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Abstract. The heterogeneity of Agroecosystems, in terms
of hydric conditions, crop types and states, and meteoro-
logical forcing, is difficult to characterize precisely at the
field scale over an agricultural landscape. This study aims
to perform a sensitivity study with respect to the uncer-
tain model inputs of two classical approaches used to map
the evapotranspiration of agroecosystems: (1) a surface en-
ergy balance (SEB) model, the Two-Source Energy Bal-
ance (TSEB) model, forced with thermal infrared (TIR) data
as a proxy for the crop hydric conditions, and (2) a soil–
vegetation–atmosphere transfer (SVAT) model, the SEtHyS
model, where hydric conditions are computed from a soil
water budget. To this end, the models’ skill was compared
using a large and unique in situ database covering differ-
ent crops and climate conditions, which was acquired over
three experimental sites in southern France and Morocco.
On average, the models provide 30 min estimations of la-
tent heat flux (LE) with a RMSE of around 55 W m−2 for
TSEB and 47 W m−2 for SEtHyS, and estimations of sensible
heat flux (H ) with a RMSE of around 29 W m−2 for TSEB
and 38 W m−2 for SEtHyS. A sensitivity analysis based on
realistic errors aimed to estimate the potential decrease in
performance induced by the spatialization process. For the
SVAT model, the multi-objective calibration iterative proce-
dure (MCIP) is used to determine and test different sets of
parameters. TSEB is run with only one set of parameters

and provides acceptable performance for all crop stages apart
from the early growing season (LAI< 0.2 m2 m−2) and when
hydric stress occurs. An in-depth study on the Priestley–
Taylor key parameter highlights its marked diurnal cycle and
the need to adjust its value to improve flux partitioning be-
tween the sensible and latent heat fluxes (1.5 and 1.25 for
France and Morocco, respectively). Optimal values of 1.8–2
were highlighted under cloudy conditions, which is of par-
ticular interest due to the emergence of low-altitude drone
acquisition. Under developed vegetation (LAI> 0.8 m2 m−2)
and unstressed conditions, using sets of parameters that only
differentiate crop types is a valuable trade-off for SEtHyS.
This study provides some scientific elements regarding the
joint use of both approaches and TIR imagery, via the devel-
opment of new data assimilation and calibration strategies.

1 Introduction

Exchange of water at the soil–vegetation–atmosphere inter-
face is of prime importance for weather forecasting and for
climate studies (Shukla and Mintz, 1982); it is also a key
component for hydrology, and therefore catchment water bal-
ance (Milly, 1994), as well as for agronomy in order to im-
prove irrigation scheduling (Allen et al., 1998). Despite the
abundant literature on the subject, there is no consensual ap-
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proach regarding its spatialized estimation, and the contribu-
tion of evapotranspiration (ET) to the global hydrologic cycle
remains uncertain (Jasechko et al., 2013). There are several
in situ techniques available to measure ET (Allen et al., 2011)
but most suffer from a lack of spatial representativeness. This
prevents their use as a sustainable solution for regional appli-
cations, especially for agricultural landscapes where spatial
heterogeneity – in terms of farming and technical itineraries,
including the resulting pattern of moisture conditions – is
high. By contrast, remote sensing offers an attractive alter-
native due to the synoptic and repeated data acquisition it
provides. Indeed, even if ET is not directly observable from
space, remote sensing data in different parts of the electro-
magnetic spectrum are related to the characteristics of the
land surface governing the evapotranspiration process.

Within this context, several approaches combining remote
sensing data and land surface models of various complex-
ity have been proposed for the regional monitoring of ET
(Courault et al., 2005), from the most conceptual approaches
that modulate the evaporative demand by an empirical coef-
ficient (the so called “crop coefficient”, Allen et al., 1998),
to the complex and mechanistically based soil–vegetation–
atmosphere transfer (SVAT) models that require a large num-
ber of inputs. In-between, the surface energy balance (SEB)
models, constrained by thermal infrared radiative tempera-
ture observations, have been gaining influence over the last
decade (Choi et al., 2009; Diarra et al., 2017). Several authors
have intercompared the different SEB-based approaches for
mapping ET with noticeable discrepancies (see Zhan et al.,
1996; French et al., 2005; Timmermans et al., 2007, 2011;
Chirouze et al., 2014). Among the different SEB models, the
Two-Source Energy Balance (TSEB Norman et al., 1995)
emerged as a robust and accurate model for evapotranspi-
ration mapping over semiarid crops (Anderson et al., 2007;
Chirouze et al., 2014; Diarra et al., 2017). This model is
now extensively used in the scientific community and has
been the subject of numerous refinements since the origi-
nal Norman et al. (1995) version (Kustas and Norman, 1999,
2000; Anderson et al., 2008; Colaizzi et al., 2012, 2014,
etc.). Nevertheless, both approaches have rarely been com-
pared, although the joint use (via data assimilation technics)
of snapshot evapotranspiration maps from SEB approaches
and dynamic SVAT predictions appears promising (Crow
et al., 2005, 2008). This is certainly attributed to the different
underlying diagnostic or prognostic equations of the mod-
els with respect to the distinct purposes of the approaches in
terms of temporal and/or spatial resolutions of evapotranspi-
ration estimates.

Based on either SVAT or SEB models, the estimation of
surface evapotranspiration implies dealing with the method–
model complexity issue (Carlson, 2007; Kalma et al., 2008),
as well as with incomplete knowledge available to document
or to constrain them. For instance, with regards to remotely
sensed TIR data, McCabe and Wood (2006) showed how
the spatial resolution of TIR data used as input in the SEB

method impacted the spatial variation of flux estimates. At
a higher resolution, another source of uncertainty is the sur-
face temperature fluctuations in relation to atmospheric tur-
bulence (Lagouarde et al., 2013). The lack of knowledge on
scaling effects when fluxes are intercompared at the same
scales using aggregation or disaggregation methods has also
been pointed out by several authors as a scientific issue for
evapotranspiration mapping (Kustas et al., 2003, 2004; Nor-
man et al., 2003). Although limited in time and focused
on semiarid and sparse grasses and crops, several studies
have also been dedicated to analyzing the sensitivity of the
TSEB model to uncertain inputs, including radiative tem-
perature, meteorological forcings or vegetation descriptors
(Zhan et al., 1996; Anderson et al., 1997; Kustas and Nor-
man, 1997; Li et al., 2005; Timmermans et al., 2007; Kustas
et al., 2012). Likewise, others have focused on the sensitivity
of SVATs to these inputs (Franks et al., 1997; Calvet et al.,
1998; Wood et al., 1998; Pitman et al., 1999; Olioso et al.,
1999; Robock et al., 2003; Petropoulos et al., 2009). Within
this context, the comparative study of Crow et al. (2008) that
focused on a SVAT model and the TSEB approach is the ba-
sis of our work. Indeed, as a preliminary step toward the joint
use of both approaches via data assimilation, the purpose
of this study is the comparison of the TSEB model (Nor-
man et al., 1995) and the SEtHyS SVAT model (described
in Coudert et al., 2006), in terms of overall performance, er-
rors and domains of validity where model inputs and param-
eters are uncertain. This is carried out here using a large and
unique in situ database covering several crops and seasons
under relatively well-watered conditions and in a limited ad-
vection environment.

This paper is organized as follows. After briefly introduc-
ing the datasets and both models (Sect. 2), the analysis of the
models’ performance is presented (Sect. 3.1). Then, we fo-
cus on the sensitivity analysis results (Sect. 3.2) and on dis-
cussions related to parameters and inputs (Sect. 4). Finally,
conclusions and perspectives are drawn in Sect. 5.

2 Data and methods

2.1 Model descriptions

The two-source energy balance budget, which is similar for
both models, is first described. Then, differences in the solv-
ing methods and associated assumptions, as well as differ-
ences in flux parameterization, are briefly discussed.

2.1.1 The two-source energy budget

In the two-source energy balance, total sensible (H ) and total
latent heat (LE) fluxes arise from the soil and vegetation heat
and vapor sources. Applying energy conservation and con-
tinuity principles, the energy budget can be described using
the following set of equations:
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H =H[soil]+H[veg], (1)
LE= LE[soil]+LE[veg], (2)
Rn = Rn[soil]+Rn[veg], (3)
Rn[soil] =H[soil]+LE[soil]+G, and (4)
Rn =H +LE+G, (5)

where G is the ground heat flux and Rn is the net radiation.
All fluxes are expressed in Watts per meter squared (W m−2).
TheH and LE flux expressions are given in Shuttleworth and
Wallace (1985, Eqs. 6 and 7, p. 843) for a resistive scheme
(following analogy with Ohm’s law) of a one-dimensional
description of energy partition for sparse crops assuming hor-
izontal uniformity. The respective H and LE expressions for
the complete canopy between the level of mean canopy flow
and the reference height can then be written as follows:

H =−
ρcp

ra
a
(Tx − T0) and (6)

LE=−
ρcp

ra
aγ
(ex − e0) (7)

where γ is the psychrometric constant (mb K−1); ra
a is the

aerodynamic resistance between canopy source height and
reference level (s m−1); ex and e0 are vapor pressure (mb)
at canopy source height and reference height, respectively;
and Tx and T0 are temperature (◦C) at canopy source height
and at reference height, respectively. The components’ ele-
ments from soil and vegetation (LE[soil], LE[veg], H[soil] and
H[veg]) are expressed in the same way, according to the as-
sociated resistances. Afterwards, the vapor pressure deficit at
the canopy source height is introduced. The system now be-
comes a set of five equations with six unknowns, namely veg-
etation temperature T[veg], soil temperature T[soil], canopy-
space temperature T[canopy], and the corresponding water va-
por pressures e[veg], e[soil] and e[canopy]. The next steps of the
classical solving of a two-source energy balance system are
to express T[canopy] as a function of T[veg] and T[soil] using the
continuity equation in H , and T[veg] as a function of T[soil]
using the energy budget of vegetation. In addition, the heat
conduction flux in soil (G) is either estimated from the net
radiation (TSEB model) or the residual of the energy bud-
get (SEtHyS model) as detailed in the Appendix. The solv-
ing method consists in the linearization of the equations of
the previous system. The basic differences between the ap-
proaches is that for SVATs models, soil temperatures at dif-
ferent depths are prognostic variables tightly linked to wa-
ter mass balance, whereas radiative temperature is a forcing
input for the SEB models used to infer T[veg] and T[soil] as
detailed below.

2.1.2 TSEB

The TSEB model was first described in Norman et al. (1995)
and has been the subject of several refinements. The solving

principle is briefly described below, and the version of TSEB
used is described in Sect. 2.4. TSEB is forced by a radio-
metric surface temperature Trad so that soil and vegetation
temperatures contribute to Trad in proportion to the fraction
of the radiometer field of view (fθ ) that is occupied by each
component, thus adding a sixth equation to the system above:

Trad(θ)=
[
fθ × T

n
[veg]+ (1− fθ )× T

n
[soil]

]1/n
, (8)

where the factor n is usually fixed to 4 (Becker and Li, 1990).
The available energy at the soil surface is computed consid-
ering an exponential extinction of net radiation (i.e., Beer’s
law):

Rn[soil] = Rn× exp
−κ ×LAI
√

2cosθ
, (9)

where the factor κ is set to 0.45 for the spherical distribu-
tion of leaves following Roos (1991), and Rn is estimated
from measured shortwave and longwave components. The
conduction flux in the soil is expressed as a fraction of the
available energy at the soil surface:

G= 0×Rn[soil], (10)

where 0 is an empirical coefficient that is usually equal
to 0.35 (Choudhury et al., 1987). Finally, the resolution
of this set of equations relies on the (strong) assumption
that vegetation generally transpires at a potential rate. The
Priestley–Taylor equation gives a first estimation of canopy
transpiration (Norman et al., 1995, Eq. 12):

LE[veg] = αPT× fg×
1

1+ γ
×Rn[veg], (11)

where αPT is the Priestley–Taylor parameter, fg is the green
vegetation fraction cover, 1 is the slope of the saturation va-
por pressure vs. temperature curve and γ is the psychromet-
ric constant. αPT values ranges between 0.5 and 2.0 (Hssaine
et al., 2018) according to meteorological conditions includ-
ing advections, the green fraction of vegetation and the soil
water availability with an average value of around 1.3.

In the “series” resistance network used in this study (see
justification below) and described in Norman et al. (1995,
Fig. 11), the sensitive heat fluxes are expressed as follows:

H[soil] = ρcp
T[soil]− T[canopy]

rs
(12)

between the soil surface and the canopy air space,

H[veg] = ρcp
T[veg]− T[canopy]

rx
(13)

between vegetation and canopy air space, and

H = ρcp
T[canopy]− Ta

ra
(14)
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between canopy air space and the reference height for atmo-
spheric measurements. Here rs, rx and ra are the associated
respective resistances given in Eqs. B1, A8 and 6 in Nor-
man et al. (1995). H[veg] is then computed as the residual
of the vegetation energy balance (Eq. 1). T[veg] is derived
from H[veg]; T[soil] is derived from Eq. (8); H[soil] is com-
puted from T[soil] and LE[soil] as a residual of the soil en-
ergy balance (Eq. 1). Should LE[soil] be found to be negative,
meaning that there is condensation on the soil surface, which
is very unlikely during the day, then the initial value of the
Priestley–Taylor coefficient αPT is iteratively reduced until
LE[soil] = 0 following Anderson et al. (2005) and Li et al.
(2005).

In agreement with Li et al. (2005), the “series” layout of
resistance (Norman et al., 1995) was found to provide more
accurate results overall (not shown) and also less sensitivity
to vegetation cover estimate. Furthermore, for model com-
parison, it was also relevant that both resistance networks
were similar in TSEB and SEtHyS models.

2.1.3 SEtHyS

The SEtHyS – French acronym for “Suivi de l’Etat Hy-
drique des Sols” or monitoring of the hydric condition of the
soils – SVAT model physics and the main parameterizations
are described in Coudert et al. (2006). The main equations
of SEtHyS are summarized in Appendix A. The model be-
longs to the “two sources, two layers” SVAT model category.
Specifically, the coupled water and energy budget is solved
for the vegetation and soil sources, and the soil description
for water and heat transfers is based on the force–restore
Deardorff formalism (Deardorff, 1978). The model requires
atmospheric and radiative forcing as well as surface biophys-
ical parameters as inputs. It calculates the energy and wa-
ter fluxes between surface and atmosphere and simulates the
evolution of soil and canopy temperatures, air temperature
and specific humidity within the canopy, as well as the sur-
face and the root zone soil water content. The heat and water
transfer calculation within the soil–vegetation–atmosphere
continuum is based on a resistance concept. The resistance
network is made of four nodes: the reference height for the
low atmospheric weather forcing, inside the vegetation at the
displacement height plus the roughness length, just above
ground at the soil roughness length and at ground level. The
aerodynamic resistances – above and inside the vegetation
canopy – are determined with the wind speed profile descrip-
tion inside the canopy from Shuttleworth and Wallace (1985)
and Lafleur and Rouse (1990). The evapotranspiration cal-
culation takes partitioning between free water in the canopy
and the rest of the leaves into account (Monteith, 1965; Dear-
dorff, 1978) and is based on the stomatal resistance for the
“big leaf” model from Collatz et al. (1991). The vegetation
photosynthesis and stomatal resistance parameterizations are
the same as those used by the SiB model (Sellers et al., 1996).
The soil hydrodynamic properties to calculate water trans-

fer processes within the soil porous network are given by
Genuchten (1980). The ground heat flux conduction is ob-
tained as the residual of the soil energy budget. Finally, the
radiative transfer model included in the model for the TIR
domain (François, 2002) allows for the simulation of bright-
ness temperature and radiative temperature, and thus presents
the possibility to constrain the model with TIR data (Coudert
and Ottlé, 2007; Coudert et al., 2008). The SEtHyS model
requires a set of about 22 parameters, which are presented in
Table 2.

2.2 Sites description and data

The experimental dataset was gathered in the southwest of
France (Béziat et al., 2009) and the southeast of Morocco
(Chehbouni et al., 2008; Jarlan et al., 2015) as shown in
Fig. 1. As presented in Table 3, all necessary data to run,
calibrate and evaluate models were collected over three agri-
cultural sites, spanning a total of seven culture cycles from
seeding to harvest: four wheat (Triticum aestivum L.) crops,
one sunflower (Helianthus annuus L.) crop and two corn
(Zea mays L.) crops. Experimental sites differ by manage-
ment practice (culture rotation and irrigation), soil proper-
ties, topography and climate (six temperate crop cycles and
one semiarid crop cycle). The Auradé (43.55◦ N, 1.11◦ E)
and Lamasquère (43.50◦ N, 1.24◦ E) experimental sites are
located near Toulouse in southwestern France and are part of
the “Sud-Ouest” project (Dedieu et al., 2001; Béziat et al.,
2009). Both experimental sites experience a temperate cli-
mate. A rotation of wheat and sunflower is cultivated in Au-
radé, whereas a rotation of wheat and irrigated corn is culti-
vated in Lamasquère. A complete description of the site fea-
tures and datasets are presented in Béziat et al. (2009). The
Sidi Rahal (31.67◦ N, 7.60◦W) experimental site is located
on the Haouz Plain in central Morocco and is part of the
“SUDMED” project (Chehbouni et al., 2008; Jarlan et al.,
2015). It is part of an irrigated agricultural area that expe-
riences a semiarid climate, where wheat is the most widely
grown crop. More information about the site and dataset is
given in Duchemin et al. (2006).

Each experimental station collected standard meteorologi-
cal data at 30 min time step intervals: global incoming short-
wave and longwave radiation (Rg andRa, respectively), wind
speed (Ua), air temperature (Ta), atmospheric pressure (Pa),
relative humidity (RH) and rainfall. The four components
of the net radiation (Rn) were measured using a CNR1 ra-
diometer (Kipp and Zonen, Delft, NL). Land surface tem-
perature (LST) was computed from measured upward and
downward longwave components of the net radiation, using
the Stefan–Boltzmann law and an estimation of surface emis-
sivity (Becker and Li, 1995). Sensible (H ) and latent (LE)
heat fluxes were measured continuously using eddy covari-
ance (EC) systems (Moncrieff et al., 1997; Aubinet et al.,
2000). Fluxes were processed with classical EC filters and
corrections (Béziat et al., 2009). The accuracy of flux esti-
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Figure 1. Locations of the experimental sites in France (a) and Morocco (b).

Table 1. TSEB input parameters (nine parameters in total) with reference values and optimal values obtained from the sensitivity analyses.

Category Parameter Description (unit) Literature Reference Optimal
range value value

Optical Asoil Soil albedo 0.05–0.35 0.15 0.14
properties Avegetation Vegetation albedo 0.10–0.30 0.3 0.3

Esoil Soil emissivity 0.94–0.97 – 0.94
Evegetation Vegetation emissivity 0.90–0.99 – 0.97
ε Surface emissivity – involved to compute surface temperature 0.96–0.99 – 0.96

(Ts) from CNR1 measurements

Vegetation S Leaf size (m) – involved in computing surface resistance – 0.01 0.01
characteristics αPT Priestley–Taylor coefficient – involved in estimating canopy 1–2 1.26 1.3–1.5

transpiration (Eq. 11)

Surface 0 Soil energy partition coefficient: G= 0×Rn[soil] (Eq. 10) – 0.35 0.35
properties κ Coefficient of the exponential extinction of net radiation to 0.3–0.6 0.45 0.4

compute available energy at the soil surface (Eq. 9)

mates is expected to range between 5 % and 30 % (Eugster
et al., 1997; Wilson et al., 2002). Soil heat flux (G) was sam-
pled using heat flux plates located at depths ranging from
5 cm to 100 cm. Automatic measurements were then comple-
mented by vegetation samples. Vegetation height (hc) and the
green leaf area index (LAI) were collected periodically along
crop cycles and interpolated using the piecewise cubic Her-
mite algorithm. Green LAI was determined from destructive
measurements with a LiCor planimeter (LI-3100, LiCor, Lin-
coln, NE, USA). In order to obtain an estimation of the frac-
tion of green (fg), total LAI (LAIgreen+LAIyellow) was ex-
trapolated from green LAI data by applying a linear decrease
starting at the LAI maximum and ending at harvest with a
value of LAItotal = 0.8×LAImax. In order to assess the poten-
tial loss of accuracy of meteorological inputs at the landscape

scale and the impact on model simulations, SAFRAN re-
analysis data (Quintana-Seguí et al., 2008) were used within
this study. SAFRAN is based on an optimal interpolation be-
tween a background estimate obtained from Météo-France’s
numerical weather prediction model (ALADIN) and weather
station observations, except for precipitation, which relied
on the ground station network only, and the incoming radia-
tion fluxes (downwelling surface shortwave and longwave),
which were computed from the radiation scheme of Ritter
and Geleyn (1992) from the outputs of a numerical weather
forecast model and the solar constant at the top of the atmo-
sphere (for shortwave incoming radiation). Data were kindly
provided by Météo-France.

www.hydrol-earth-syst-sci.net/23/5033/2019/ Hydrol. Earth Syst. Sci., 23, 5033–5058, 2019
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Table 2. SEtHyS input parameters (22 parameters in total) with initial uncertainty ranges used for MCIP calibration.

Category Parameter Description (unit) Initial uncertainty range

Optical Eg Bare soil emissivity 0.94–0.99
properties Asec Dry soil albedo 0.225–0.35

Ahum Wet soil albedo 0.1–0.22
Winf Moisture parameter for albedo calculation 0.15–0.29
Wsup Moisture parameter for albedo calculation 0.291–0.5
Asv Vegetation albedo 0.16–0.32

Vegetation Vmax0 Leaf photosynthetic capacity (Rubisco) (µmol m−2 s−1) 30–200
characteristics lgf Dimension of the leaf along the wind direction (m) 0.01–0.08

kwstr Empirical parameter for water stress calculation 0.01–0.1

Ground phc “Half critic” hydrologic potential (m) −200–100
properties Wmax Saturated soil water content (m3 m−3) 0.3–0.5

Wresid Residual soil water content (m3 m−3) 0.05–0.15
hVG Scale factor in the Van Genuchten retention curve model (m) −1.161–0.251
nVG Shape parameter in the Van Genuchten retention curve model 1.168–1.331
Ksat Saturated hydraulic conductivity (m s−1) 2.4× 10−8–2.7× 10−6

aElim Empirical parameter for limit evaporation 1–50
bElim Empirical parameter for limit evaporation 1–50
Ftherm Correction coefficient of the volumetric soil heat capacity (J m−3 K−1) 0.5–2
dp2 Root zone depth (mm) 200–2000

Initialization wg0 Initial soil surface water content (m3 m−3) –
variables w2 Initial root zone water content (m3 m−3) –

biasT 2 Error in deep soil temperature (K) −2–2

2.3 Assessing the model skills

Keeping in mind that we plan to spatialize a SVAT model,
whose parameters are highly dependent on growth stage of
vegetation, we must be able to determine sets of param-
eters representing specific phenological stages and hydric
conditions (stressed/non-stressed). For this reason, evalua-
tion was not performed continuously over the entire crop cy-
cles, but specific periods of interests were identified to assess
the model skill. These periods were chosen to be 10 d long
in order to catch synoptic-scale variability of the weather,
as shown by Eugster et al. (1997) with the help of spectral
analysis. This duration is also short enough to remain repre-
sentative of a specific phenological stage, and long enough
to gather a sufficient amount of data. For each crop cycle,
four specific study periods were chosen, each corresponding
to the following phenological stages: rising/emergence stage
(0.1<LAI< 0.3), growth stage (rapid increase of LAI and
LAI≈ 1), maximum development stage (around LAI maxi-
mum value) and senescence stage (LAI decreases). Starting
days of periods were adjusted to optimize the quality of avail-
able data, as the datasets are subject to sporadic measurement
issues and energy closure inconsistencies (filtered to a mini-
mum of 80 %).

In order to better assess the differences of model skills dur-
ing stress periods, water stress is quantified along the whole
crop cycles using two indicators:

– the evaporation stress (SE, Boulet et al., 2007) related to
the ratio between real and potential evapotranspiration
events:

SE= 1−
LE

LEpot
, (15)

where LEpot is computed using the Penman–Monteith
equation (canopy resistance is estimated following
Jarvis, 1976 formulation with a minimum value of
90 s m−1);

– the soil wetness index (SWI, Douville, 1998, among
others) of the root zone ranging from zero at wilting
point to one at field capacity:

SWI=
W2−Wwilt

Wfc−Wwilt
, (16)

where W2 is the root zone water content, Wfc is the wa-
ter content at field capacity, and Wwilt is the water con-
tent at wilting point.

As cultures from our dataset are irrigated or in temperate ar-
eas, most stress periods are found during senescence phases,
when water resources are low or irrigation is stopped. The
model skills are assessed using classical statistical metrics
including the root-mean-square error (RMSE), the mean ab-
solute percentage deviation (MAPD), bias and the determi-
nation coefficient (r2).
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Table 3. Site characteristics and overview of available cultures and crop cycles.

Site Auradé Lamasquère Sidi Rahal

Location France France Morocco
Latitude 43.54984444◦ N 43.49737222◦ N 31.665852◦ N
Longitude 1.10563611◦ E 1.23721944◦ E 7.597873◦W
Climate Temperate Temperate Semiarid
Soil type Clay loam Clay Clay
Sand (%), silt (%), clay (%) 21, 47, 32 12, 34, 54 20, 34, 46
Depth (m) 0.6 1 1
Slope (%) 2 0 1

2004 Culture – – Wheat∗

Growth cycle length (d) – – 133
Maximum LAI (m2 m−2) – – 3.76
Cumulated rain (mm) – – 135
Cumulated irrigation (mm) – – 120

2006 Culture Wheat Corn∗ –
Growth cycle length (d) 246 123 –
Maximum LAI (m2 m−2) 3.13 3.33 –
Cumulated rain (mm) 397 132 –
Cumulated irrigation (mm) 0 148 –

2007 Culture Sunflower Wheat –
Growth cycle length (d) 157 271 –
Maximum LAI (m2 m−2) 1.74 4.47 –
Cumulated rain (mm) 456 531 –
Cumulated irrigation (mm) 0 0 –

2008 Culture Wheat Corn∗ –
Growth cycle length (d) 248 175 –
Maximum LAI (m2 m−2) 2.39 3.28 –
Cumulated rain (mm) 491 397 –
Cumulated irrigation (mm) 0 50 –

∗ Irrigated cultures.

2.4 Implementation of the models

Considering our objective was to compare a complex SVAT
model with the TSEB tool (which was taken as an example
of a simple and robust approach), a different strategy was ap-
plied for the implementation of the two models. The 22 pa-
rameters of the SEtHyS model were finely tuned for each
crop and each phenological stage. The objective of this cali-
bration was not to fit the data best, but rather to evaluate the
sensitivity of model outputs to potentially poorly calibrated
parameters when the model is to be applied to an heteroge-
neous agricultural landscape at the field or intra-field scale.
To this end, four different cases corresponding to four differ-
ent sets of parameters were considered to quantify the poten-
tial loss of performance due to incorrect parameter values.
The four cases are listed below from the “best” conditions
(when the parameters are calibrated for each site, each crop
and each phenological stage) to the worst conditions (when
generic values are used):

1. site and period specific parameter sets (hereafter re-
ferred to as “optimal”) for each site, crop class (i.e., type
of culture) and phenological stage. Note that the analy-
sis of the model skill (Sect. 3.1) is performed using this
parameters set;

2. more generic parameter sets depending on crop class
and phenological stages only (hereafter referred to as
“pheno+ cult”);

3. if no information is available for characterizing phenol-
ogy, a calibrated set of parameters for the entire cultural
crop cycle is computed (hereafter referred to as “culture
only”);

4. the last case corresponds to the “optimal” parameter
set but is applied to another crop class in order to take
potential errors that are likely to occur when working
with a land use map into account (referred to as “un-
adapted”).
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What we consider the “best” case is very unlikely for a spa-
tialized application of the tool, as even the largest available
database will never cover all of the conditions encountered at
the scale of an heterogeneous agricultural landscape where
each plot has its specific soil, technical itinerary, hydric sta-
tus, an so on. Thus, our objective is to get different pa-
rameter sets with values close to what is expected for each
type of condition (crops, climate, site, phenological stage,
etc.) but without assigning too much importance to the val-
ues themselves. To help perform the calibration, a stochas-
tic multi-objective calibration method (multi-objective cali-
bration iterative procedure, or MCIP; Demarty et al., 2004,
2005) is implemented in order to minimize the RMSE val-
ues between simulations and measurements at 30 min time
intervals. Five objective functions are identified: the RMSE
of H and LE fluxes, surface brightness temperature (Tb),
net global radiation (Rn) and root zone soil water con-
tent (SWC). An ensemble of simulations based on a Monte
Carlo sampling of the parameter space is carried out, and the
objective functions are optimized jointly following a Pareto
ranking. The basic principle is that a simulation is classified
as “better” than the others if all of the objective functions
have lower values. For more details on the MCIP methodol-
ogy, see Demarty et al. (2004, 2005).

For TSEB, the most robust configuration of the model is
sought. To this end, as a first step, the most sensitive param-
eters for convection fluxes prediction are calibrated on the
whole database at once (Diarra et al., 2017). These param-
eters are the Priestley–Taylor coefficient (αPT), the coeffi-
cient of net radiation extinction (κ) and the empirical coeffi-
cient (0) relatingRn[soil] toG. The objective functions are the
RMSEs ofH and LE. These calibrated values are reported in
Table 1. They are almost the same as those proposed by Nor-
man et al. (1995) and will be kept for the TSEB runs in the
next section of the paper. A more optimal calibration by crop,
site and phenological stage was also carried out (not shown).
Main finding can be summarized as follows:

1. The RMSE difference between values from Norman
et al. (1995) and the optimal value calibrated for each
crop and stage did not exceed 10 W m−2 for LE. In addi-
tion, most of the optimal κ values ranged between 0.38
and 0.58; the only notable exceptions were fully cover-
ing wheat with lower interception (κ value around 0.3),
which may have been attributed to the erectophile dis-
tribution of wheat leaves, and fully covering maize and
sunflower characterized by a higher interception (κ val-
ues reaching 0.7).

2. Likewise, the RMSE difference between initial values
from Norman et al. (1995) and the optimal values for the
αPT parameter remained below 6 W m−2 except during
the senescence stages where they could reach more than
35 W m−2. Thus, errors due to taking the literature value
of 1.3 were very limited. Finally, the range of optimal
values was relatively narrow (1.05 to 1.6).

3. For the 0 parameter, differences of RMSE between the
optimal values and 0.35 proposed by Norman et al.
(1995) were below 8 W m−2 apart from the rising stage
where we observed errors up to 79 W m−2 on the sun-
flower site. Values ranged between 0.05 and 0.7.

Still with the goal of identifying the most robust configura-
tion of the TSEB model, several refinements proposed by dif-
ferent authors to improve models’ prediction for specific crop
and climate conditions were also tested with our database.
The Priestley–Taylor formulation, although relatively sim-
ple, provides accurate potential transpiration in a wide range
of conditions but neglects the aerodynamic resistance. Co-
laizzi et al. (2014) proposed replacing the Priestley–Taylor
expression with the Penman–Monteith equation (Monteith,
1965), in particular for advective conditions; thus, the in-
crease in the value of the αPT parameters (as proposed by
Kustas and Norman (2000) for such conditions) could be
avoided. Unfortunately, the Penman–Monteith version wors-
ened the results by about 6.3 % on average over the whole
database and was not retained in this study. Several parame-
terizations aiming to represent the diurnal course of 0 have
also been proposed. Those of Santanello et al. (2003) and
Chávez et al. (2005) have been tested. The overall perfor-
mance of the model with respect to predicting convective
fluxes was slightly worsened on average except under some
very specific conditions. Interestingly enough, a multiplica-
tive factor for κ lower than 1 was proposed by Campbell and
Norman (1998) in the divergence equation (Eq. 9) to take the
clumping of some crops into account; this clumping may in-
tercept a lower portion of the incoming radiation compared
with leaves that are randomly distributed (Kustas and Nor-
man, 1999). The calibrated values of κ for sunflower and
maize are above the 0.45 proposed by Norman et al. (1995)
(cf. point 1 above). This tends to show that a higher fraction is
intercepted and is most likely due to a dominantly planophile
leaf orientation for both crops rather than a clumping effect.
Finally, the simple radiative transfer model of Kustas and
Norman (1999) has been tested as an alternative to the Beer
law proposed by Norman et al. (1995). Although close on av-
erage (RMSE differences on Rn < 17 W m−2), significantly
worse RMSE values were obtained during the rising stage for
wheat and sunflower.

3 Results

3.1 Models skills by crops and phenological stages

Model simulations of heat fluxes are compared to tower flux
measurements at 30 min and daily time steps, with a focus on
performance by crops and by growth stage. RMSEs for LE,
H and Rn are displayed in Table 4, and MAPDs for H
and LE are displayed in Fig. 2. Biases (not shown) are very
limited and ranged between −23 and +10 W m−2 for both
models, except during the rising phase where they reached
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−47 and +43 W m−2 for SEtHyS and TSEB, respectively
(see Sect. 4). Available energy is well simulated for both
models with daily averaged RMSEs of 43 and 19 W m−2 for
TSEB and SEtHyS, respectively.

Regarding heat fluxes, Table 4 shows good performance
for the TSEB model on daily averaged values despite the
relative simplicity of the approach compared with SEtHyS,
which relies on a systematic parameter calibration. Both
models exhibit similar statistics regarding LE estimations
(RMSEs of 35.5 vs. 38.9 W m−2 for SEtHyS and TSEB, re-
spectively), whereas TSEB behaves slightly better with re-
spect to H estimations (21.2 vs. 28.7 W m−2). These values
are close to the errors found in the literature for TSEB (Nor-
man et al., 1995; Zhan et al., 1996; Anderson et al., 1997;
Kustas and Norman, 1999; French et al., 2005; Kalma et al.,
2008; Diarra et al., 2013, 2017) and also within the range of
expected errors from EC tower measurements (Eugster et al.,
1997; Wilson et al., 2002). The 30 min values lead to similar
conclusions, except that the drop in retrieved LE’s perfor-
mance associated with this change of reference time interval
is stronger for TSEB than for SEtHyS. Interestingly enough,
this first analysis highlights important disparities in terms
of LE prediction skill between the various growth stages.
Indeed, Fig. 2 emphasizes some regularity in the SEtHyS
model’s skill regardless of the growth stage and crop, as ev-
idenced by the narrow group formed by the SEtHyS points.
By contrast, the range of MAPD values for TSEB is much
wider. In particular, limitations of the model are clearly high-
lighted during the rising and senescence stages. During the
senescence phase, these discrepancies may both be attributed
to stress (see Sect. 4) but could also be related to poor parti-
tioning of available energy between the soil and vegetation.
Indeed, the change in the radiative features of the canopy,
including albedo, which occurs on senescent plants, is not
taken into account by the model. However, regarding irriga-
tion practices, it should be noted that assessing accurate ET
during senescence is not as important as during the growth
season.

The poor performance during the rising stage is due to ex-
cessive limitation of the soil sensible heat flux, induced by
the parameterization of the roughness length for momentum
(Z0 m = hc/8) in the denominator of the expression of the
aerodynamic resistance ra, leading to very high resistance
when the canopy height is very low. As the vegetation net
radiation is very limited during that stage, vegetation sen-
sible heat is also close to zero. The soil resistance rs also
plays an important role on bare and sparsely vegetated sur-
faces, and recent studies (Li et al., 2019; Kustas et al., 2016)
have shown that adapted formulation or modeling improved
TSEB performance in arid or semiarid conditions. Thus, the
observed high MAPD of LE during the rising phase shall be
attributed to significant bias of TSEB estimates. To a lesser
extent, SEtHyS skill is also mitigated during the rising phase.
Generally, when evaporation is predominant over transpira-
tion, more weight is given to soil transfer processes that are

harder to characterize due to the high heterogeneity of soil
characteristics and the limited soil measurements available
for calibration. The poor performance is more conspicuous
with TSEB, leading to the estimation of H with a MAPD of
85 %. By contrast, both models tend to show better perfor-
mance when vegetation is fully developed (MAPD less than
23 % for LE). The model performance by crop and growth
stage is detailed in Fig. 3a and b, respectively, as normalized
Taylor diagrams (Taylor, 2001). This diagram is a concise
way to display the ratio between the variances of the model
outputs and the observed data, the correlation coefficient (r),
and the RMSE between model estimates and observations
normalized by the variance of the observed dataset. The fur-
ther from the point marked “observed reference” on the ab-
scissa axis, the higher the normalized RMSE; likewise, dots
on the right (left) side of the circle cutting the ordinate axis
at “observed reference” overestimate (underestimate) the ob-
servation variance. Figure 3a and b show higher normalized
standard deviations for TSEB LE estimations. These noisier
outputs are likely due to the instantaneous (“snapshot”) com-
puting architecture of the TSEB model, whereas SEtHyS is
better constrained by its continuous evolution of the soil wa-
ter content which leads to smoother predictions of the daily
cycle. This explains the drastic drops in the TSEB RMSE val-
ues on LE when going from daily to 30 min observations, as
already underlined above. Finally, no significant skill differ-
ences are observed between crops, which seems to indicate
that (1) the set of parameters used in TSEB describes veg-
etation characteristics well and that (2) the SEtHyS formal-
ism can be adapted to various crops, provided that parameters
are properly calibrated. More focused discussion on the se-
lected sets of parameters is given in Sect. 4. Models performs
well in both climates: SEtHyS showed slightly better perfor-
mances for flux estimates in France (MAPD for LE of 23 %
in France and 30,% in Morocco), whereas TSEB showed
slightly better performances for flux estimates in Morocco
(MAPD for LE of 26 % in France and 18 % in Morocco).
However, differences in crop management between France
and Morocco and the availability of only one crop cycle in
Morocco do not allow for final conclusions about climate
impact on model skill to be drawn. TSEB shows worse per-
formance during senescence periods (including hydric stress)
with respect to LE estimation (MAPD of 45 %). This is partly
due to the Priestley–Taylor approximation, which is suit-
able for unstressed vegetation in potential conditions (Priest-
ley and Taylor, 1972), and to the fact that it does not have
a water budget description. Increased LST resulting from
water stress does not limit LE significantly enough in the
TSEB scheme (see Sect. 3.2.7). Several authors have already
pointed out that TSEB do not faithfully reproduce periods of
senescence and water stress (Kustas et al., 2003; Crow et al.,
2008; Boulet et al., 2015). SEtHyS includes descriptions of
soil water transfers and leaf processes – in particular stom-
atal resistance – and can better reproduce the hydric stress
impact on LE flux (MAPD of 28 %).
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Table 4. Intercomparison of the performance (RMSE) of TSEB and SEtHyS, with the influence of time resolution, phenological stage,
culture and climate.

RMSE (W m−2)

Rn H LE

TSEB SEtHyS TSEB SEtHyS TSEB SEtHyS

Time resolution Overall (time step) 46.5 25.7 28.9 38.0 54.7 47.1
Overall (daily average) 42.7 18.9 21.2 28.7 38.9 35.5

Phenology Rising 22.1 15.3 110.2 44.1 88.3 44.0
Growth 30.9 24.5 21.7 28.3 51.6 43.4
Max of vegetation 51.1 20.2 24.6 40.8 55.5 48.1
Senescence 55.0 29.4 43.5 47.3 54.0 42.1
Hydric stress 53.2 21.6 44.9 49.3 49.6 30.6

Culture Wheat 49.7 29.5 32.9 37.6 49.2 45.6
Corn 46.0 18.1 22.9 40.2 64.4 52.6
Sunflower 39.1 27.2 27.1 35.1 49.0 39.5

Climate France (wheat) 35.1 32.6 35.1 36.4 52.5 42.9
Morocco (wheat) 25.6 15.2 25.6 40.8 36.3 53.4

Figure 2. Comparison of TSEB (hollow markers) and SEtHyS (plain markers) estimations ofH and LE for various time resolutions (circles),
phenological stages (squares), cultures (diamonds) and climates (triangles). SEtHyS results are computed using the “optimal” parameter sets
(see Sect. 2.4). MAPD stands for mean absolute percentage deviation.
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Figure 3. Taylor diagram for the LE performance of TSEB (hol-
low markers) and SEtHyS (plain markers). Diagram (a) compares
various cultures; diagram (b) focuses on phenological stages. Con-
centric lines centered on zero indicate the normalized standard devi-
ation with observations, radial lines indicate the correlation coeffi-
cient between simulations and observations, and normalized RMSE
isolines are the concentric circles centered on “r” (reference for
the overall time series of observations: the RSME is 0, the corre-
lation coefficient is 1 and the normalized standard deviation is 1).

3.2 Sensitivity analyses to inputs

3.2.1 Overview

Given the overall purpose of our research, which was ded-
icated to the spatialized estimation of evapotranspiration at
various scales, quantifying the decrease of model perfor-
mance due to the deterioration of input data quality combined
with change of spatial scale from the field to a heterogeneous
agricultural landscape is a prerequisite. Applying the models
at the landscape scale is not performed the same way for both
approaches: TSEB is designed to be driven by remote sens-
ing data with ET computed directly at the resolution of the
TIR pixel, whereas SEtHyS is spatially distributed by sepa-
rately computing fluxes at the crop scale for each homoge-
neous entity. As a consequence, both models’ performance
is expected to exhibit sensitivity to the quality of auxiliary
spatialized meteorological and vegetation forcing variables,
TSEB’s performance is expected to depend on the quality of
the TIR data, and SEtHyS’s performance is expected to de-
pend on the quality of the description of the state of each ho-
mogeneous entity (i.e., soil water content initialization, and
sets of parameters describing soil properties and vegetation
behavior).

The specific purpose of this section is twofold: (1) to iden-
tify the most sensitive inputs and (2) to quantify the ex-
pected model performances when realistic input errors are
introduced. Expected uncertainties on input variables have
been evaluated by comparing available in situ data to the
spatialized datasets (SAFRAN meteorological reanalysis and
ASTER, LANDSAT and FORMOSAT-2 satellite imagery
and products). Results are presented in Table 5 and details
are given in the following sections.

3.2.2 Intercomparison of SAFRAN and in situ
meteorological data

Comparison results between the two available meteorolog-
ical stations in the southwest of France and the closest
SAFRAN 8 km grid points (inverse interpolated distance) are
reported in Table 5 in terms of RMSE and bias values (2006–
2008 period). On average, SAFRAN provides consistent re-
sults for air temperature and relative humidity, with reason-
able RMSE values and biases close to zero. To a lesser ex-
tent, wind speed is also well reproduced, although slightly
biased. The SAFRAN ability to predict incoming radiation is
less convincing: bias is low but the RMSE reaches 90 W m−2

(about 20 % on average). This comparison corroborates the
conclusions of Quintana-Seguí et al. (2008), who also high-
light a strong weakness of SAFRAN in terms of incoming
radiation predictions. Er-Raki et al. (2010) used a forecast
model (ALADIN from Météo-France) over the Tensift Basin
in Morocco. The results showed that the ALADIN forecasts
are in good agreement with the station measurements in
terms of solar radiation (Rg) and air temperature (Ta). How-
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Table 5. Comparison of in situ data and spatial data (SAFRAN, ASTER and inversed NDVI).

Forcing Source Variables (unit) Description Mean error “Extreme” error

RMSE Bias First decile Ninth decile

Meteorological SAFRAN Ta (◦C) Air temperature 1.5 0.7 −1.5 (−10 %) 1.3 (+10 %)
Ua (m s−1) Wind speed 1.4 −0.7 −0.65 (−30 %) 2.3 (+90 %)
RH (%) Relative humidity 7 8 −12 (−15 %) 5 (+8 %)
Rg (W m−2) Global radiation 90 35 −186 (−40 %) 125 (+60 %)
Ra (W m−2) Atmospheric radiation 30 14 −51 (−15 %) 20 (+7 %)

Vegetation FORMOSAT LAI (m2 m−2) Leaf area index – 20 % −50 % +50 %
hc (m) Canopy height – 20 % −100 % +100 %

LST ASTER Ts (K) Surface temperature 2 – – –

ever, the comparison of the station and the forecasted val-
ues of relative humidity (RH) and wind speed (Ua) are much
more scattered. Besides the RMSE values and biases repre-
senting time-averaged statistical characteristics of the differ-
ence between SAFRAN and the two ground stations, it is
also interesting to consider more extreme error values. To do
so, the first and ninth deciles of the difference distribution
are shown in Table 5 in absolute values and as a percentage.
The probability of the occurrence of such errors is far from
insignificant, as 20 % of the data are involved. These “ex-
treme” errors are considered for the sensitivity study regard-
ing (1) the instantaneous estimates provided by the TSEB
model depending on satellite overpass time, leading to po-
tential instantaneous errors much higher than the average;
and (2) the poorest quality of reanalysis data in the semi-
arid areas because the meteorological station network may
be scarcer.

3.2.3 Sensitivity analysis to meteorological inputs

Impact of realistic and more extreme errors on convection
flux simulations are shown in Figs. 4 and 5, respectively.
Focusing on noise (Fig. 4) is of interest as biases are of-
ten limited on reanalysis systems thanks to bias reduction
procedures. On average, SEtHyS simulations are less sensi-
tive to noisy inputs for LE than for H , whereas the oppo-
site conclusion can be drawn for TSEB. Adding white noise
to meteorological inputs with the objective of scaling up to
agricultural landscape with realistic error has almost no im-
pact on the RMSE for SEtHyS when compared to the ref-
erence simulation for latent heat predictions. Nevertheless,
wind speed has a greater impact on LE, with an increase
of 10 % on the LE RMSE. Conversely, a realistic level of
white noise added to incoming radiation and, to a lesser ex-
tent, air temperature, deteriorates TSEB predictions with the
RMSE of LE simulations increasing from the reference value
of 55 W m−2 to nearly 60 W m−2. Indeed, while the partition
between latent and sensible fluxes is moderated by the slowly
varying soil moisture content in SEtHyS, TSEB partitioning

relies on measured available energy and surface temperature
inputs only. By contrast, noisier wind speed, air temperature
and, to a lesser extent, solar radiation, significantly deterio-
rate sensible heat estimations for SEtHyS. TSEB appears, on
average, less sensitive to noisy meteorological inputs for H .
When considering extreme errors (Fig. 5) on meteorological
forcing, the same variables are identified as the most sensi-
tive ones: Ra, Rg and Ta for TSEB, and Ra, Rg and RH for
SEtHyS. However, whilst SEtHyS’s performance remains
acceptable despite these high errors on forcing, TSEB’s per-
formance for both LE and H collapses in response to in-
coming radiation errors in particular. Interestingly enough,
incoming solar radiation can also be retrieved from satellite
measurements such as Meteosat Second Generation (MSG).
In particular, Carrer et al. (2012) points out a significant im-
provement of MSG derived shortwave and longwave down-
welling surface radiation with regards to the SAFRAN anal-
ysis system, which could represent a valuable alternative for
regional assessment of evapotranspiration. To limit the sensi-
tivity to Ta and absolute surface–air temperature differences,
time differencing modeling schemes have been developed
(Anderson et al., 1997; Norman et al., 2000) with particu-
lar interest regarding large-scale applications, provided early
morning atmospheric soundings and/or at least two near ac-
quisitions of Trad are available.

3.2.4 Sensitivity analysis to vegetation forcing inputs

The focus here is on evaluating the bias effect on SEtHyS and
TSEB flux predictions. Indeed, on the one hand, errors on
vegetation characteristics are much more difficult to evaluate
as in situ measurements are time-consuming and therefore
not always available at a small time interval. On the other
hand, biases on satellite estimates are more likely to occur
than white noise errors due to the detection limit of visible
sensors in the case of sparse vegetation and a possible sat-
uration effect when the leaf area index is above 3 m2 m−2.
On average, Claverie (2011); Claverie et al. (2012) high-
light a potential bias of 20 % for the LAI estimated from
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Figure 4. Sensitivity analysis (realistic white noise) of both models to meteorological inputs and the impact on the estimation of H and LE.

Figure 5. Sensitivity analysis of both models to positive and negative realistic biases applied to meteorological and vegetation inputs.

FORMOSAT data. Canopy height (hc) is not directly avail-
able from remote sensing data but can be estimated from the
LAI. Canopy height (hc) was deduced from LAI= f (hc) re-
lations, applying linear regression to each culture and pheno-
logical stage available in our in situ data. This methodology
provides estimations of hc with a MAPD of 30 %, and “ex-
treme” bias up to 100 % (Bigeard, 2014). The results shown
in Fig. 5 demonstrate that TSEB and SEtHyS sensitivity to
bias on the LAI remains limited. By contrast, TSEB and,
to a lesser extent, SEtHyS exhibit a much higher sensitiv-
ity to bias on canopy height (hc) due to erratic transfer re-
sistances when hc is too close to the height of the microm-
eteorological measurements, or when soil is considered bare
(hc = 0). As LE is computed from the residual of the energy

budget in TSEB, a problem is observed with respect to both
H and LE fluxes, whereas LE is less affected in SEtHyS (not
shown).

3.2.5 Sensitivity analysis to radiative temperature for
TSEB

The comparison between in situ LST measurements and re-
trieval from the LANDSAT7 and ASTER images yielded a
maximum absolute difference of 2.2 K (four points), which
is in agreement with values reported in the literature rang-
ing from 1 to 3 ◦C (Hall et al., 1992; Gillespie et al., 1998;
Schmetz et al., 2002; Peres and DaCamara, 2004; Li, 2004;
Liu et al., 2006; Wan, 2008, among others). As the LST is
expected to be a determining input of TSEB, an in-depth
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Figure 6. Sensitivity analysis to radiative temperature input for
TSEB.

analysis of sensitivity to this variable was carried out con-
sidering white noise and biases of 1, 2 and 3 ◦C. Indeed, the
spatial scale mismatch between the spatial sensor operating,
at best, at a 90 m resolution and the SVAT model operating
at the scale of an “agricultural unit” (potentially lower than
a parcel) is likely to be important. Regarding the strong het-
erogeneity of the agricultural landscape (in terms of crops,
development stage, irrigation, hydric stress, etc.), bias is also
likely to be important and quite impossible to correct. The
results of adding errors to measured radiative temperature
on TSEB flux predictions are shown in Fig. 6. For limited
white noise up to 2 K, the drop in TSEB skill is small on
both H and LE. By contrast, biases are much more influen-
tial. In particular, a negative bias of 3 K could worsen the LE
RMSE from 58 to 78 W m−2. Interestingly enough, a nega-
tive bias, which is likely to occur when the observed pixel is
partly irrigated (i.e., cold), while the agricultural unit studied
is under stress (i.e., hot) for instance, has a stronger effect
than a positive bias. This is likely to occur in many practical
situations: a mixed pixel including forest and stressed field,
irrigation heterogeneity within a pixel (for instance irrigation
that is in progress within a field including a gravity or center
pivot system or the use of a localized sprinkler).

3.2.6 Sensitivity analysis to water inputs and soil water
content for SEtHyS

Water inputs, i.e., rainfall and irrigation, are difficult to as-
sess accurately over an agricultural landscape when the spa-
tial scale considered exceeds 1 km2. Even in this case, a good
knowledge of irrigation input at the field level requires costly
field surveys, as farmers’ associations or regional offices re-
sponsible for irrigation water often work at a larger scale
made of several plots. In addition to this potential uncer-
tainty, the initial condition of the soil water content (SWC)
should also be considered uncertain as a result – for instance,
from errors piling up from previous inputs. Figure 7 shows
the results of a sensitivity analysis of the models to these

three factors: uncertainty with respect to irrigation amount
and timing and with respect to the SWC initial condition.
Unsurprisingly, all factors had a significant impact on the
LE predictions. Even if input timing was correct, a bias of
1 mm with correct initial SWC worsened the SEtHyS skill by
5 %. If the input bias reaches 10 mm and the initial SWC is
negatively biased by the same amount, the loss of model per-
formance is above 25 %. Considering that the total amount of
an irrigation round can reach 100 mm, a 10 mm uncertainty is
very likely to occur in practice. In addition, a negative bias on
SWC impacts significantly more LE predictions than a pos-
itive bias. Indeed, going towards drier conditions may lead
to stress and, as a consequence, to a drastic drop in the pre-
dicted LE compared with the reference, whereas increasing
the SWC when the surface is already close to potential con-
ditions will not have any effect on LE. Within this context,
data assimilation of surface soil moisture retrieved from spa-
tial sensors could provide an interesting solution to improve
the accuracy of SWC initial conditions (Prevot et al., 1984;
Demarty et al., 2005; Li et al., 2006). By contrast, the tim-
ing, although important, has a secondary influence on model
skill. Even when water input is applied 3 d before or after
the actual date, the decrease in LE prediction skill remains
limited at around 15 %. Indeed, considering that agricultural
landscape is often well-watered in order to maximize pro-
duction, vegetation is able, through transpiration processes,
to maintain high levels of LE over long periods. The result-
ing dynamics of LE is relatively smooth compared with bare
soil that is dominated by evaporation processes. Finally, the
main conclusion is that emphasis should be laid on a water
amount prescription, whereas timing appears of secondary
importance.

3.2.7 Cross sensitivity analyses of models through
linkage of radiative temperature and SWC

Sensitivity of the TSEB and SEtHyS models to surface water
status has to be detailed in order to compare how the mod-
els respond to a change in water conditions. The difficulty
lies in the conceptual difference between both models: sur-
face water status is an explicit variable state for SEtHyS,
whereas, surface radiative temperature is an indirect proxy
of the surface hydric conditions in the TSEB model. For
the set of simulation periods considered in this study, ini-
tial soil water contents (for surface and root zone) were bi-
ased in SEtHyS inputs by ±10 %, ±30 % or ±50 %. As a
consequence, the simulated radiative surface temperature by
SEtHyS diverges from the reference, and the differences be-
tween both temperature simulation time-series are added to
the TSEB model input radiative temperature as an equiva-
lent water bias converted into temperature. It is assumed that
the SEtHyS model, used with a calibrated set of parameters,
is able to simulate a realistic temperature equivalent to the
water status biases (Coudert et al., 2006; Coudert and Ottlé,
2007).

Hydrol. Earth Syst. Sci., 23, 5033–5058, 2019 www.hydrol-earth-syst-sci.net/23/5033/2019/



G. Bigeard et al.: Comparison of a simple energy budget model and a SVAT model 5047

Figure 7. SEtHyS sensitivity analysis to rain and irrigation inputs,
with influence of bias on soil water content (SWC). SP in (a) is
defined as SP=

|LE[positive bias]−LE[negative bias]|
LE[reference]

.

Figure 8 shows the average variation of the temperature
bias as a function of the SWC bias. As expected, tem-
perature increases with water content deficit. Beyond the
[−10 %–+10 %] interval, temperature and water contents bi-
ases evolve quasi-linearly with a greater increment for dry
conditions. On the contrary, one can expect a more rapid lim-
itation in temperature decrease with wet conditions, when
soil reaches field capacity or saturation. The consequence
with respect to the evapotranspiration deviation from refer-
ence clearly shows that beyond the [−10 %–+10 %] inter-
val for water content biases, the error also increases linearly
with a greater increment for dry conditions. Under −20 %
bias, the impact on LE flux exceeds 50 W m−2. This result
is important for our purpose to spatialize models for evap-
otranspiration estimates, as accurate root zone and surface
water content retrievals from thermal and microwave remote
sensing are a real challenge over heterogeneous landscapes
(Barrett and Renzullo, 2009; Hain et al., 2011). The shift
in temperature simulated by SEtHyS from −50 % to +50 %
water content biases does not exceed 2 K and therefore lies
within the typical remotely sensed surface temperature un-

Figure 8. Error of Ts simulated by SEtHyS for increased and de-
creased SWC, and impact on models LE estimates. TSEB is forced
with Ts estimates from SEtHyS.

certainty range. For such a temperature bias, the TSEB model
evapotranspiration divergence is lower than 40 W m−2. As a
consequence, TSEB is less “reactive” to soil water content
variation compared with the SEtHyS model. This result is
critical for dry or stress conditions as previously mentioned.
Actually, water status is only taken into account in the TSEB
model via the surface temperature, which is not sufficient,
and no additional limitation of surface evapotranspiration is
carried out by modulating, for instance, the Priestley–Taylor
parameter.

4 Discussion

4.1 Influence of the parameters sets for model
spatialization

The four calibration cases for the SEtHyS model going from
site and period specific to more generic parameters from the
literature are considered in order to evaluate the potential
loss of model performance when specific calibration is not
possible due to lack of data. Figure 9 shows the impact of
the parameters set used on the SEtHyS performance to pre-
dict LE fluxes. Global results (for all crop classes and the
whole cultural cycles) corresponding to the label “overview”
in Fig. 9 give a MAPD of 30 % for the generic “culture
only” set of parameters. This result does not differ much
from the performance obtained with more specific sets of pa-
rameters “pheno+ cult ” or “optimal” showing a 25 % and
23 % MAPD, respectively. However, when a set of param-
eters from another crop class is used, the MAPD reaches
58 %. The finest analysis by phenological stage indicates an
overall stability of the results with the pheno+ cult param-
eter set with regards to culture only. There are actually two
exceptions: one for the vegetation senescence periods which
require specific parameter sets – a mean set of parameters
for the crop class increases MAPD from 30 % to 40 %; and
a second that relates to crop rising periods – a generic one
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Figure 9. Impact of the precision of sets of parameters on sim-
ulated fluxes;: “optimal” is the most accurate per 10 d period;
“pheno+ culture” refers to the fact that the per culture and phase of
growth is used for spatialization; “culture only” refers to per culture
(when only soil occupancy is known); and “unadapted” is incoher-
ent (wrong culture).

based only on the crop class (culture only) increases MAPD
up to 50 % compared with 45 % for pheno+ cult when tak-
ing the phenology into account. As a conclusion, a mean pa-
rameter set associated with a specific crop without consider-
ing phenology implies only a slight decrease in the perfor-
mance for growth or maximum vegetation development. By
contrast, the relevance of the parameter sets becomes notice-
able when specific information is not available for rising and
senescence periods (including potential water stress phases).
With the same purpose, a specific analysis is dedicated to the
Priestley–Taylor αPT key parameter of the TSEB model in
the next section.

4.2 A deeper look at the αPT parameter for
spatialization

A first estimation of the LEvegetation canopy transpiration flux
is obtained from the Priestley–Taylor approximation and de-
pends on the fraction of green fg and on the αPT param-
eter. Most studies (Norman et al., 1995; Kustas and Nor-
man, 1999; French et al., 2003; Anderson et al., 1997, 2008;
Li et al., 2006, 2008, among others) have generally used a
αPT value of about 1.3 for semiarid or subhumid agricultural
areas. However, this value may vary with vegetation type (as
mentioned in Norman et al., 1995), low values of LAI, atmo-
spheric demand (Anderson et al., 2008; Agam et al., 2010;
Colaizzi et al., 2014) or dry air advection conditions (Kus-
tas and Norman, 1999). As a first step, the calibration is
performed for the midday time interval series over various
surface and atmospheric conditions in order to be compared
with previous studies using TSEB instantaneously for water
flux mapping purpose when thermal imagery is available.

Figure 10 shows the influence of αPT values on H and
LE fluxes for wheat, corn and sunflower crops over the sites
in both the southwest of France and Morocco. Optimal val-
ues for irrigated wheat in Morocco (semiarid climate) and
sunflower in the southwest of France (temperate climate)
are close to the original value of 1.3 from the literature.
For wheat and irrigated corn in the southwest of France,
mean optimal values are higher and reach 1.6 for wheat. A
mean optimal value of 1.5 is obtained for temperate climate,
whereas a lower value of 1.25 is obtained for a semiarid cli-
mate. In a second step, the 30 min data are used for the cal-
ibration in order to study the diurnal cycle of the αPT pa-
rameter. The αPT parameter shows a U-shaped diurnal cy-
cle evolution, as displayed in Fig. 11, with smaller values
around midday and higher values in both the morning and
evening when stability conditions are changing, enhancing
the LEvegetation transpiration canopy flux. This is particularly
emphasized under clear-sky conditions, when TIR data from
space are most likely to be collected. The original αPT pa-
rameter is defined for a system at equilibrium with con-
stant temperature, a condition which is specifically not met
in the morning and in the evening when temperature tem-
poral gradients are highest. As a consequence, such varia-
tions integrated over the diurnal cycle lead to slightly higher
αPT fixed optimal values for daily 30 min time interval sim-
ulations. Moreover, results indicate a decrease of the RMSE
of about 10 % for both the H and LE fluxes when optimal
values at the original time interval are used instead of a fixed
daily average. Nevertheless, as more error on flux estima-
tions is likely to occur around midday, when turbulent fluxes
are maximal, the optimal daily value of αPT tends towards
its value around midday and is not much affected by in-
creased morning and evening values. Despite the fact that
thermal imagery from space is not available with the pres-
ence of clouds, the emergence of drone acquisition (Hoff-
mann et al., 2016) makes the characterization of αPT under
these conditions of special interest. On cloudy days, Fig. 11
highlights that fixed daily optimal values of 1.8–2 (higher
instantaneously) are required to optimize H and LE fluxes,
again enhancing the LEvegetation transpiration flux for such
reduced atmospheric demand. Hence, for simulation under
cloudy conditions, αPT value can be raised by+0.4 in a view
to interpolating time series between satellite overpasses or
running the TSEB model with in situ or low-altitude air-
craft remotely sensed surface temperature. An improvement
of about 10 % on the LE flux simulation is likely to be ex-
pected when taking the abovementioned impact of vegetation
and cloudy condition considerations on the αPT parameter
retrieval into account. However, Colaizzi et al. (2014) noted
that larger αPT values did not mitigate the discrepancies on
the evaporation (E) and transpiration (T ) components of the
total latent heat flux (ET). These authors proposed a revised
version of TSEB, replacing the Priestley–Taylor formulation
with the Penman–Monteith equation in order to better ac-
count for large variations of water vapor pressure deficits
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Figure 10. Sensitivity analyses of the αPT TSEB parameter during
vegetation periods. Error was computed as a cost function (Euclid-
ian distance) taking the MAPD of LE and H into account simulta-

neously: error=
√

MAPD2
[LE]+MAPD2

[H ]
.

and correct the evaporation, transpiration and total LE sim-
ulations. Thus, Boulet et al. (2015) built the SPARSE model
based on Penman–Monteith; this model showed satisfying
performance with respect to the Morocco wheat site dataset,
which was better than that of TSEB with default parameter
values.

5 Summary and conclusions

Monitoring evapotranspiration at the field scale over a large
agricultural landscape is a challenge as it requires detailed in-
formation about the surface state and meteorological forcing,
which is prone to uncertainties and unavailability. This study
aimed at evaluating the ability of a SVAT model (SEtHyS, de-
scribed in Coudert et al., 2006) and an instantaneous energy
balance model (TSEB, described in Norman et al., 1995) for
mapping evapotranspiration over agricultural landscapes as a
preliminary step to the joint use of both approaches via data
assimilation, as first proposed by Crow et al. (2005, 2008).
Within this context, our specific objectives were (1) to as-
sess the skills and domains of validity of both modeling ap-
proaches at the field scale for various crop conditions, and
(2) to characterize model errors resulting from realistic un-
certainties on inputs that can be expected from application at
the landscape scale. To this end, this study takes advantage
of a large and unique in situ database spanning two climates
and seven different crop cycles. The main results drawn from
this study can be summarized as follows:

– On average, over the entire database, both models pro-
vide close statistical metrics with respect to daily av-
erage values of LE (RMSEs of 36 W m−2 for SEtHyS
vs. 39 W m−2 for TSEB), whereas TSEB is slightly bet-

ter regarding H predictions (21 vs. 29 W m−2). This
emphasizes the remarkable performance of the TSEB
model compared with the relative simplicity of the ap-
proach, all the more given that SEtHyS parameters are
calibrated for each crop, each phenological stage and
each site.

– SEtHyS skill appears more stable regardless of the
growth stage or crop, whereas limitations of the TSEB
model are clearly emphasized during rising and senes-
cence stages.

– SEtHyS simulations of LE are less sensitive to noisy
meteorological inputs than TSEB, for which perfor-
mances are significantly worse – particularly when in-
coming radiation inputs are uncertain. Indeed, the par-
titioning between latent and sensible fluxes is mod-
erated by the slowly varying soil moisture content in
SEtHyS, whereas the TSEB partitioning relies on the
instantaneous measurement of available energy and sur-
face temperature input only.

– The sensitivity analysis of surface temperature, which is
one of the more important inputs for TSEB, shows that
the drop in TSEB skill is small on both H and LE for
limited white noise up to 2 K. By contrast, biases are
much more influential as a negative bias of 3 K could
deteriorate the LE RMSE from 58 to 78 W m−2.

– Similarly, the sensitivity of SEtHyS skills to uncertain
water inputs and initial soil water content was also ana-
lyzed and showed that emphasis should be put on water
amount retrieval, whereas timing of water supply ap-
pears of secondary importance; in particular a 10 mm
negative bias on input coupled with a negatively biased
initial SWC of 10 % with the same level lead to a loss
of model performance above 25 %.

– A cross sensitivity analysis of the TSEB and SEtHyS
models to surface water status was carried out by sim-
ulating several surface temperature time series with
SEtHyS and biased soil water contents (±10 %, ±30 %
or ±50 %). The difference in surface temperature com-
pared with a reference simulation is added as input
to the TSEB model as an equivalent water bias con-
verted into temperature. The shift in temperature sim-
ulated by SEtHyS for −50 % to 50 % water contents
biases does not exceed 2 K and is therefore within the
typical remotely sensed surface temperature uncertainty
range. For such a temperature bias, the TSEB model
evapotranspiration divergence is lower than 20 W m−2,
whereas it reaches 50 W m−2 for SEtHyS, which indi-
cates that TSEB is less “reactive” to soil water contents
variations than the SEtHyS model.

– Still with the intention to anticipate uncertainties in-
duced by spatial distribution, SEtHyS was run with
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Figure 11. Influence of using optimal αPT or averaged αPT on LE estimates by TSEB, and the influence of nebulosity on optimal αPT

estimates. Nebulosity was computed using photosynthetically active radiation (PAR) measurements as follows: nebulosity= PAR[diffuse]
PAR[total]

.
Sample from Auradé 2007 sunflower plot.

various sets of parameters with decreasing accuracies
regarding the phenological stage and type of culture.
This showed that when no precise information is known
about surface condition, a valuable trade-off is to con-
sider a set of parameters only representative of the type
of crop, provided vegetation is sufficiently developed.
By contrast, the relevance of the parameter sets becomes
noticeable when specific information is not available for
rising and senescence periods (including potential water
stress periods).

– For TSEB, an in-depth study of the Priestley–Taylor pa-
rameter αPT highlighted optimal values of 1.8–2 under
cloudy conditions, which is of particular interest due to
the emergence of low-altitude drone acquisition, while
most studies focus on clear-sky conditions when TIR
acquisition from space is possible.

In addition to the characterization of the model and back-
ground errors, this study provided some insights to guide
the implementation of a data assimilation algorithm at the
scale of an agricultural landscape for the joint use of both ap-
proaches by highlighting deficiencies in specific conditions.
Nevertheless, our current database suffers from a lack of hy-
dric stress conditions and does not allow for the precise char-
acterization of this crucial aspect. A new experiment in Mo-
rocco (seasons 2017–2018 and 2018–2019) focusing on wa-
ter stress on a wheat field is currently being carried out. Our
perspectives will focus on the exploitation of TIR data by us-
ing TSEB as a proxy to be assimilated in SEtHyS following
Crow et al. (2008), but also by taking advantage of the MCIP
methodology to tune parameters to better fit surface temper-
ature measurements following Coudert et al. (2008). Special
consideration will be given to diurnal dynamics and to the ex-
ploitation of relative differences inside plots and inter-plots.

Data availability. Access to data from the French and Moroccan
sites is available upon request from the head of the Sud-Ouest ob-
servatory (Tiphaine Tallec, CESBIO, France) and the head of the
TENSIFT observatory (Jamal Ezzahar, UCAM, Morocco), respec-
tively. Access to the SAFRAN data is available upon request from
the head of Météo-France (Toulouse, France).
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Appendix A: SEtHyS main equations

This section presents the governing equations for the SEtHyS
SVAT model variables.

A1 Basic set of equations for the SEtHyS model

The mass and energy budget is solved jointly for both soil
and vegetation sources using the following system:
Rn[soil] =H[soil]+LE[soil]+G

Rn[veg] =H[veg]+LE[veg]
H =H[veg]+H[soil]
E = E[veg]+E[soil]

, (A1)

where Rn[soil] and Rn[veg] are the respective net radiations
at the soil and vegetation levels and G is the soil heat
flux. Parameterization of the soil behavior is based on Dear-
dorff’s formalism (Deardorff, 1978). The soil surface temper-
ature T[soil], the vegetation temperature T[veg], the air temper-
ature inside the canopy T[canopy] and the air humidity inside
the canopy q[canopy] are determined by a first-order lineariza-
tion of the previous equation system.

The soil surface temperature prediction method utilized
is the force–restore method (Bhumralkar, 1975; Blackadar,
1976) and requires deep soil temperature T2. T2 can be esti-
mated from the mean air temperature over the preceding 24 h
for short-range studies (Blackadar, 1976). The heat capacity
is prescribed by the model from de Vries (1963) and hydro-
dynamic properties result from pedotransfer functions (re-
tention curve, hydraulic conductivity) based on the approach
from Genuchten (1980) under the Mualem (1976) hypothe-
sis.

The prognostic equation for ground surface temperature is
written as follows:

∂T[soil]

∂t
=

2
√
π

Ce
(Rn−H −LE)−

2π
τ

(
T[soil]− T2

)
. (A2)

The factor Ce is an equivalent heat capacity related to the
diurnal thermal wave damping layer. In SEtHyS, the param-
eterization of the equivalent heat capacity has been weighted
by introducing an empirical factor (Ftherm: see the parameter
list in Table 2) compared with Deardorff (1978).

Deardorff (1978) proposed a similar approach for ground
soil moisture, leading to the following equations:

∂wg

∂t
=−

Eg+ 0.2Ev

(
wg
wmax

)
−P

dp1
−C

(
wg,w2

)(
wg−w2

)
(A3)

∂w2

∂t
=−

Eg+Ev−P

dp2
, (A4)

where wmax is the soil moisture at soil saturation; wg and
w2 are surface and root zone water contents, respectively;
P is the precipitation rate; and dp1 and dp2 are the surface
and root zone layers depths, respectively.

A2 Radiative budget

Incoming radiation partitioning for the optical (VIS) and in-
frared (IR) wavelengths is performed using a shielding fac-
tor σf that is tightly linked to vegetation density. Its ex-
pression, which considers a spherical distribution of leaves
(François, 2002) with the hypothesis of diffuse radiation for
the longwave domain and direct vertical radiation in the
shortwave domain, is as follows:{
σf = 1− e−0.825LAI for the longwave domain
σf = 1− e−0.5LAI for the shortwave domain

. (A5)

The radiative budget is then solved jointly at the soil and at
the vegetation level for short and long wavelengths. Concern-
ing short wavelengths, soil albedo (αsoil) is linearly linked
to surface soil moisture. Vegetation albedo (αveg) is a model
parameter. The net radiation for the soil (Rn[soil],SW) and for
the vegetation (Rn[veg],SW) are as follows (“Mod3” parame-
terization as proposed in François, 2002):

Rn[soil],SW = S
↓
(1− σf)(1−αsoil)

1− σfαvegαsoil
. (A6)

At canopy level this becomes

Rn[veg],SW = S
↓
(
1−αveg

)
σf

[
1+αsoil

(1− σf)

1− σfαsoilαveg

]
, (A7)

where S↓ is the incoming shortwave radiation.
Concerning long wavelengths, the net radiation for

soil (Rn[soil],LW) and vegetation (Rn[veg],LW) are given by

Rn[soil],LW= (1− σf)
εg

(
R
↓
a − σT

4
[soil]

)
1− σf (1− εf)

(
1− εg

)
−

εgεfσfσ
(
T 4
[soil]− T

4
[veg]

)
1− σf (1− εf)

(
1− εg

) (A8)

Rn[veg],LW= σf

εf

(
R↓a − σT

4
f

)
+

εgεfσ
(
T 4
[soil]− T

4
[veg]

)
1− σf (1− εf)

(
1− εg

)


+σf

(1− εf)
(
1− εg

)
εf

(
R
↓
a − σT

4
[veg]

)
1− σf (1− εf)

(
1− εg

) . (A9)

Direct solar shortwave radiation (S↓) and atmospheric long-
wave radiation (R↓) are input model data.

The thermal infrared surface temperature TB (observed
above the canopy) results from the partitioning of the surface
and the radiative interaction between soil (whose tempera-
ture is T[soil]) and the vegetation above (whose temperature
is T[veg]).

A3 Heat flux expressions

The mass and energy transfers in equilibrium with net sur-
face radiation are momentum, and sensible and latent heat
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fluxes. A conductance formalism allows for their expression
by considering the canopy as a single vegetation layer (at
some height Zaf) above ground (Thom, 1972). Thus, follow-
ing the electrical (Ohm’s law) analogy, soil surface, leaves
surface, air canopy space and atmosphere above canopy are
the levels between which differences of potential (temper-
ature and humidity gradients) and transfer coefficients, i.e.,
aerodynamic conductances, can be calculated.

Heat fluxes H and LE (sensible and latent heat fluxes, re-
spectively) are then determined at three levels: at the atmo-
spheric reference level,

H = ρcpCh
(
T[canopy]− Ta

)
(A10)

LE=
ρcp

γ
Ch
(
q[canopy]− qa

)
(A11)

at the vegetation level,

H[veg] = ρcpCh[veg]
(
T[veg]− T[canopy]

)
(A12)

LE[veg] =
ρcp

γ
Ch[veg]R

′
(
qsat

(
T[veg]

)
− q[canopy]

)
(A13)

and at the ground level,

H[soil] = ρcpCh[soil]
(
T[soil]− T[canopy]

)
(A14)

LE[soil] =
ρcp

γ
Ch[soil]Cs

(
qsat

(
T[soil]

)
− q[canopy]

)
. (A15)

Here

LE= LE[soil]+LE[veg] (A16)
H =H[soil]+H[veg] (A17)

and the G conduction heat flux in soil is the residual of the
energy budget:

G= Rn[soil],LW+Rn[soil],SW−H[soil]−LE[soil], (A18)

where Cp is the specific heat at constant pressure; γ is the
psychrometric constant; T and q are temperature and wa-
ter vapor pressure, respectively; and a, g and “canopy” are
indices relative to air, ground, and canopy air space, respec-
tively.
Ch,Ch[veg] andCh[soil] are the respective aerodynamic con-

ductances between the canopy air space and the overlaying
atmosphere, leaf surfaces and canopy air space, and ground
and canopy air space; the R′ factor is defined below. These
variables are derived from the eddy flux theory between
two atmospheric levels. In SEtHyS model, the formulation
follows the parameterization proposed by Shuttleworth and
Wallace (1985) with a constant extinction coefficient in the
exponential wind speed profile.
Cs is the ground evaporation conductance; it depends on

soil moisture conditions and potential evaporation Epot[soil]
(Bernard et al., 1986; Wetzel and Chang, 1988; Soares et al.,
1988):

Cs =min
(

1,
Elim

Epo[soil]

)
, (A19)

where Elim depends on soil properties (composition and
moisture). Soares et al. (1988) gives the expression:

Elim = aElim

(
exp

(
bElim

(
wg−wresid

)2)
− 1

)
. (A20)

aElim and bElim are model parameters related to soil evapora-
tion response.

The R′ factor in Eq. (A13) accounts for stomatal resis-
tance and for the fact that only the fraction of the canopy
area which is not covered by water will contribute to evapo-
transpiration. Thus, Deardorff (1978) proposed the following
expression:

R′ =

(
dew
dmax

)2/3

+

[
1−

(
dew
dmax

)2/3
]

1
(β +CfhRST)

, (A21)

R′ = 1 for condensation, (A22)

where “dew” (“dmax”) is the fraction (the maximal fraction)
of free water on the foliage. RST is the stomatal resistance,
and this factor governs the canopy participation to the energy
budget and is responsible for partitioning between the sensi-
ble and latent heat fluxes.

In the model, calculation of RST is based on Collatz et al.
(1991, 1992) and is the same as in the SiB models (Sellers
et al., 1992, 1996). Biophysical and environmental variables
manage photosynthesis processes giving the CO2 assimila-
tion rate and then stomatal conductance of the foliage.

Ball (1988) gives the following leaf stomatal conductance
expression:

gs =m
An

cs
hsp+ b, (A23)

where An is net assimilation rate calculated by the model of
Farquhar et al. (1980); cs and hs are the CO2 partial pressure
and relative humidity at leaf surface, respectively; p is at-
mospheric pressure; and m and b are empirical factors from
observations depending on vegetation type (C3 or C4).

The assimilation rate is determined by means of three fac-
tors: a photosynthetic enzyme (Rubisco) limiting rate, a light
limiting rate and a limiting rate owing to the leaves’ ca-
pacity to export or utilize the photosynthesis products (Col-
latz et al., 1991). In the model, the iterative solution method
for the photosynthesis stomatal conductance calculation pro-
posed by Collatz et al. (1991) was implemented. Indeed,
canopy is considered to be a “big leaf”, assuming bulk or
integral values over canopy depth used in the integrated form
of Eq. (A23) (see Sellers et al., 1992). Stomatal conductance
and net assimilation rate are then determined for the canopy.
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