geoderma, 91 (1–2), 27–45. doi.org/10.1016/S0016-768 

7061(99)00003-8. 769 

Bouma, J., 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9, 177–213. 770 

doi.org/10.1007/978-1-4612-3532-3_4. 771 

Breiman, L., 2001. Random forests. Machine learning, 45(1), 5–32. 772 

doi.org/10.1023/A:1010933404324. 773 

Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., et al., 1998. STICS: a 774 

generic model for the simulation of crops and their water and nitrogen balances. I. Theory and 775 

parameterization applied to wheat and corn. Agron., 18(5–6), 311–346. 776 

Bruand, A., Pérez Fernández, P., Duval, O., 2003. Use of class pedotransfer functions based on texture 777 

and bulk density of clods to generate water retention curves. Soil Use Manage. 19, 232–242. 778 

Bruand, A., Duval, O., Cousin, I., 2004. Estimation des propriétés de rétention en eau des sols à partir 779 

de la base de données SOLHYDRO: Une première proposition combinant le type d’horizon, 780 

sa texture et sa densité apparente. Étude et Gestion des Sols, 11 (3), 323 – 332.Brus, D.J., 781 

Kempen, B., Heuvelink, G.B.M., 2011. Sampling for validation of digital soil maps. Eur. J. 782 

Soil Sci. 62 (3), 394–407. doi:10.1111/j.1365-2389.2011.01364.x. 783 

Buchanan, S., Triantafilis, J., Odeh, I.O.A., Subansinghe, R., 2012. Digital soil mapping of 784 

compositional particle-size fractions using proximal and remotely sensed ancillary data. 785 

Geophysics 77:WB201–WB211. doi:10.1190/geo2012-0053.1. 786 



30 

 

Carré, F., McBratney, A.B., Mayr, T., Montanarella, L., 2007. Digital soil assessments: Beyond DSM. 787 

Geoderma, 142 (1–2), 69–79. doi.org/10.1016/j.geoderma.2007.08.015. 788 

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N.P.A., et al., 2010. Rates 789 

and spatial variations of soil erosion in Europe: A study based on erosion plot data. 790 

Geomorphol., 122 (1–2), 167–177. doi.org/10.1016/j.geomorph.2010.06.011. 791 

Ciampalini, R., Martin, M.P., Saby, N.P.A., Richer-de-Forges, A.C., Arrouays, D., Nehlig, P., Martelet, 792 

G., 2014. Soil texture GlobalSoilMap products for the French region “Centre”, in: Arrouays, 793 

D., McKenzie, N., Hempel, J., Richer de Forges, A.C., McBratney, A. (Eds.), Globalsoilmap: 794 

Basis of the Global Spatial Soil Information System. CRC Press, pp. 121–126. 795 

Coleman, K., Jenkinson, D., Crocker, G.J., Grace, P.R., Klir, J., Körschens, M., et al., 1997. 796 

Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. 797 

Geoderma, 81(1–2), 29–44. doi.org/10.1016/S0016-7061(97)00079-7. 798 

Cousin, I., Labidi, A., Le Bris, X., Champolivier, L., Bernicot, M.H., Bessard Duparc, P., Bouthier, A., 799 

2016. Evaluating the Available Water Content of soils at large scale to improve the estimation 800 

of soil services. 2nd Global Soil Security Conference, 05–06/12/2016. 801 

Chrétien, J., 1971. Essai de caractérisation des sables en tant que squelette minéral du sol. Ann. 802 

Agron., 22 (6), 615–654. 803 

Didan, K., 2015. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid 804 

V006. NASA EOSDIS LP DAAC. doi: 10.5067/MODIS/MOD13A1.006. 805 

Dietze, M.C., 2017. Ecological forecasting. Princeton University Press. Princeton, New Jersey, USA. 806 

Dominati, E., Patterson, M., Mackay, A., 2010. A framework for classifying and quantifying the 807 

natural capital and ecosystem services of soils. Ecol. Econ., 69(9), 1858-1868. 808 

doi.org/10.1016/j.ecolecon.2010.05.002. 809 

Durand, Y., Brun, E., Mérindol, L., Guyomarc’h, G., Lesaffre, B., Martin, E., 1993. A meteorological 810 

estimation of relevant parameters for snow models.  Ann. Glaciol., 18, 65-71. 811 

https://doi.org/10.3189/S0260305500011277. 812 

Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., Mérindol, L., 2009: Reanalysis of 44 813 

Yr of Climate in the French Alps (1958–2002): Methodology, Model Validation, Climatology, 814 

and Trends for Air Temperature and Precipitation. J. Appl. Meteor. Climatol., 48, 429–449, 815 

https://doi.org/10.1175/2008JAMC1808.1. 816 

Efron, B., Tibshirani, R.J., 1993. An introduction to the bootstrap. Monogr. Stat. Appl. Probab. 57. 817 

CRC Press, Boca Raton, FL. 818 

European Environmental Agency, 2007. CLC2006 technical guidelines. Technical Report No. 819 

17/2007, European Environmental Agency, Copenhagen, Denmark. 820 

Faroux, S., Kaptué Tchuenté, A.T., Roujean, J.L., Masson, V., Martin, E., Moigne, P.L., 2013. 821 

ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km 822 

resolution based on satellite information for use in land surface, meteorological and climate 823 

models. Geosci. Model Dev., 6(2), 563–582. doi.org/10.5194/gmd-6-563-2013. 824 

Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., Van Der 825 

Velde, M., 2016. Uncertainty in soil data can outweigh climate impact signals in global crop 826 

yield simulations. Nat. Commun., 7, 11872. doi.org/10.1038/ncomms11872. 827 

Garrett, R.G., 2015. rgr: applied geochemistry EDA. R Package Version 1.1.10 (http:// CRAN.R-828 

project.org/package=rgr). 829 



31 

 

GDAL/OGR contributors (2015). GDAL/OGR Geospatial Data Abstraction software Library. Open 830 

Source Geospatial Foundation. URL http://gdal.org. 831 

Gis Sol, 2011. L'état des sols de France. Groupement d'intérêt scientifique sur les sols (188 pp.). 832 

Goulard, M., Voltz, M., 1992.	Linear coregionalization model: Tools for estimation and choice of 833 

cross-variogram matrix. Math. Geol. 24: 269. https://doi.org/10.1007/BF00893750. 834 

GRASS Development Team, 2016. Geographic Resources Analysis Support System (GRASS) 835 

Software, Version 7.0. Open Source Geospatial Foundation. Electronic document: 836 

http://grass.osgeo.org. 837 

Hengl, T., Heuvelink, G.B.M., Rossiter, D.G., 2007. About regression-kriging: from equations to case 838 

studies. Comput. Geosci. 33 (10), 1301–1315. doi.org/10.1016/j.cageo.2007.05.001. 839 

Heuvelink, G.B.M., Burrough, P.A., Stein, A., 1989. Propagation of errors in spatial modelling with 840 

GIS Int. J. Geogr. Inf. Syst. 3, 303–322. 841 

Heuvelink, G.B.M., Kros, J., Reinds, G.J., De Vries, W., 2016. Geostatistical prediction and simulation 842 

of European soil property maps. Geoderma Reg., 7(2), 201–215. 843 

doi.org/10.1016/j.geodrs.2016.04.002. 844 

Heuvelink, G.B.M., Pebesma, W. J., 1999. Spatial aggregation and soil process modelling. Geoderma, 845 

89: 47–65. doi.org/10.1016/S0016-7061(98)00077-9. 846 

Hong, S. Y., Minasny, B., Han, K. H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available 847 

water capacity in Korea. PeerJ, 1:e71 https://doi.org/10.7717/peerj.71. 848 

Huang, J., Malone, B.P., Minasny, B., McBratney, A.B., Triantafilis, J., 2017. Evaluating a Bayesian 849 

modelling approach (INLA-SPDE) for environmental mapping. Sci. Total Environ., 609, 621–850 

632. doi.org/10.1016/j.scitotenv.2017.07.201. 851 

Huang, J., Subasinghe, R., Triantafilis, J., 2014. Mapping particle-size fractions as a composition 852 

using additive log-ratio transformation and ancillary data. Soil Sci. Soc. Am. J., 78(6), 1967–853 

1976. doi:10.2136/sssaj2014.05.0215. 854 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the 855 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens.  856 

Environ., 83(1–2), 195–213. DOI: 10.1016/S0034-4257(02)00096-2. 857 

Institut National de l’Information Géographique et Forestière, 2012 Base de Données Forêt. In : BD 858 

Forêt ®. 859 

Jolivet, C., Arrouays, D., Boulonne, L., Ratié, C., Saby, N., 2006. Le Réseau de Mesures de la Qualité 860 

des Sols de France (RMQS). État d'avancement et premiers résultats. Étude Gest. Sols 13 (3), 861 

149–164. 862 

Jolivet C., Almeida-Falcon J.L., Berché P., Boulonne L., Fontaine M., Gouny L., et al., 2018. Manuel 863 

du Réseau de mesures de la qualité des sols. RMQS2: deuxième campagne métropolitaine, 864 

2016–2027, Version 3, INRA, US 1106 InfoSol, Orléans, France. 865 

King, D., Burrill, A., Daroussin, J., Le Bas, C., Tavernier, R., Van Ranst, E., 1995. The EU soil 866 

geographical database, in: King, D., Jones, R.J.A. Jones, Thomasson A.J. (Eds), European 867 

land information systems for agro-environmental monitoring. Joint Research Centre, Ispra, 868 

Italy, pp. 43–60. 869 

Lacoste, M., Mulder, V.L., Richer-de-Forges, A.C., Martin, M.P., Arrouays, D., 2016. Evaluating large-870 

extent spatial modeling approaches: A case study for soil depth for France. Geoderma Reg., 871 

7(2), 137–152. doi.org/10.1016/j.geodrs.2016.02.006. 872 



32 

 

Lagacherie, P., McBratney, A.B., 2006. Chapter 1 Spatial Soil Information Systems and Spatial Soil 873 

Inference Systems: Perspectives for Digital Soil Mapping, in: Lagacherie, P., McBratney, 874 

A.B., Voltz, M. (Eds.), Developments in Soil Science, 31. Elsevier, Amsterdam, The 875 

Netherlands, pp. 3–22. doi.org/10.1016/S0166-2481(06)31001-X. 876 

Lark, R.M., Bishop, T.F.A., 2007. Cokriging particle size fractions of the soil. Eur. J. Soil Sci. 58 (3), 877 

763–774. doi.org/10.1111/j.1365-2389.2006.00866.x. 878 

Laroche, B., Richer-de-Forges, A., Leménager, S., Arrouays, D., Schnebelen, N., Eimberck, M., et al., 879 

2014. Le programme Inventaire Gestion Conservation des Sols de France : volet Référentiel 880 

Régional Pédologique. Étude Gest. Sols, 21 (1), 25–36. https://prodinra.inra.fr/record/282113. 881 

Leenaars, J.G.B., Claessens, L., Heuvelink, G.B.M., Hengl, T., Ruiperez González, M., van Bussel, 882 

L.G.J., Guilpart, N., Yang, H., Cassman, K.G., 2018. Mapping rootable depth and root zone 883 

plant-available water holding capacity of the soil of sub-Saharan Africa, Geoderma, 324, 18–884 

36. doi.org/10.1016/j.geoderma.2018.02.046. 885 

Lin L.I., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–886 

268. DOI : 10.2307/2532051. 887 

Marchant, B., Viscarra Rossel, R., Webster, R., 2013. Fluctuations in method-of-moments variograms 888 

caused by clustered sampling and their elimination by declustering and residual maximum 889 

likelihood estimation. Eur. J. Soil Sci., 64: 401–409. doi:10.1111/ejss.12029. 890 

Marchetti, R., Donatelli, M. and Spallacci, P., 1997. Testing denitrification functions of dynamic crop 891 

models. J. Environ. Qual., 26(2), pp. 394–401. 892 

doi:10.2134/jeq1997.00472425002600020009x. 893 

Mardhel, V., Gravier, A., 2005. Carte de vulnérabilité intrinsèque simplifiée des eaux souterraines du 894 

Bassin Seine-Normandie (Rapport BRGM/RP-54148-FR). 895 

McBratney, A.B., Santos, M.L.M.,Minasny, B., 2003. On digital soil mapping. Geoderma 117 (1–2), 896 

3–52. doi.org/10.1016/S0016-7061(03)00223-4. 897 

Meinshausen, N., 2006. Quantile regression forests. J. Mach. Learn. Res., 7(Jun), 983–999. 898 

Minasny, B., McBratney, A.B., Bristow, K.L., 1999. Comparison of different approaches to the 899 

development of pedotransfer functions for water-retention curves. Geoderma 93(3–4), 225–900 

253. doi.org/10.1016/S0016-7061(99)00061-0. 901 

Mulder, V.L., Lacoste, M., Richer-de-Forges, A.C., Arrouays, D., 2016. GlobalSoilMap France: High-902 

resolution spatial modelling the soils of France up to two meter depth. Sci. Total Environ., 73, 903 

1352–1369. doi.org/10.1016/j.scitotenv.2016.07.066. 904 

Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions 905 

derived from different scales of data collection. Soil Sci. Soc. Am. J. 67(4), 1093–1102. 906 

doi:10.2136/sssaj2003.1093. 907 

Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1994. Spatial prediction of soil properties from 908 

landform attributes derived from a digital elevation model. Geoderma 63(3–4), 197–214. 909 

Odeh, I.O.A., Todd, A.J., Triantafilis, J., 2003. Spatial prediction of soil particle-size fractions as 910 

compositional data. Soil Sci. 168 (7), 501–515. doi: 10.1097/01.ss.0000080335.10341.23. 911 

O'Leary, G.J., Li Liu, D., Ma, Y., Li, F.Y., McCaskill, M., Conyers, M., et al., 2016. Modelling soil 912 

organic carbon 1. Performance of APSIM crop and pasture modules against long-term 913 

experimental data. Geoderma, 264, 227–237. doi.org/10.1016/j.geoderma.2015.11.004. 914 



33 

 

Padarian, J., Minasny, B., McBratney, A.B., Dalgliesh, N., 2014. Predicting and mapping the soil 915 

available water capacity of Australian wheatbelt. Geoderma Reg., 2–3, 110–118. 916 

doi.org/10.1016/j.geodrs.2014.09.005. 917 

Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic 918 

matter levels in Great Plains Grasslands 1. Soil Sci. Soc. Am. J., 51(5), 1173–1179. 919 

doi:10.2136/sssaj1987.03615995005100050015x. 920 

Piedallu, C., Gegout, J.C., Bruand, A., Seynave, I., 2011. Mapping soil water holding capacity over 921 

large areas to predict potential production of forest stands. Geoderma 160(3–4), 355–366. 922 

doi.org/10.1016/j.geoderma.2010.10.004. 923 

Poggio, L., Gimona, A., 2017. 3D mapping of soil texture in Scotland. Geoderma Reg., 9, 5–16. 924 

doi.org/10.1016/j.geodrs.2016.11.003. 925 

Poggio, L., Gimona, A., Brown, I., Castellazzi, M., 2010. Soil available water capacity interpolation 926 

and spatial uncertainty modelling at multiple geographical extents. Geoderma, 160(2), 175–927 

188. doi.org/10.1016/j.geoderma.2010.09.015. 928 

Poggio, L., Gimona, A., Spezia, L., Brewer, M.J., 2016. Bayesian spatial modelling of soil properties 929 

and their uncertainty: The example of soil organic matter in Scotland using R-INLA. 930 

Geoderma, 277, 69–82. doi.org/10.1016/j.geoderma.2016.04.026. 931 

Quinlan, J.R, 1992. Learning with continuous classes. Proceedings of the 5th Australian Joint 932 

Conference On Artificial Intelligence, pp. 343–348. 933 

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., et al., 2008. 934 

Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over 935 

France. J. Appl. Meteorol. Climatol. 47, 92–107. doi.org/10.1175/2007JAMC1636.1. 936 

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for 937 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 938 

Román Dobarco, M., Cousin, I., Le Bas, C., Martin, M.P., 2019. Pedotransfer functions for predicting 939 

available water capacity in French soils, their applicability domain and associated uncertainty. 940 

Geoderma, 336, 81–95. doi.org/10.1016/j.geoderma.2018.08.022. 941 

Román Dobarco, M., Saby, N.P.A., Bourennane, H., Cousin, I., Arrouays, D., Martin, M.P., 2018. 942 

Digital soil mapping and uncertainty propagation of available water capacity for metropolitan 943 

France. TERRAENVISION Abstracts Vol. 1, TNV2018-ECO1-396, TERRAenVISION, 1 944 

February 2018, Barcelona, Spain. 945 

Sanchez, P.A., Ahamed, S., Carré, F., Hartemink, A.E., Hempel, J., Huising, J., et al., 2009. Digital soil 946 

map of the world. Science, 325(5941), 680–681. doi: 10.1126/science.1175084. 947 

Schwärzel, K., Feger, K.-H., Häntzschel, J., Menzer, A., Spank, U., Clausnitzer, F., Köstner, B., 948 

Bernhofer, C., 2009. A novel approach in model-based mapping of soil water conditions at 949 

forest sites. For. Ecol. Manage. 258 (10), 2163–2174. 950 

Shrestha, D.L., Solomatine, D.P., 2006. Machine learning approaches for estimation of prediction 951 

interval for the model output. Neural Netw. 19, 225–235. 952 

Silva, B.M., Silva É.A., Oliveira, G.C., Ferreira, M.M., Serafim, M.E., 2014. Plant-available soil water 953 

capacity: estimation methods and implications. Rev. Bras. Cienc. Solo 38, 464–475. 954 

Styc, Q., Lagacherie, P., 2018. What is the best spatial soil inference system for mapping Available 955 

water capacity? A test in Languedoc-Roussillon (France). Geophys. Res. Abstr., 20, 956 

EGU2018-6602-1, EGU General Assembly 2018, 9 April 2018, Vienna, Austria. 957 



34 

 

Tetegan, M., de Forges, A.C.R., Verbeque, B., Nicoullaud, B., Desbourdes, C., Bouthier, A., Arrouays, 958 

D., Cousin, I., 2015. The effect of soil stoniness on the estimation of water retention properties 959 

of soils: A case study from central France. Catena 129, 95–102. 960 

Tetegan, M., Nicoullaud, B., Baize, D., Bouthier, A., Cousin, I., 2011. The contribution of rock 961 

fragments to the available water content of stony soils: Proposition of new pedotransfer 962 

functions. Geoderma 165(1), 40–49. 963 

Tóth, B., Weynants, M., Nemes, A., Mako, A., Bilas, G., Tóth, G., 2015. New generation of hydraulic 964 

pedotransfer functions for Europe. Eur. J. Soil Sci. 66(1), 226–238. doi:10.1111/ejss.12192. 965 

Tóth, B., Weynants, M., Pásztor, L., Hengl, T. 2017. 3D Soil Hydraulic Database of Europe at 250 m 966 

resolution. Hydrological Processes, 31:2662–2666. doi.org/10.1002/hyp.11203. 967 

Ugbaje, S.U., Reuter, H.I., 2013. Functional digital soil mapping for the prediction of available water 968 

capacity in Nigeria using legacy data. Vadose Zone J., 12(4). doi:10.2136/vzj2013.07.0140. 969 

USGS, 2004. Shuttle Radar Topography Mission, 1 Arc Second Scene SRTM_u03_n008e004, 970 

Unfilled Unfinished 2.0, Global Land Cover Facility. University of Maryland, College Park, 971 

Maryland (February 2000). 972 

Vanderlinden, K., Giráldez, J. V., Van Meirvenne, M., 2005. Soil water-holding capacity assessment in 973 

terms of the average annual water balance in southern Spain. Vadose Zone J., 4, 317–328. 974 

Van Ranst E., Vanmechelen L., Thomasson A.J., Daroussin J., Hollis J.M., Jones R.J.A., Jamagne M., 975 

King D., 1995. Elaboration of an extended knowledge database to interpret the 1:1,000,000 976 

EU soil map for environmental purposes, in: King D., Jones R.J.A., Thomasson A.J. (Eds.). 977 

European Land Information Systems for Agro-environmental monitoring, CEC, Luxembourg. 978 

286 pages. 979 

Vaysse, K., Lagacherie, P., 2017. Using quantile regression forest to estimate uncertainty of digital soil 980 

mapping products. Geoderma, 291, 55–64. doi.org/10.1016/j.geoderma.2016.12.017. 981 

Veihmeyer, F.J., Hendrickson, A.H. 1927. The relation of soil moisture to cultivation and plant growth. 982 

Soil Sci. 3, 498–513. 983 

Viscarra Rossel R.A., Chen C., Grundy M.J., Searle R., Clifford D., Campbell P.H., 2015. The 984 

Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. 985 

Soil Res. 53, 845–864. doi.org/10.1071/SR14366. 986 

Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of 987 

hydraulic properties of European soils. Geoderma 90(3–4), 169–185. doi.org/10.1016/S0016-988 

7061(98)00132-3. 989 



Figure captions 

Figure 1: General framework for modelling the spatial distribution of elementary available water 

capacity and its uncertainty by GlobalSoilMap layer. IGCS: French soil mapping and inventory 

program dataset; RMQS: French soil monitoring network; GEVARNOVIA: dataset with soil 

hydraulic measurements; ���: soil moisture at field capacity; ����: soil moisture at permanent wilting 

point; ��: coarse elements. 

Figure 2: Location of soil profiles from the French soil mapping and inventory program dataset 

(IGCS) used for predicting the spatial distribution of particle size distribution and coarse elements. 

Figure 3: Location of evaluation data for the soil input properties (RMQS), and evaluation data for the 

soil hydraulic properties (GEVARNOVIA). 

Figure 4: Scatter plots of observed vs predicted values for RMQS horizons for a) clay (g kg-1), b) silt 

(g kg-1), c) sand (g kg-1), and d) coarse elements (%). The 1:1 line is indicated in black. 

Figure 5: Scatter plots of measured vs predicted values for GEVARNOVIA horizons for: a) soil 

moisture at field capacity (���) extracted from spatial GlobalSoilMap (GSM) predictions, b) soil 

moisture at field capacity (���) estimated applying the pedotransfer function to measured clay and 

sand contents, c) soil moisture at permanent wilting point (����) extracted from spatial GSM 

predictions, and d) soil moisture at permanent wilting point (����) estimated applying the 

pedotransfer function to measured clay and sand contents. Vertical bars represent the prediction 

intervals. 

Figure 6: Boxplot of prediction errors (predicted - observed) by texture class: a) soil moisture at field 

capacity (���) by GlobalSoilMap (GSM) estimates, b) soil moisture at field capacity (���) estimated 

with the pedotransfer function (PTF) on measured clay and sand data, c) soil moisture at permanent 

wilting point (����) by GlobalSoilMap (GSM) estimates, and d) soil moisture at permanent wilting 

point (����) estimated with the pedotransfer function (PTF) on measured clay and sand data. Texture 

classes: coarse (C), medium (M), medium fine (MF), fine (F), and very fine (VF). The evaluation 

dataset did not have measurements of ��� for the very fine texture class. 



Figure 7: a) Soil thickness (cm), b) total available water capacity (AWC) (mm) to a maximum depth of 

2 m, c) standard deviation (SD) of total AWC (mm), and d) relative error of AWC (coefficient of 

variation, CV). 

Figure 8: Soil properties used as input for the calculation of AWC and their standard deviation (SD) 

(15 - 30 cm). a) Clayalr, b) Siltalr, c) Coarse elements (%), d) Clayalr SD, e) Siltalr SD, and f) Coarse 

elements SD (%). 

Figure 9: Components of the variance of elementary soil moisture at field capacity (cm3 cm-3) due to 

soil input variables for the GlobalSoilMap layer 15-30 cm. a) Sensitivity of the PTF to clayalr, b) 

sensitivity of the PTF to siltalr, c) uncertainty term associated to clayalr (i.e., the multiplication of the 

squared sensitivity by the variance), d) uncertainty term associated to siltalr, e) uncertainty term 

associated to the interaction between clayalr and siltalr, and f) the total variance due to soil input 

variables. 

Figure 10: Components of the variance of elementary soil moisture at field capacity (cm3 cm-3) 

associated to the PTF’s coefficients for the GSM layer 15-30 cm: a) sensitivity of the PTF to clay 

coefficient (i.e clay predictions %), b) sensitivity of the PTF to sand coefficient (i.e sand predictions 

%), c) variance term of the interaction between the intercept and clay coefficient, d) variance term of 

the interaction between the intercept and the sand coefficient, e) variance term of the clay coefficient, 

f) variance term of the sand coefficient, g) variance term of the interaction between clay and sand, and 

g) total variance associated to the PTF’s coefficients. The sensitivity of the function to the coefficient 

was 1, and consequently, the term of the variance associated to the intercept was constant (3.80 10-5 

cm6 cm-6) (not included in the figure). 























Tables 

Table 1: Number of observations by GlobalSoilMap layer in the calibration dataset for the particle size 

distribution and coarse elements models. 

Depth (cm) Particle size distribution (N) Coarse elements (N) 

0–5 36381 51966 

5–15 35614 53552 

15–30 35614 53516 

30–60 31687 50500 

60–100 25005 47900 

100–200 13183 45169 

 



Table 2: Description of the environmental covariates used for fitting regression models for particle size 

distribution and coarse elements. Soil forming factors: soil (S), climate (C), organisms (O), relief (R), 

parent material (P). SAFRAN applies an optimal interpolation of observations from meteorological 

stations (1958-present) and surface analyzes from numerical weather prediction systems at 8 km 

resolution (Quintana-Seguí et al., 2008; Durand et al., 2009). The IRNDP is a proxy for permeability of 

the geological material, and it is calculated from the comparison between the observed hydrological 

network and the theoretical network based on topographic conditions (Mardhel and Gravier, 2005). 

Source Variables 
Soil forming 
factor 

Scale/ 
resolution 

Reference 

SAFRAN 
Mean annual potential evapotranspiration, precipitation, 
and temperature statistics (minimum, median, mean, 
maximum) 

C 8 km 
Quintana-Seguí et al. 
(2008) 

SRTM 

Elevation, slope, elevation above channel network, slope 
height, mid-slope position, multiresolution valley bottom 
flatness index (Gallant and Dowling, 2003), 
multiresolution ridgetop flatness index (Gallant and 
Dowling, 2003), topographic wetness index (Böhner et 
al., 2002), compound topographic index, curvature, 
longitudinal curvature, transversal curvature, exposition, 
heat load index, linear aspect, roughness, surface area 
ratio, slope position, surface relief ratio 

R 90 m USGS (2004) 

 Erosion rate S, R 1:1000000 Cerdan et al. (2010) 
French Soil 
Geographical 
Database  

Soil type, parent material S, P 1:1000000 Gis Sol (2011) 

 Index of Development and Persistence of Hydrological 
Network P 1:50000 

Mardhel and Gravier 
(2005) 

Gravimetric 
data 

Gravimetric data: Bouger anomaly, free-air bouguer 
anomaly, Bouguer gravity anomaly. R, P 4 km Achache et al. (1997) 

Corine Land 
Cover 2006 

Land use O 250 m EEA (2007) 

BD Forêt 
version 1.0  

Natural and semi-natural vegetation type O  IGN (2012) 

ECOCLIMAP-
II 

Land use O 1 km Faroux et al. (2003) 

MODIS 

Enhanced vegetation index: median for January (2002-
2014), median for June (2002-2014).  
Normalized difference vegetation index: median for 
January (2002-2014), median for June (2002-2014) 

O 500 m Didan (2015) 

 

  



Table 3: Variance-covariance matrices of PTFs coefficients for estimating soil moisture at field capacity 
(θ2.0) and at permanent wilting point (θ4.2).  

θ2.0  θ4.2 

 Intercept Clay Sand   Intercept Clay Sand 

Intercept 3.80 10-5 -9.93 10-7 -3.85 10-7  Intercept 1.84 10-5 -4.07 10-7 -1.97 10-7 
Clay -9.93 10-7 3.17 10-8 7.05 10-9  Clay -4.07 10-7 1.04 10-8 3.79 10-9 
Sand -3.85 10-7 7.05 10-9 9.09 10-9  Sand -1.97 10-7 3.79 10-9 3.76 10-9 

 

 

  



Table 4: Fitted parameters for the linear model of coregionalization for the cubist residuals of clayalr and 

siltalr at each GlobalSoilMap depth interval. The covariogram models were spherical. 

Depth Variable N Nugget pSill Range (m) 

0–5 Siltalr 36159 0.41 0.45 190098 

 Clayalr  0.48 0.61  

 Siltalr x Clayalr  0.37 0.42  

5–15 Siltalr 36108 0.39 0.33 178104 

 Clayalr  0.45 0.48  

 Siltalr x Clayalr  0.34 0.31  

15–30 Siltalr 35401 0.35 0.32 160970 

 Clayalr  0.40 0.50  

 Siltalr x Clayalr  0.30 0.32  

30–60 Siltalr 31494 0.58 0.48 170776 

 Clayalr  0.62 0.74  

 Siltalr x Clayalr  0.48 0.46  

60–100 Siltalr 24849 1.83 0.56 252306 

 Clayalr  1.50 0.91  

 Siltalr x Clayalr  1.31 0.60  

100–200 Siltalr 13086 3.03 1.25 167139 

 Clayalr  2.50 1.42  

 Siltalr x Clayalr  1.87 1.16  

 

  



Table 5: Independent evaluation statistics for clay, silt, sand, and coarse elements from observed RMQS 

horizons. 

Variable N R2 Concordance RMSE bias PICP (%) 

Clay (g kg-1) 4970 0.27 0.49 127.7 -15.3 83 

Silt (g kg-1) 4970 0.43 0.63 138.6 19.3 86 

Sand (g kg-1) 4970 0.46 0.66 171.8 -2.7 90 

Coarse elements (%) 4988 0.14 0.26 21.0 3.3 76 

 

  



Table 6: Independent evaluation statistics for soil moisture at field capacity (���) and soil moisture at 

permanent wilting point (����) measured at the laboratory on horizon samples (GEVARNOVIA 

dataset). The soil moisture contents estimates were calculated applying pedotransfer functions (PTFs) 

to measured particle size distribution (PSD) data from horizon samples, or applying the PTFs to weighed 

averages of GlobalSoilMap (GSM) spatial predictions.   

Estimate origin Variable N R2 Concordance RMSE bias PICP (%) 
PTFs on 
measured 
horizon PSD 

��� (cm3cm-3) 236 0.54 0.65 0.052 -0.02 84.3 

���� (cm3cm-3) 308 0.62 0.75 0.042 -0.005 85.1 

GSM 
prediction 

��� (cm3cm-3) 236 0.21 0.37 0.065 -0.02 71.2 

���� (cm3cm-3) 308 0.29 0.47 0.057 -0.0004 76.6 
 

 

 




