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Abstract. Some biological particles and macromolecules are
particularly efficient ice nuclei (IN), triggering ice formation
at temperatures close to 0 ◦C. The impact of biological par-
ticles on cloud glaciation and the formation of precipitation
is still poorly understood and constitutes a large gap in the
scientific understanding of the interactions and coevolution
of life and climate. Ice nucleation activity in fungi was first
discovered in the cosmopolitan genus Fusarium, which is
widespread in soil and plants, has been found in atmospheric
aerosol and cloud water samples, and can be regarded as
the best studied ice-nucleation-active (IN-active) fungus. The
frequency and distribution of ice nucleation activity within
Fusarium, however, remains elusive. Here, we tested more
than 100 strains from 65 different Fusarium species for ice
nucleation activity. In total, ∼ 11 % of all tested species in-
cluded IN-active strains, and ∼ 16 % of all tested strains
showed ice nucleation activity above −12 ◦C. Besides Fusar-
ium species with known ice nucleation activity, F. armeni-
acum, F. begoniae, F. concentricum, and F. langsethiae were
newly identified as IN-active. The cumulative number of IN
per gram of mycelium for all tested Fusarium species was
comparable to other biological IN like Sarocladium impli-
catum, Mortierella alpina, and Snomax®. Filtration experi-
ments indicate that cell-free ice-nucleating macromolecules
(INMs) from Fusarium are smaller than 100 kDa and that
molecular aggregates can be formed in solution. Long-term
storage and freeze–thaw cycle experiments revealed that the
fungal IN in aqueous solution remain active over several
months and in the course of repeated freezing and thawing.

Exposure to ozone and nitrogen dioxide at atmospherically
relevant concentration levels also did not affect the ice nu-
cleation activity. Heat treatments at 40 to 98 ◦C, however,
strongly reduced the observed IN concentrations, confirm-
ing earlier hypotheses that the INM in Fusarium largely con-
sists of a proteinaceous compound. The frequency and the
wide distribution of ice nucleation activity within the genus
Fusarium, combined with the stability of the IN under atmo-
spherically relevant conditions, suggest a larger implication
of fungal IN on Earth’s water cycle and climate than previ-
ously assumed.

1 Introduction

Ice particles in the atmosphere are formed either by ho-
mogeneous nucleation at temperatures below −38 ◦C or by
heterogeneous nucleation catalyzed by particles or macro-
molecules serving as ice nuclei (IN) at warmer temperatures
(Pruppacher and Klett, 1997; reviewed in detail in Fröhlich-
Nowoisky et al., 2016 and Knopf et al., 2018). Biological
particles in particular are expected to play an important role
as IN in the temperature range from −15 to 0 ◦C, but the im-
pact of biological particles on cloud glaciation and the for-
mation of precipitation is still poorly understood (Coluzza
et al., 2017). Several studies suggest a triggering effect of
biological IN for cloud glaciation and formation of precip-
itation (Creamean et al., 2013; DeMott and Prenni, 2010;
Failor et al., 2017; Hanlon et al., 2017; Joly et al., 2014;
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Petters and Wright, 2015; Pratt et al., 2009; Stopelli et al.,
2015, 2017), and former studies have shown that biologi-
cal particles are more efficient than mineral IN (DeMott and
Prenni, 2010; Després et al., 2012; Hill et al., 2014; Hoose
and Möhler, 2012; Huffman et al., 2013; Möhler et al., 2007;
Morris et al., 2014; Murray et al., 2012; Pratt et al., 2009).

The best characterized biological IN are common plant-
associated bacteria of the genera Pseudomonas, Pantoea, and
Xanthomonas (Garnham et al., 2011; Govindarajan and Lin-
dow, 1988; Graether and Jia, 2001; Green and Warren, 1985;
Hill et al., 2014; Kim et al., 1987; Ling et al., 2018; Šantl-
Temkiv et al., 2015; Schmid et al., 1997; Wolber et al., 1986),
and, recently, an ice-nucleation-active (IN-active) Lysini-
bacillus was found (Failor et al., 2017). The first identi-
fied IN-active fungi were strains of the genus Fusarium
(Hasegawa et al., 1994; Pouleur et al., 1992; Richard et al.,
1996; Tsumuki et al., 1992). To date, a few more fungal gen-
era with varying initial freezing temperatures such as Isaria
farinosa (∼ −4 ◦C), Mortierella alpina (∼ −5 ◦C), Puccinia
species (−4 to −8 ◦C), and Sarocladium (formerly named
Acremonium) implicatum (∼ −9 ◦C) have been identified as
IN-active (Fröhlich-Nowoisky et al., 2015; Huffman et al.,
2013; Morris et al., 2013; Richard et al., 1996).

The genus Fusarium is cosmopolitan and includes sapro-
phytes and pathogens of plants and animals (Leslie and Sum-
merell, 2006; Nelson et al., 1994). Although they are consid-
ered to be primarily soilborne fungi, many species of Fusar-
ium are airborne (Prussin et al., 2014; Schmale et al., 2012;
Schmale and Ross, 2015), and they were found in atmo-
spheric and cloud water samples (e.g., Amato et al., 2007;
Fröhlich-Nowoisky et al., 2009; Fulton, 1966). Some species
can cause wilts, blights, root rots, and cankers in agricultur-
ally important crops worldwide (e.g., Schmale and Gordon,
2003; Wang and Jeffers, 2000). Other species can produce
secondary metabolites known as mycotoxins that can cause
a variety of acute and chronic health effects in humans and
animals (e.g., Bush et al., 2004; Ichinoe et al., 1983).

While the factors for a positive selective pressure for ice
nucleation activity in Fusarium and other fungi have not been
directly identified, an ecological advantage of initiating ice
formation is easily conceivable. Indeed, most IN-active bac-
teria and fungi are isolated from regions with seasonal tem-
peratures below 0 ◦C (Diehl et al., 2002; Schnell and Vali,
1972). Ice nucleation activity at temperatures close to 0 ◦C
could be beneficial for pathogens or might provide an ecolog-
ical advantage for saprophytic Fusarium species by facilitat-
ing in the acquisition of nutrients liberated during cell rupture
of the host (Lindow et al., 1982). Furthermore, IN on the sur-
face of the mycelium could avoid physical damage of the fun-
gus by protective extracellular freezing (Fröhlich-Nowoisky
et al., 2015; Zachariassen and Kristiansen, 2000) or by bind-
ing moisture as ice in cold and dry seasons (Pouleur et al.,
1992). With increasing temperatures, the retained water can
be of advantage in early vegetative periods and for bacte-
rial movement on the mycelial water film known as the fun-

gal highway (Kohlmeier et al., 2005; Warmink et al., 2011).
Moreover, ice nucleation activity might be beneficial for air-
borne Fusarium and for their return to Earth’s surface under
advantageous conditions in a feedback cycle known as bio-
precipitation (Després et al., 2012; Morris et al., 2013, 2014;
Sands et al., 1982). In addition, once the IN are released into
the environment, they can adsorb to clay and might also be
available in the atmosphere associated with soil dust particles
(Conen et al., 2011; Fröhlich-Nowoisky et al., 2015, 2016;
Hill et al., 2016; O’Sullivan et al., 2014, 2015, 2016; Sing
and Sing, 2010).

The sources, abundance, and identity of biological IN are
not well characterized (Coluzza et al., 2017), and it has
been proposed that systematic surveys will likely increase
the number of IN-active fungal species discovered (Fröhlich-
Nowoisky et al., 2015). Fusarium is the best-known IN-
active fungus, but the frequency and distribution of ice nu-
cleation activity within Fusarium is not well known. In this
study, more than 100 strains from 65 different Fusarium
species were tested for ice nucleation activity in three lab-
oratories with different freezing methods. A high-throughput
droplet freezing assay was used to quantify the IN of selected
Fusarium species, and filtration experiments were performed
to estimate the size of the Fusarium IN. Furthermore, the sta-
bility of Fusarium IN upon exposure to ozone and nitrogen
dioxide, under high and low or quickly changing tempera-
tures, and after short- and long-term storage under various
conditions was investigated.

2 Materials and methods

2.1 Origin and growth conditions of fungal cultures

Thirty Fusarium strains from USDA-ARS, Michigan State
University (Linda E. Hanson, East Lansing, MI, USA),
13 strains from the Schmale Laboratory at Virginia Tech
(David G. Schmale, Blacksburg, VA, USA), and 69 strains
from the Kansas State University Teaching Collection
(John F. Leslie, Manhattan, KS, USA) were screened for ice
nucleation activity (Table S1 in the Supplement).

The strains from the USDA-ARS, Michigan State Univer-
sity, were collected from crop tissue (sugar beet). All isolates
were from field-grown beets and were obtained by hyphal
tip transfer. The strains from the Schmale Laboratory at Vir-
ginia Tech were collected with unmanned aircraft systems
(UASs or drones) equipped with remotely operated sampling
devices containing a Fusarium selective medium (e.g., Lin
et al., 2013, 2014). All of the Schmale Laboratory strains
were collected 100 m above ground level at the Kentland
Farm in Blacksburg, Virginia, USA. Detailed information is
not available for the sources of the strains for the Kansas
State University Teaching collection. However, some of these
strains are holotype strains referenced in Leslie and Sum-
merell (2006).
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The strains from the USDA-ARS, Michigan State Univer-
sity, were cultivated on dextrose peptone yeast extract agar,
containing 10 g L−1 dextrose (VWR, Radnor, PA, USA),
3 g L−1 peptone (Difco Proteose Peptone No. 3, Becton,
Dickinson and Company, Franklin Lakes, NY, USA), and
0.3 g L−1 yeast extract (Merck, Kenilworth, NJ, USA), and
were filtered through a 0.2 µm pore diameter filter (PES dis-
posable filter units, Life Science Products, Frederick, CO,
USA). After filtration, 12 g L−1 agarose (Certified Molecular
Biology Agarose, Bio-Rad, Hercules, CA, USA) was added,
and the medium was sterilized by autoclaving at 121 ◦C for
20 min. The colonies were grown at 22 to 24 ◦C for 7 to 19 d.
The strains from the Schmale Laboratory at Virginia Tech
and the Kansas State University Teaching Collection were
maintained in cryogenic storage at −80 ◦C and were grown
on quarter-strength potato dextrose agar (Difco Laboratories,
Detroit, USA) on 100 mm petri plates at ambient room tem-
perature for 4 d prior to ice nucleation assays.

For quantitative analysis, exposure experiments, heat treat-
ments, freeze–thaw cycles, and short- and long-term stor-
age tests, a selection of IN-active tested strains was grown
on full-strength potato dextrose agar (VWR International
GmbH, Darmstadt, Germany) first at room temperature for
4 to 6 d and then at 6 ◦C for about 4 weeks. For filtration ex-
periments, the fungal cultures were grown at 6 ◦C for up to 6
months.

2.2 Preparation and treatments of aqueous extracts

For LED-based Ice Nucleation Detection Apparatus
(LINDA) (Stopelli et al., 2014) experiments (see Sect. 2.3),
4 mL of sterile 0.9 % NaCl was added to each of eight petri
plates, and the fungal cultures were scraped with the flat
end of a sterile bamboo skewer. The resulting suspension
of mycelium and spores was filtered through a 100 µm filter
(Corning Life Sciences, Reims, France).

For Twin-plate Ice Nucleation Assay (TINA) (Kunert
et al., 2018) experiments (see Sect. 2.3) the fungal mycelium
was scraped off the agar plate and transferred into a 15 mL
tube (Greiner Bio One, Kremsmünster, Austria). The fresh
weight of the mycelium was determined gravimetrically.
Pure water was prepared as described in Kunert et al. (2018).
Aliquots of 10 mL pure water were added before vortex-
ing three times at 2700 rpm for 30 s (Vortex-Genie 2, Sci-
entific Industries, Inc., Bohemia, NY, USA) and centrifuga-
tion at 4500 g for 10 min (Heraeus Megafuge 40, Thermo
Scientific, Braunschweig, Germany). For all experiments,
the aqueous extract were filtered successively through a 5
and a 0.1 µm PES syringe filter (Acrodisc®, Sigma-Aldrich,
Taufkirchen, Germany), and the aqueous extracts contained
IN from spores and mycelial surfaces.

For filtration experiments, the 0.1 µm filtrate was further
filtered successively through 300 000 and 100 000 MWCO
PES ultrafiltration units (Vivaspin®, Sartorius AG, Göttin-

gen, Germany). After each filtration step, the IN concentra-
tion was determined using TINA.

For exposure experiments, aqueous extracts of F. acumina-
tum 3–68 and F. avenaceum 2–106 were exposed to high con-
centrations of O3 and NO2 as described in Liu et al. (2017).
Briefly, a mixture of 1 ppm O3 and 1 ppm NO2 was bubbled
through 1 mL aliquots of aqueous extract for 4 h, and the IN
concentration was determined using TINA.

For heat treatment experiments, aliquots of aqueous ex-
tracts were incubated at 40, 70, and 98 ◦C for 1 h for each of
F. acuminatum 3–68, F. armeniacum 20 970, F. avenaceum
2–106, and F. langsethiae 19 084. The IN concentration was
determined using TINA.

For freeze–thaw cycles, the ice nucleation activity of F.
acuminatum 3–68 was determined shortly after preparation
of the aqueous extract and after storage at 6 ◦C for 24 h us-
ing TINA. Then, the aqueous extract was stored at −20 ◦C
for 24 h and thawed again. The ice nucleation activity was
tested before storage at −20 ◦C for an additional 24 h. After
thawing, the ice nucleation activity was determined again.

For long-term storage experiments, the aqueous extracts
of various Fusarium species were stored at 6 ◦C for about 4
months or at −20 ◦C for about 8 months, and the ice nucle-
ation activity was determined using TINA.

2.3 Ice nucleation assays

Two independent droplet freezing assays conducted in two
laboratories were used to investigate the distribution of ice
nucleation activity within Fusarium in an initial screening.

First, a thermal cycler (PTC200, MJ Research, Hercules,
CA, USA) was used as described in Fröhlich-Nowoisky et al.
(2015) to screen 30 Fusarium strains from seven species
from USDA-ARS, Michigan State University, in the tem-
perature range from −2 to −9 ◦C. Mycelium was picked
with sterile pipette tips (Eppendorf, Westbury, NY, USA) into
80 µL aliquots of 0.2 µm pore diameter filtered dextrose pep-
tone yeast (DPY) broth in sterile 96-well polypropylene PCR
plates (VWR International, LLC, Radnor, PA, USA). Up to
seven droplets were measured for each sample, and the mean
freezing temperature was calculated. Aliquots of uninocu-
lated DPY broth were used as negative controls, which did
not freeze in the investigated temperature interval.

Second, the LED-based Ice Nucleation Detection Appara-
tus (LINDA) was used as described by Stopelli et al. (2014)
to screen 13 strains from the Schmale Laboratory at Vir-
ginia Tech and 69 strains from the Kansas State Univer-
sity Teaching Collection. Aliquots of 200 µL of each aque-
ous extract were transferred to three separate 500 µL tubes
and placed on ice for 1 h prior to the LINDA experiments.
LINDA was run from −1 to −20 ◦C, and images of the sam-
ples were recorded every 6 s. The mean freezing tempera-
ture for three droplets was calculated. Note that the aqueous
extracts were prepared in 0.9 % NaCl solution, which could
reduce the freezing temperatures by 0.5 ◦C based on theoret-
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ical calculations. We cannot exclude, however, that the high
concentration of IN compensates for the effect of NaCl on
the freezing temperature. This is supported by the investiga-
tions of Stopelli et al. (2014), who did not find a systematic
suppression of freezing at this salt concentration in LINDA
experiments. As a negative control, a 0.9 % NaCl solution
was added to three uninoculated agar plates, and the freez-
ing started below −14 ◦C. As positive control, aqueous sus-
pensions of Pseudomonas syringae CC94 from the collec-
tion of INRA (Avignon, France) (Berge et al., 2014), with
a final OD580 of 0.5 to 0.7, i.e. ∼ 109 bacteria mL−1, were
used for each experiment. The bacteria were grown on King’s
medium B (King et al., 1954) at 22 to 25 ◦C for 48 h, and
aqueous suspensions were equilibrated at 4 ◦C for 1 to 4 h
before LINDA experiments. The freezing temperatures of P.
syringae CC94 ranged from −3.5 to −4.6 ◦C.

Ice nuclei of selected Fusarium species, which were long
known for ice nucleation activity (F. acuminatum, F. ave-
naceum), as well as all the newly identified species, were
further analyzed in immersion freezing mode using the high-
throughput Twin-plate Ice Nucleation Assay (TINA) (Kunert
et al., 2018). The aqueous extracts were serially diluted 10-
fold with pure water by a liquid handling station (epMo-
tion ep5073, Eppendorf, Hamburg, Germany) to a dilution
at which droplets remained liquid in the investigated tem-
perature interval. Of each dilution, 96 droplets (3 µL) were
tested with a continuous cooling rate of 1 ◦C min−1 from 0
to −20 ◦C. Pure water samples (0.1 µm filtrated) served as a
negative control for each experiment. These did not freeze
in the observed temperature interval. The temperature was
measured with an accuracy of 0.2 K (Kunert et al., 2018).
The obtained fraction of frozen droplets (fice) and the count-
ing error were used to calculate the cumulative number of IN
(Nm) with the associated error using the Vali formula and the
Gaussian error propagation (Kunert et al., 2018; Vali, 1971).
For each experiment, the cumulative number of IN was av-
eraged over all dilutions. If the experiment was repeated, the
cumulative number of IN was averaged over all experiments,
and the standard error was calculated. Three independent ex-
periments with aqueous extracts from three individual fungal
culture plates of the same strain showed similar results with
only slight variation. An example of results is presented for
F. armeniacum 20 970 (Fig. S1 in the Supplement).

3 Results and discussion

3.1 IN-active Fusarium species

Although several IN-active Fusarium species are known,
the frequency and distribution of ice nucleation activity
within the fungal genus Fusarium are still not well stud-
ied (Hasegawa et al., 1994; Humphreys et al., 2001; Pouleur
et al., 1992; Richard et al., 1996; Tsumuki and Konno, 1994).
Two initial screenings in the temperature range from −1 to

Table 1. Ice-nucleation-active Fusarium strains with correspond-
ing mean freezing temperatures of the initial screening. The newly
identified IN-active Fusarium species are marked with an asterisk
(∗).

Species Strain T (◦C)

F. acuminatum 1–3 −5.6
F. acuminatum 1–4 −5.0
F. acuminatum 1–5 −5.6
F. acuminatum 1–24 −3.5
F. acuminatum 2–38 −5.0
F. acuminatum 2–48 −5.6
F. acuminatum 2–109 −5.6
F. acuminatum 3–48 −5.0
F. acuminatum 3–68 −3.5
F. acuminatum 20 964 −6.2
F. armeniacum* 20 970 −5.3
F. avenaceum 2–106 −5.0
F. avenaceum 11 440 −7.6
F. begoniae∗ 10 767 −11.2
F. concentricum∗ 10 765 −4.6
F. langsethiae∗ 19 084 −9.4
F. tricinictum 20 990 −7.3

Figure 1. Overview of ice nucleation activity for selected Fusar-
ium species and strains: cumulative number of IN (Nm) per gram of
mycelium plotted against the temperature (T ); arithmetic mean val-
ues and standard error of two independent experiments with aque-
ous extracts from two individual fungal culture plates of the same
species.

−20 ◦C were performed to better evaluate the frequency of
ice nucleation activity within Fusarium. A strain was defined
as IN-active, when it initiated ice formation above −9 ◦C
(thermal cycler) and −12 ◦C (LINDA), respectively.

In total, ∼ 16 % (18/112) of the tested strains showed ice
nucleation activity with mean freezing temperatures of −3.5
to −11.2 ◦C (Table 1) in the typical range known for Fusar-
ium (−1 and −9 ◦C) (Hasegawa et al., 1994; Humphreys
et al., 2001; Pouleur et al., 1992; Richard et al., 1996;
Tsumuki et al., 1992; Tsumuki and Konno, 1994). Most
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Figure 2. Size determination of the Fusarium IN upon filtration: cumulative number of IN (Nm) per gram of mycelium plotted against the
temperature (T ) for (a) F. acuminatum 3–68, (b) F. armeniacum 20 970, (c) F. avenaceum 2–106, and (d) F. langsethiae 19 084. The error
bars were calculated using the counting error and the Gaussian error propagation.

formerly reported initial freezing temperatures were ob-
tained with different Fusarium strains, growth conditions,
and freezing assays, which might explain differences com-
pared to our results. The high proportion of IN-active strains
within F. acuminatum is consistent with previous reports
(Pouleur et al., 1992; Tsumuki et al., 1995). Overall, ∼ 11 %
(7/65) of the tested species included IN-active strains. In ad-
dition to strains from Fusarium species with known ice nu-
cleation activity, four Fusarium species were newly identi-
fied as IN-active: F. armeniacum, F. begoniae, F. concen-
tricum, and F. langsethiae. In further experiments, the ice
nucleation activity of F. begoniae and F. concentricum could
not be verified.

The newly identified IN-active species are cosmopolitan.
Fusarium armeniacum is a toxigenic saprophyte (Burgess
et al., 1993), causing seed and root rot on soybeans (Ellis
et al., 2012). The geographical distribution has been reported
as tropical and subtropical (Leslie and Summerell, 2006), but
it was also found in Minnesota, USA (Kommedahl et al.,
1979), and Australia (Burgess et al., 1993). Fusarium bego-
niae is a plant pathogen of Begonia found in Germany with
a potential wider distribution (Nirenberg and O’Donnell,
1998). Fusarium concentricum is a plant pathogen, which is
frequently found in Central America and isolated from ba-
nanas (Aoki et al., 2001; Leslie and Summerell, 2006), and
F. langsethiae is a broadly distributed cereal pathogen (Torp

and Nirenberg, 2004). Some strains of these newly identified
IN-active species are known to produce mycotoxins, which
can threaten the health of humans and animals (Fotso et al.,
2012; Kokkonen et al., 2012; Wing et al., 1993a, b).

The results suggest that the ice nucleation activity within
Fusarium is more widespread than previously known. Not
all Fusarium species include IN-active strains and not all
strains within one species show ice nucleation activity. Ear-
lier studies including experiments suggested that Fusarium
IN are proteins or at least contain a proteinaceous com-
pound (Hasegawa et al., 1994; Pouleur et al., 1992; Tsumuki
and Konno, 1994). Their production requires energy, and we
might assume that this trait would not be expressed or main-
tained unless there was an ecological advantage. It is known
that Fusarium can regulate the gene expression for IN pro-
duction, depending on environmental conditions such as nu-
trient availability (Richard et al., 1996), and some Fusarium
species reduce or lose their ice nucleation activity after sev-
eral subcultures (Pummer et al., 2013; Tsumuki et al., 1995).
Thus, we cannot exclude that all Fusarium strains have the
ability to produce IN. From the phylogenetic distribution of
ice nucleation activity across the genus Fusarium, we can
speculate that ice nucleation activity is a very old trait, but
either the gene expression requires a trigger, which is not yet
identified, or the trait might be in the process of being lost.
It is unlikely, however, that the age of the genetic determi-
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Figure 3. Exposure of aqueous extract from Fusarium to ozone and nitrogen dioxide: cumulative number of IN (Nm) per mass of mycelium
plotted against the temperature (T) for (a) F. acuminatum 3–68 and (b) F. avenaceum 2–106; arithmetic mean values and standard error of
two independent experiments with aqueous extracts from two individual fungal culture plates of the same species.

nants of fungal ice nucleation activity is older than that in
bacteria, since fungi diverged well after the age that has been
attributed to the bacterial IN gene (Morris et al., 2014), and
the genetic determinants are not the same as those in bacteria.

3.2 Quantification and size determination of IN from
selected Fusarium species

A selection of IN-active Fusarium species was further in-
vestigated by extensive droplet freezing assay analysis us-
ing TINA. All tested Fusarium strains initiated ice nucleation
between −3 and −4 ◦C (Fig. 1). Differences in the freezing
temperatures between the initial screening and the quantita-
tive analysis can be due to different growth conditions and
freezing assays. The cumulative number of IN (Nm) per gram
of mycelium was in the range between 108 g−1 and 1013 g−1.
Fusarium acuminatum 3–68 showed the highest ice nucle-
ation activity and F. langsethiae the lowest per gram of
mycelium. The results are comparable to other IN-active mi-
croorganisms like Sarocladium implicatum (108 g−1, Pum-
mer et al., 2015), Mortierella alpina (109 g−1, Fröhlich-
Nowoisky et al., 2015; 1010 g−1, Kunert et al., 2018), and
the bacterial IN-active substance Snomax® containing Pseu-
domonas syringae (1012 g−1, Budke and Koop, 2015; Kunert
et al., 2018).

The size of the Fusarium IN was investigated by filtra-
tion experiments. Filtration through a 5 and a 0.1 µm filter
did not affect the ice nucleation activity (Fig. 2), revealing
that Fusarium IN are smaller than 100 nm, cell-free, eas-
ily removed from the fungus, and stay active in solution.
This is in agreement with other Fusarium studies (O’Sullivan
et al., 2015; Pouleur et al., 1992; Tsumuki and Konno, 1994).
Moreover, biological ice-nucleating macromolecules (INMs)
smaller than 200 nm were also found in various organisms,
e.g., other fungi (Fröhlich-Nowoisky et al., 2015; Pummer
et al., 2015); leaves, bark, and pollen from birch trees (Be-
tula spp.) (Felgitsch et al., 2018; Pummer et al., 2012); leaf

litter (Schnell and Vali, 1973); some microalgae (Tesson and
Šantl-Temkiv, 2018); strains of Lysinibacillus (Failor et al.,
2017); and biological particles in the sea surface microlayer
(Irish et al., 2019; Wilson et al., 2015). Filtration through a
300 000 MWCO filter unit decreased the cumulative number
of IN per gram of mycelium by about 50 % to 75 % depend-
ing on the Fusarium species, but a tremendous number of
IN (1010–1013 g−1) still passed through the filter. The initial
freezing temperature was slightly shifted towards lower tem-
peratures. Further filtration through a 100 000 MWCO filter
unit reduced the IN number to 108–1010 g−1, which is less
than 1 % of the initial IN concentration. Additionally, the
initial freezing temperature was shifted about 1 ◦C towards
lower temperatures.

As ice nucleation activity was found in all filtrates, the
aqueous extract of Fusarium consists of a mixture of IN-
active proteins with different sizes. We hypothesize that
Fusarium IN are macromolecules (INMs) smaller than
100 kDa, which agglomerate to large protein complexes in
solution. Some of these complexes fall apart upon filtra-
tion, so that the INMs can pass through the filter. The small
shift in the initial freezing temperature suggests that these
INMs reassemble again to aggregates after filtration, as larger
IN nucleate at warmer temperatures (Govindarajan and Lin-
dow, 1988; Pummer et al., 2015). Erickson (2009) deter-
mined the size of proteins based on theoretical calculations.
As the interior of proteins is closely packed with no sub-
stantial holes and almost no water molecules inside, pro-
teins are rigid structures with approximately the same density
(∼ 1.37 g cm−1). Assuming the protein as a smooth spherical
particle, the minimum diameter of the INM would be smaller
than 6.1 nm. Our results are in accordance with Lagzian et al.
(2014), who cloned and expressed a 49 kDa IN-active protein
from F. acuminatum.

As Fusarium IN are cell-free and can easily be washed
off the fungal surface, they can be released in high num-
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Figure 4. Effects of high temperatures on the ice nucleation activity of Fusarium: cumulative number of IN (Nm) per gram of mycelium
plotted against the temperature (T ) for (a) F. acuminatum 3–68, (b) F. armeniacum 20 970, (c) F. avenaceum 2–106, and (d) F. langsethiae
19 084. The error bars were calculated using the counting error and the Gaussian error propagation.

Figure 5. Effects of short-term storage and freeze–thaw cycles on
the ice nucleation activity of Fusarium acuminatum 3–68: cumu-
lative number of IN (Nm) per gram of mycelium plotted against
the temperature (T ). The same aqueous extract was measured im-
mediately after preparation (black), after storage at 6 ◦C for 24 h
(blue), after another 24 h stored at −20 ◦C (total 48 h; turquoise),
and after another 24 h stored at −20 ◦C (total 72 h; yellow). The er-
ror bars were calculated using the counting error and the Gaussian
error propagation.

bers into the environment. If they are not degraded by mi-
croorganisms before, the IN can adsorb to soil dust and be
aerosolized while attached to these particles (Conen et al.,
2011; Fröhlich-Nowoisky et al., 2015; Hill et al., 2016;
O’Sullivan et al., 2014, 2015, 2016; Sing and Sing, 2010).
This is in good agreement with Pruppacher and Klett (1997),
who found a positive correlation between IN number con-
centration and particles in the coarse mode. Other releasing
processes cannot be excluded; however, it is unlikely that the
INMs are present in the atmosphere as individual aerosol par-
ticles. Individual proteins with a diameter of ∼ 6 nm, which
may enter the atmosphere, would be in the nucleation mode
size range, where particles tend to uptake gaseous com-
pounds and grow to Aitken mode particles, which themselves
tend to coagulate to larger agglomerates (Seinfeld and Pan-
dis, 1998).

3.3 Stability of Fusarium IN

In the atmosphere, IN can interact with other aerosol parti-
cles or gases. They can be exposed to chemically modifying
agents like ozone and nitrogen dioxide, as well as physical
stressors like high and low or quickly changing temperatures.
To investigate the stability of Fusarium IN, we performed ex-
posure experiments, heat treatments, freeze–thaw cycles, and
long-term storage tests.
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Figure 6. Effect of long-term storage on the ice nucleation activity of (a) F. armeniacum 20 970, (b) F. acuminatum 1–4, (c) F. acuminatum
2–38, and (d) F. avenaceum 2–106: cumulative number of IN (Nm) per gram of mycelium plotted against the temperature (T ). The error bars
were calculated using the counting error and the Gaussian error propagation.

The influence of chemical processing on the Fusarium
IN, in particular oxidation and nitration reactions as occur-
ring during atmospheric aging, was investigated by exposing
aqueous extracts from F. acuminatum 3–68 and F. avenaceum
2–106 to high concentrations of ozone and nitrogen dioxide
in liquid phase. Figure 3 shows that for both species neither
the initial freezing temperature nor the cumulative number
of IN per gram of mycelium was affected by exposure. These
results demonstrate a high stability of Fusarium IN under ox-
idizing and nitrating conditions. This is in contrast to other
biological IN, e.g., bacterial IN (Snomax®) (Kunert et al.,
2018), birch and alder pollen (Gute and Abbatt, 2018), and
dissolved organic matter (Borduas-Dedekind et al., 2019),
where exposure to oxidizing agents reduced the IN activity.

The stability of the INM in Fusarium was investigated in
heat treatment experiments. The ice nucleation activity was
reduced significantly at a 40 ◦C treatment (Fig. 4). Between
40 % and 90 % of IN were lost at this temperature depending
on the species, which supports the hypothesis that the INM
in Fusarium consists of a proteinaceous compound. A heat
treatment at 70 ◦C reduced the ice nucleation activity to less
than 0.01 % compared to the initial level. Moreover, the ini-
tial freezing temperature was shifted to lower temperatures,
indicating a breakdown of the large protein aggregates. After
a 98 ◦C treatment, we still found ice nucleation activity for
all investigated species except for F. avenaceum 2–106. The

results are in agreement with previous studies, which also re-
ported a reduction in ice nucleation activity with increasing
temperature in heat treatment experiments (Hasegawa et al.,
1994; Pouleur et al., 1992; Tsumuki and Konno, 1994). The
remaining activity after the 98 ◦C treatment, however, could
indicate that posttranslational modifications like glycosyla-
tion and therefore polysaccharides could play a role in the
ice nucleation activity of Fusarium. Further systematic stud-
ies including chemical analyses are needed for elucidation.

To study the effects of short-term storage and freeze–thaw
cycles on the ice nucleation activity of F. acuminatum 3–
68, IN measurements of the same aqueous extract were per-
formed at different time points (Fig. 5). The results of freshly
prepared aqueous extract revealed that the highest activity of
fungal IN was already developed during preparation of the
filtrate and no time for equilibration was required. Storage
of aqueous extract at 6 ◦C for 24 h did not affect the ice nu-
cleation activity. Also, further storage at −20 ◦C for another
24 h and repeated freeze–thaw cycles had no impact on the
ice nucleation activity. This means that, once in the atmo-
sphere, the IN can undergo several freeze–thaw cycles with-
out losing their activity and are still able to influence cloud
glaciation and the formation of precipitation. This could be
an explanation for why not all fungi are always IN-active as
their IN are highly stable and quasi-recyclable. Ice nuclei
might influence the availability of moisture over long time
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periods, and if enough moisture is available in the environ-
ment, the necessity of IN production would be omitted, and
the fungus could save energy.

In addition, the stability of the INM in Fusarium was stud-
ied in long-term storage tests, where aqueous extracts of var-
ious Fusarium species were stored at different temperatures
for a long period of time. Figure 6 shows that storage at
6 ◦C for 4 months and at −20 ◦C for 8 months did not in-
fluence the ice nucleation activity of F. armeniacum 20 970,
F. acuminatum 1–4, F. avenaceum 2–106, or F. acuminatum
2–38. The results demonstrate the high stability of the INMs
in Fusarium in liquid and frozen solutions over long time pe-
riods, which makes Fusarium well applicable for laboratory
IN studies. Moreover, the high stability is likely an advantage
for these fungi to be linked to atmospheric processes.

4 Conclusions

The frequency and distribution of ice nucleation activity
within the fungal genus Fusarium was investigated in a
screening of more than 100 strains from 65 different Fusar-
ium species. In total, ∼ 11 % (7/65) of all tested species in-
cluded IN-active strains, and ∼ 16 % (18/112) of all tested
strains showed ice nucleation activity, demonstrating the
wide distribution of ice nucleation activity within Fusarium.
Filtration experiments suggest that Fusarium IN form aggre-
gates consisting of INMs smaller than 100 kDa (∼ 6 nm). Ex-
posure experiments, freeze–thaw cycles, and long-term stor-
age tests revealed a high stability of the INMs in Fusarium,
demonstrating the suitability of Fusarium in laboratory IN
studies. Heat treatments at 40 to 98 ◦C reduced the IN con-
centration significantly, supporting the hypothesis that the
INM in Fusarium largely consists of a proteinaceous com-
pound. An involvement of polysaccharides, however, cannot
be excluded. The wide distribution of ice nucleation activity
within the genus Fusarium, together with the stability of the
INM in Fusarium under atmospherically relevant conditions,
suggests that the implication of these IN on Earth’s water cy-
cle and climate might be more significant than previously as-
sumed. Additional research is necessary to characterize the
INMs in Fusarium and processes which can result in their
agglomeration to larger protein complexes. To evaluate the
implication of these IN on Earth’s climate, additional work
is required to study the abundance of Fusarium IN in envi-
ronmental samples on a global scale.
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