N. Alburquerque, F. Baldacci-cresp, M. Baucher, J. M. Casacuberta, C. Collonnier et al., New transformation technologies for trees, 2016.

V. Häggman, F. Kazana, and G. Migliacci, Biosafety of forest transgenic trees, pp.31-66

G. W. Argus, Salix (Salicaceae) distribution maps and a synopsis of their classification in North America, north of Mexico, Harvard Papers in Botany, vol.12, p.12, 2007.

S. G. Atienza, M. C. Ramirez, and A. Martin, Mapping-QTLs controlling flowering date in Miscanthus sinensis Anderss, Cereal Research Communications, vol.31, pp.265-271, 2003.

S. G. Atienza, Z. Satovic, K. K. Petersen, O. Dolstra, and A. Martin, Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter, Theoretical and Applied Genetics, vol.107, pp.123-129, 2003.

S. G. Atienza, Z. Satovic, K. K. Petersen, O. Dolstra, and A. Martin, Influencing combustion quality in Miscanthus sinensis Anderss.: Identification of QTLs for calcium, phosphorus and sulphur content, Plant Breeding, vol.122, pp.141-145, 2003.

R. Bdeir, W. Muchero, Y. Yordanov, G. A. Tuskan, V. Busov et al., Quantitative trait locus mapping of Populus bark features and stem diameter, BMC Plant Biology, vol.17, 2017.

T. R. Beard, G. S. Ford, T. M. Koutsky, and L. J. Spiwak, A Valley of Death in the innovation sequence: An economic investigation, Research Evaluation, vol.18, pp.343-356, 2009.

W. Berguson, B. Mcmahon, and D. Riemenschneider, Additive and non-additive genetic variances for tree growth in several hybrid poplar populations and implications regarding breeding strategy, Silvae Genetica, vol.66, issue.1, pp.33-39, 2017.

S. Berlin, S. O. Trybush, J. Fogelqvist, N. Gyllenstrand, H. R. Hallingbäck et al., Genetic diversity, population structure and phenotypic variation in European Salix viminalis L. (Salicaceae), Tree Genetics & Genomes, vol.10, pp.1595-1610, 2014.

R. Bernardo and J. Yu, Prospects for genomewide selection for quantitative traits in maize, Crop Science, vol.47, pp.1082-1090, 2007.

A. K. Biswal, M. A. Atmodjo, M. Li, H. L. Baxter, C. G. Yoo et al., Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis, Nature Biotechnology, vol.36, pp.249-257, 2018.

. Bmu, Bundesministerium für Umwelt Naturschutz und Reaktorsicherheit, Bundesministerium für Ernährung, p.11055, 2009.

|. Berlin and . Germany,

E. C. Brummer, Capturing heterosis in forage crop cultivar development, Crop Science, vol.39, pp.943-954, 1999.

E. Budsberg, J. T. Crawford, H. Morgan, W. S. Chin, R. Bura et al., Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: Life cycle assessment, Biotechnology for Biofuels, vol.9, 2016.

K. P. Burris, E. M. Dlugosz, A. G. Collins, C. N. Stewart, and S. C. Lenaghan, Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.), Plant Cell Reports, vol.35, pp.693-704, 2016.

M. Casler, Switchgrass breeding, genetics, and genomics, Switchgrass, pp.29-54, 2012.

M. Casler, R. Mitchell, and K. Vogel, Switchgrass, Handbook of bioenergy crop plants, vol.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02627642

M. D. Casler and G. P. Ramstein, Breeding for biomass yield in switchgrass using surrogate measures of yield, BioEnergy Research, vol.11, pp.6-12, 2018.

M. D. Casler, S. Sosa, L. Hoffman, H. Mayton, C. Ernst et al., Biomass Yield of Switchgrass Cultivars under High-versus Low-Input Conditions, Crop Science, vol.57, pp.821-832, 2017.

M. D. Casler and K. P. Vogel, Selection for biomass yield in upland, lowland, and hybrid switchgrass, Crop Science, vol.54, pp.626-636, 2014.

M. D. Casler, K. P. Vogel, and M. Harrison, Switchgrass germplasm resources, vol.55, pp.2463-2478, 2015.

M. D. Casler, K. P. Vogel, D. K. Lee, R. B. Mitchell, P. R. Adler et al., 30 Years of progress toward increasing biomass yield of switchgrass and big bluestem, Crop Science, vol.58, p.1242, 2018.

L. V. Clark, J. E. Brummer, K. G?owacka, M. C. Hall, K. Heo et al., A footprint of past climate change on the diversity and population structure of Miscanthus sinensis, Annals of Botany, vol.114, pp.97-107, 2014.

L. V. Clark, E. Dzyubenko, N. Dzyubenko, L. Bagmet, A. Sabitov et al., Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia, Annals of Botany, vol.118, pp.941-955, 2016.

L. V. Clark, X. Jin, K. K. Petersen, K. G. Anzoua, L. Bagmet et al., Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea, Annals of Botany, vol.20, pp.1-18, 2018.

L. V. Clark, J. R. Stewart, A. Nishiwaki, Y. Toma, J. B. Kjeldsen et al., Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression, Journal of Experimental Botany, vol.66, pp.4213-4225, 2015.

J. Clifton-brown, A. Hastings, M. Mos, J. P. Mccalmont, C. Ashman et al., Progress in upscaling Miscanthus biomass production for the European bio-economy with seedbased hybrids, Global Change Biology Bioenergy, vol.9, pp.6-17, 2017.

J. Clifton-brown, K. U. Schwarz, and A. Hastings, History of the development of Miscanthus as a bioenergy crop: From small beginnings to potential realisation, Biology and Environment-Proceedings of the Royal Irish Academy, vol.115, pp.45-57, 2015.

J. Clifton-brown, H. Senior, S. Purdy, R. Horsnell, B. Lankamp et al., Investigating the potential of novel non-woven fabrics to increase pollination efficiency in plant breeding, PloS One, 2018.

J. T. Crawford, C. W. Shan, E. Budsberg, H. Morgan, R. Bura et al., Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: Techno-economic assessment, Biotechnology for Biofuels, vol.9, p.141, 2016.

S. Dalton, Biotechnology of Miscanthus, Biotechnology of neglected and underutilized crops, pp.243-294, 2013.

C. L. Davey, P. Robson, S. Hawkins, K. Farrar, J. C. Clifton-brown et al., Genetic relationships between spring emergence, canopy phenology, and biomass yield increase the accuracy of genomic prediction in Miscanthus, Journal of Experimental Botany, vol.68, pp.5093-5102, 2017.

X. David and X. Anderson, Aspen and larch genetics cooperative annual report 13, 2002.

M. Deblock, Factors influencing the tissue-culture and the Agrobacterium-Tumefaciens-mediated transformation of hybrid aspen and poplar clones, Plant Physiology, vol.93, pp.1110-1116, 1990.

. Defra, The role of future public research investment in the genetic improvement of UK-grown crops, London. Retrieved from sciencesearch.defra.gov.uk/Default.aspx?Menu= Menu&Module=More&Location=None&Completed=220&Projec tID=10412, p.220, 2002.

J. Dewoody, H. Trewin, and G. Taylor, Genetic and morphological differentiation in Populus nigra L.: Isolation by colonization or isolation by adaptation?, Molecular Ecology, vol.24, pp.2641-2655, 2015.

H. Dong, S. Liu, L. V. Clark, S. Sharma, J. M. Gifford et al., Genetic mapping of biomass yield in three interconnected Miscanthus populations, Global Change Biology Bioenergy, vol.10, pp.165-185, 2018.

. Dukes, Digest of UK Energy Statistics (DUKES) (p. 264). London, UK: Department for Business, Energy & Industrial Strategy, 2017.

J. Eckenwalder, Systematics and evolution of Populus, Biology of Populus and its implications for management and conservation, pp.7-32, 1996.

R. J. Elshire, J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto et al., A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PloS One, vol.6, p.19379, 2011.

H. Evans, Bioenergy crops in the UK: Case studies of successful whole farm integration, p.23, 2016.

H. Evans, Increasing UK biomass production through more productive use of land, 2017.

J. Evans, M. D. Sanciangco, K. H. Lau, E. Crisovan, K. Barry et al., Extensive genetic diversity is present within North American switchgrass germplasm, The Plant Genome, vol.11, pp.1-16, 2018.

L. M. Evans, G. T. Slavov, E. Rodgers-melnick, J. Martin, P. Ranjan et al., Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations, Nature Genetics, vol.46, pp.1089-1096, 2014.

E. S. Fabio, T. A. Volk, R. O. Miller, M. J. Serapiglia, H. G. Gauch et al., Genotype× environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids, Global Change Biology Bioenergy, vol.9, pp.445-459, 2017.

A. M. Fahrenkrog, L. G. Neves, M. F. Resende, A. I. Vazquez, G. De-los-campos et al., Genomewide association study reveals putative regulators of bioenergy traits in Populus deltoides, New Phytologist, vol.213, pp.799-811, 2017.

D. Fan, T. T. Liu, C. F. Li, B. Jiao, S. Li et al., Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation, Scientific Reports, vol.5, p.12217, 2015.

X. P. Feng, K. Lourgant, V. Castric, P. Saumitou-laprade, B. S. Zheng et al., The discovery of natural accessions related to Miscanthus x giganteus using chloroplast DNA, Crop Science, vol.54, pp.1645-1655, 2014.

J. J. Fillatti, J. Sellmer, B. Mccown, B. Haissig, and L. Comai, Agrobacterium-mediated transformation and regeneration of Populus, Molecular & General Genetics, vol.206, pp.192-199, 1987.

Y. B. Fu, Understanding crop genetic diversity under modern plant breeding, Theoretical and Applied Genetics, vol.128, pp.2131-2142, 2015.

C. Fu, J. R. Mielenz, X. Xiao, Y. Ge, C. Y. Hamilton et al., Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.3803-3808, 2011.

C. Gao, The future of CRISPR technologies in agriculture, Nature Reviews. Molecular Cell Biology, vol.19, issue.5, pp.275-276, 2018.

V. Gegas, A. Gay, A. Camargo, and J. Doonan, Challenges of Crop Phenomics in the Post-genomic Era, Phenomics, pp.142-171, 2014.

A. Geraldes, S. P. Difazio, G. T. Slavov, P. Ranjan, W. Muchero et al., A 34K SNP genotyping array for Populus trichocarpa: Design, application to the study of natural populations and transferability to other Populus species, Molecular Ecology Resources, vol.13, pp.306-323, 2013.

J. M. Gifford, W. B. Chae, K. Swaminathan, S. P. Moose, and J. A. Juvik, Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity, Global Change Biology Bioenergy, vol.7, pp.797-810, 2015.

F. L. Goggin, A. Lorence, and C. N. Topp, Applying highthroughput phenotyping to plant-insect interactions: Picturing more resistant crops. Current Opinion in Insect Science, vol.9, pp.69-76, 2015.

P. P. Grabowski, J. Evans, C. Daum, S. Deshpande, K. W. Barry et al., Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data, New Phytologist, vol.213, pp.154-169, 2017.

J. M. Greef and M. Deuter, Syntaxonomy of Miscanthus x giganteus GREEF et DEU, Angewandte Botanik, vol.67, pp.87-90, 1993.

F. P. Guerra, J. H. Richards, O. Fiehn, R. Famula, B. J. Stanton et al., Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances, Tree Genetics & Genomes, vol.12, 2016.

H. P. Guo, R. X. Shao, C. T. Hong, H. K. Hu, B. S. Zheng et al., Rapid in vitro propagation of bioenergy crop Miscanthus sacchariflorus, Applied Mechanics and Materials, vol.260, pp.181-186, 2013.

H. R. Hallingbäck, J. Fogelqvist, S. J. Powers, J. Turrion-gomez, R. Rossiter et al., , 2016.

, Association mapping in Salix viminalis L. (Salicaceae)-Identification of candidate genes associated with growth and phenology, Global Change Biology Bioenergy, vol.8, pp.670-685

S. J. Hanley and A. Karp, Genetic strategies for dissecting complex traits in biomass willows (Salix spp, Tree Physiology, vol.34, pp.1167-1180, 2014.

A. Harfouche, R. Meilan, and A. Altman, Tree genetic engineering and applications to sustainable forestry and biomass production, Trends in Biotechnology, vol.29, pp.9-17, 2011.

A. Harfouche, R. Meilan, and A. Altman, Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement, Tree Physiology, vol.34, pp.1181-1198, 2014.

A. Harfouche, R. Meilan, M. Kirst, M. Morgante, W. Boerjan et al., Accelerating the domestication of forest trees in a changing world, Trends in Plant Science, vol.17, pp.64-72, 2012.

A. Hastings, J. Clifton-brown, M. Wattenbach, C. P. Mitchell, P. Stampfl et al., Future energy potential of Miscanthus in Europe, Global Change Biology Bioenergy, vol.1, pp.180-196, 2009.

A. Hastings, ,. Mos, M. Yesufu, J. A. Mccalmont, J. Schwarz et al., Economic and environmental assessment of seed and rhizome propagated Miscanthus in the UK, Frontiers in Plant Science, vol.8, p.16, 2017.

M. Héder, From NASA to EU: The evolution of the TRL scale in Public Sector Innovation, The Innovation Journal, vol.22, pp.1-23, 2017.

E. L. Heffner, M. E. Sorrells, and J. L. Jannink, Genomic selection for crop improvement, Crop Science, vol.49, pp.1-12, 2009.

T. R. Hodkinson, M. Klaas, M. B. Jones, R. Prickett, and S. Barth, Miscanthus: A case study for the utilization of natural genetic variation, Plant Genetic Resources-Characterization and Utilization, vol.13, pp.219-237, 2015.

T. R. Hodkinson and S. Renvoize, Nomenclature of Miscanthus xgiganteus (Poaceae), Kew Bulletin, vol.56, pp.759-760, 2001.

D. Houle, D. R. Govindaraju, and S. Omholt, Phenomics: The next challenge, Nature Reviews Genetics, vol.11, pp.855-866, 2010.

X. H. Huang, X. H. Wei, T. Sang, Q. Zhao, Q. Feng et al., Genome-wide association studies of 14 agronomic traits in rice landraces, Nature Genetics, vol.42, pp.961-976, 2010.

O. Hwang, M. Cho, Y. Han, Y. Kim, S. Lim et al., Agrobacterium-mediated genetic transformation of Miscanthus sinensis, Plant Cell, Tissue and Organ Culture (PCTOC), vol.117, pp.51-63, 2014.

O. Hwang, S. Lim, Y. Han, A. Shin, D. Kim et al., Phenotypic characterization of transgenic Miscanthus sinensis plants overexpressing Arabidopsis phytochrome B, International Journal of Photoenergy, p.501016, 2014.

B. Ilstedt, Genetics and performance of Belgian poplar clones tested in Sweden, International Journal of Forest Genetics, vol.3, pp.183-195, 1996.

P. K. Ingvarsson, M. V. Garcia, D. Hall, V. Luquez, and S. Jansson, Clinal variation in phyB2, a candidate gene for daylength-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula), Genetics, vol.172, pp.1845-1853, 2006.

P. K. Ingvarsson, M. V. Garcia, V. Luquez, D. Hall, and S. Jansson, Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae), Genetics, vol.178, pp.2217-2226, 2008.

J. Jannink, A. J. Lorenz, and H. Iwata, Genomic selection in plant breeding: From theory to practice, Briefings in Functional Genomics, vol.9, pp.166-177, 2010.

J. Jiang, Y. Guan, S. Mccormick, J. Juvik, T. Lubberstedt et al., Gametophytic self-incompatibility is operative in Miscanthus sinensis (Poaceae) and is affected by pistil age, Crop Science, vol.57, pp.1948-1956, 2017.

H. D. Jones, Future of breeding by genome editing is in the hands of regulators, GM Crops & Food, vol.6, pp.223-232, 2015.

H. D. Jones, Regulatory uncertainty over genome editing, Nature Plants, vol.1, p.14011, 2015.

O. Kalinina, C. Nunn, R. Sanderson, A. F. Hastings, T. Van-der-weijde et al., Extending Miscanthus cultivation with novel germplasm at six contrasting sites, Frontiers in Plant Science, vol.8, p.563, 2017.

A. Karp, S. J. Hanley, S. O. Trybush, W. Macalpine, M. Pei et al., Genetic improvement of willow for bioenergy and biofuels free access, Journal of Integrative Plant Biology, vol.53, pp.151-165, 2011.

B. Kersten, P. Faivre-rampant, M. Mader, M. Le-paslier, R. Bounon et al., Genome sequences of Populus tremula chloroplast and mitochondrion: Implications for holistic poplar breeding, PloS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02641357

A. Kiesel, C. Nunn, Y. Iqbal, T. Van-der-weijde, M. Wagner et al., Site-specific management of Miscanthus genotypes for combustion and anaerobic digestion: A comparison of energy yields, Frontiers in Plant Science, vol.8, p.347, 2017.

H. Kim, S. T. Kim, J. Ryu, B. C. Kang, J. S. Kim et al., CRISPR/Cpf1-mediated DNA-free plant genome editing, Nature Communications, vol.8, 2017.

Z. R. King, A. L. Bray, P. R. Lafayette, and W. A. Parrott, Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.), Plant Cell Reports, vol.33, pp.313-322, 2014.

R. F. Kopp, C. A. Maynard, P. R. De-niella, L. B. Smart, and L. P. Abrahamson, Collection and storage of pollen from Salix (Salicaceae), American Journal of Botany, vol.89, pp.248-252, 2002.

J. Krzy?ak, M. Pogrzeba, S. Rusinowski, J. Clifton-brown, J. P. Mccalmont et al., Heavy metal uptake and Environmental Engineering Reports, vol.26, pp.121-132, 2017.

Y. A. Kuzovkina and M. F. Quigley, Willows beyond wetlands: Uses of Salix L. species for environmental projects, Water, Air, and Soil Pollution, vol.162, pp.183-204, 2005.

W. Lazarus, W. L. Headlee, and R. S. Zalesny, Impacts of supplyshed-level differences in productivity and land costs on the economics of hybrid poplar production in Minnesota, USA, BioEnergy Research, vol.8, pp.231-248, 2015.

I. Lewandowski, Securing a sustainable biomass supply in a growing bioeconomy, Global Food Security, vol.6, pp.34-42, 2015.

I. Lewandowski, The role of perennial biomass crops in a growing bioeconomy, pp.3-13, 2016.

J. L. Li, R. Meilan, C. Ma, M. Barish, and S. H. Strauss, Stability of herbicide resistance over 8 years of coppice in fieldgrown, genetically engineered poplars, Western Journal of Applied Forestry, vol.23, pp.89-93, 2008.

R. Y. Li and R. D. Qu, High throughput Agrobacterium-mediated switchgrass transformation, Biomass & Bioenergy, vol.35, pp.1046-1054, 2011.

K. N. Lindegaard and J. H. Barker, Breeding willows for biomass, Aspects of Applied Biology, vol.49, pp.155-162, 1997.

I. B. Linde-laursen, Cytogenetic analysis of Miscanthus 'Giganteus', an interspecific hybrid, Hereditas, vol.119, pp.297-300, 1993.

Y. Liu, P. Merrick, Z. Z. Zhang, C. H. Ji, B. Yang et al., Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9, Plant Biotechnology Journal, vol.16, pp.381-393, 2018.

L. L. Liu, Y. Q. Wu, Y. W. Wang, and T. Samuels, A highdensity simple sequence repeat-based genetic linkage map of switchgrass, vol.3, pp.357-370, 2012.

A. Lovett, G. Sünnenberg, and T. Dockerty, The availability of land for perennial energy crops in Great Britain, Global Change Biology Bioenergy, vol.6, pp.99-107, 2014.

J. Lozano-juste and S. R. Cutler, Plant genome engineering in full bloom, Trends in Plant Science, vol.19, pp.284-287, 2014.

F. Lu, A. E. Lipka, J. Glaubitz, R. Elshire, J. H. Cherney et al., Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol, Plos Genetics, vol.9, p.1003215, 2013.

R. Ludovisi, F. Tauro, R. Salvati, S. Khoury, G. S. Mugnozza et al., UAV-based thermal imaging for highthroughput field phenotyping of black poplar response to drought, Frontiers in Plant Science, vol.8, p.1681, 2017.

W. Macalpine, I. Shield, and A. Karp, Seed to near market variety; the BEGIN willow breeding pipeline 2003-2010 and beyond, Bioten conference proceedings, pp.21-23, 2010.

W. J. Macalpine, I. F. Shield, S. O. Trybush, C. M. Hayes, and A. Karp, Overcoming barriers to crossing in willow (Salix spp.) breeding, Aspects of Applied Biology, vol.90, pp.173-180, 2008.

M. M. Mahfouz, The efficient tool CRISPR-Cpf1, Nature Plants, vol.3, p.17028, 2017.

M. Malinowska, I. S. Donnison, and P. R. Robson, Phenomics analysis of drought responses in Miscanthus collected from different geographical locations, Global Change Biology Bioenergy, vol.9, pp.78-91, 2017.

H. L. Maroder, I. A. Prego, G. R. Facciuto, and S. B. Maldonado, Storage behaviour of Salix alba and Salix matsudana seeds, Annals of Botany, vol.86, pp.1017-1021, 2000.

J. Martinez-reyna and K. Vogel, Incompatibility systems in switchgrass, Crop Science, vol.42, pp.1800-1805, 2002.

J. P. Maurya and R. P. Bhalerao, Photoperiod-and temperature-mediated control of growth cessation and dormancy in trees: A molecular perspective, Annals of Botany, vol.120, pp.351-360, 2017.

J. P. Mccalmont, A. Hastings, N. P. Mcnamara, G. M. Richter, P. Robson et al., Environmental costs and benefits of growing Miscanthus for bioenergy in the UK, Global Change Biology Bioenergy, vol.9, pp.489-507, 2017.

A. R. Mccracken and W. M. Dawson, Using mixtures of willow clones as a means of controlling rust disease, Aspects of Applied Biology, vol.49, pp.97-103, 1997.

A. D. Mckown, J. Kláp?t?, R. D. Guy, A. Geraldes, I. Porth et al., Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa, New Phytologist, vol.203, pp.535-553, 2014.

P. Merrick and S. Z. Fei, Plant regeneration and genetic transformation in switchgrass -A review, Journal of Integrative Agriculture, vol.14, pp.60921-60928, 2015.

M. A. Moreno-mateos, J. P. Fernandez, R. Rouet, M. A. Lane, C. E. Vejnar et al., CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing, Nature Communications, vol.8, 2017.

A. Mosseler, Hybrid performance and species crossability relationships in willows (Salix), Canadian Journal of Botany, vol.68, pp.2329-2338, 1990.

W. Muchero, J. Guo, S. P. Difazio, J. Chen, P. Ranjan et al., High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus, BMC Genomics, vol.16, p.24, 2015.

D. B. Neale and A. Kremer, Forest tree genomics: Growing resources and applications, Nature Reviews Genetics, vol.12, pp.111-122, 2011.

C. Nunn, A. F. Hastings, O. Kalinina, M. Özgüven, H. Schüle et al., Environmental influences on the growing season duration and ripening of diverse Miscanthus germplasm grown in six countries, Frontiers in Plant Science, vol.8, p.907, 2017.

Y. Ogawa, M. Honda, Y. Kondo, and I. Hara-nishimura, An efficient Agrobacterium-mediated transformation method for switchgrass genotypes using Type I callus, Plant Biotechnology, vol.33, pp.19-26, 2016.

Y. Ogawa, M. Shirakawa, Y. Koumoto, M. Honda, Y. Asami et al., A simple and reliable multi-gene transformation method for switchgrass, Plant Cell Reports, vol.33, pp.1161-1172, 2014.

M. Okada, C. Lanzatella, M. C. Saha, J. Bouton, R. L. Wu et al., Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions, Genetics, vol.185, pp.745-760, 2010.

E. Palomo-ríos, W. Macalpine, I. Shield, J. Amey, C. Karao?lu et al., Efficient method for rapid multiplication of clean and healthy willow clones via in vitro propagation with broad genotype applicability, Canadian Journal of Forest Research, vol.45, pp.1662-1667, 2015.

G. Pilate, I. Allona, W. Boerjan, A. Déjardin, M. Fladung et al., Lessons from 25 years of GM tree field trials in Europe and prospects for the future, Biosafety of forest transgenic trees, pp.67-100, 2016.

N. Dordrecht,

S. Pinosio, S. Giacomello, P. Faivre-rampant, G. Taylor, V. Jorge et al., Characterization of the poplar pan-genome by genome-wide identification of structural variation, Molecular Biology and Evolution, vol.33, pp.2706-2719, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636741

I. Porth, J. Kláp?t?, O. Skyba, M. C. Friedmann, J. Hannemann et al., Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions, New Phytologist, pp.727-742, 0200.

S. Pugesgaard, K. Schelde, S. U. Larsen, P. E. Laerke, and U. Jørgensen, Comparing annual and perennial crops for bioenergy production-influence on nitrate leaching and energy balance, Global Change Biology Bioenergy, vol.7, pp.1136-1149, 2015.

L. D. Quinn, D. J. Allen, and J. R. Stewart, Invasiveness potential of Miscanthus sinensis: Implications for bioenergy production in the United States, Global Change Biology Bioenergy, vol.2, pp.310-320, 2010.

A. M. Rae, K. M. Robinson, N. R. Street, and G. Taylor, Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar, Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, vol.34, pp.1488-1498, 2004.

C. Rambaud, S. Arnoult, A. Bluteau, M. C. Mansard, C. Blassiau et al., Shoot organogenesis in three Miscanthus species and evaluation for genetic uniformity using AFLP analysis. Plant Cell, Tissue and Organ Culture (PCTOC), vol.113, pp.437-448, 2013.

G. P. Ramstein, J. Evans, S. M. Kaeppler, R. B. Mitchell, K. P. Vogel et al., Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium, vol.3, pp.1049-1062, 2016.

A. L. Rayburn, J. Crawford, C. M. Rayburn, and J. A. Juvik, , 2009.

, Genome size of three Miscanthus species, Plant Molecular Biology Reporter, vol.27

J. Richardson, J. Isebrands, and J. Ball, Poplars and willows: Trees for society and the environment, pp.92-123, 2014.

T. L. Robison, R. J. Rousseau, and J. Zhang, Biomass productivity improvement for eastern cottonwood, Biomass & Bioenergy, vol.30, pp.735-739, 2006.

P. R. Robson, K. Farrar, A. P. Gay, E. F. Jensen, J. C. Clifton-brown et al., Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield, Journal of Experimental Botany, vol.64, pp.2373-2383, 2013.

P. Robson, E. Jensen, S. Hawkins, S. R. White, K. Kenobi et al., Accelerating the domestication of a bioenergy crop: Identifying and modelling morphological targets for sustainable yield increase in Miscanthus, Journal of Experimental Botany, vol.64, pp.4143-4155, 2013.

M. A. Sanderson, P. R. Adler, A. A. Boateng, M. D. Casler, and G. Sarath, Switchgrass as a biofuels feedstock in the USA, Canadian Journal of Plant Science, vol.86, pp.1315-1325, 2006.

N. Scarlat, J. F. Dallemand, F. Monforti-ferrario, and V. Nita, The role of biomass and bioenergy in a future bioeconomy: Policies and facts, vol.15, pp.3-34, 2015.

M. J. Serapiglia, F. E. Gouker, and L. B. Smart, Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids, BMC Plant Biology, vol.14, 2014.

D. Serba, L. Wu, G. Daverdin, B. A. Bahri, X. Wang et al., Linkage maps of lowland and upland tetraploid switchgrass ecotypes, BioEnergy Research, vol.6, pp.953-965, 2013.

N. Shakoor, S. Lee, and T. C. Mockler, High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field, Current Opinion in Plant Biology, vol.38, pp.184-192, 2017.

I. Shield, W. Macalpine, S. Hanley, and A. Karp, Breeding willow for short rotation coppice energy cropping, Industrial crops Breeding for BioEnergy and Bioproducts, pp.67-80, 2015.

A. Sjodin, N. R. Street, G. Sandberg, P. Gustafsson, and S. Jansson, The Populus Genome Integrative Explorer (PopGenIE): A new resource for exploring the Populus genome, New Phytologist, vol.182, pp.1013-1025, 2009.

G. Slavov and C. Davey, Integrated genomic prediction in bioenergy crops, Abstracts from the International Conference on 'Developing biomass crops for future climates' pp, vol.34, pp.24-27, 2017.

G. Slavov, C. Davey, M. Bosch, P. Robson, I. Donnison et al., Genomic index selection provides a pragmatic framework for setting and refining multi-objective breeding targets in Miscanthus, Annals of Botany, 2018.

G. T. Slavov, S. P. Difazio, J. Martin, W. Schackwitz, W. Muchero et al., Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa, New Phytologist, vol.196, pp.713-725, 2012.

G. Slavov, C. Davey, P. Robson, I. Donnison, and I. Mackay, Domestication of Miscanthus through genomic index selection, Plant and Animal Genome Conference. 13, 2018.

G. T. Slavov, R. Nipper, P. Robson, K. Farrar, G. G. Allison et al., Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis, New Phytologist, vol.201, pp.1227-1239, 2013.

G. Slavov, P. Robson, E. Jensen, E. Hodgson, K. Farrar et al., Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis, Global Change Biology Bioenergy, vol.5, pp.562-571, 2014.

A. ?lusarkiewicz-jarzina, A. Ponitka, J. Cerazy-waliszewska, M. K. Wojciechowicz, K. Soba?ska et al., Effective and simple in vitro regeneration system of Miscanthus sinensis, M.× giganteus and M. sacchariflorus for planting and biotechnology purposes. Biomass and Bioenergy, vol.107, pp.219-226, 2017.

L. Smart and K. Cameron, Shrub willow, Handbook of bioenergy crop plants, pp.687-708, 2012.

B. J. Stanton, The domestication and conservation of Populus and Salix genetic resources (Chapter 4), CAB International, Food and Agricultural Organization of the United Nations, pp.124-200, 2014.

B. J. Stanton, D. B. Neale, and S. Li, Populus breeding: From the classical to the genomic approach, Genetics and genomics of populus, pp.309-348, 2010.

J. R. Stewart, Y. Toma, F. G. Fernandez, A. Nishiwaki, T. Yamada et al., The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, its native range in Japan: A review, vol.1, pp.126-153, 2009.

K. G. Stott, Willows in the service of man, Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, vol.98, pp.169-182, 1992.

S. H. Strauss, C. Ma, K. Ault, and A. L. Klocko, Lessons from two decades of field trials with genetically modified trees in the USA: Biology and regulatory compliance, Biosafety of forest transgenic trees, pp.101-124, 2016.

. Dordrecht,

Y. Suda and G. W. Argus, Chromosome numbers of some North American Salix, Brittonia, vol.20, pp.191-197, 1968.

B. Tan, Genomic selection and genome-wide association studies to dissect quantitative traits in forest trees, 2018.

C. Tornqvist, M. Taylor, Y. Jiang, J. Evans, C. Buell et al., Quantitative trait locus mapping for flowering time in a lowland x upland switchgrass pseudo-F 2 population, The Plant Genome, vol.11, p.170093, 2018.

G. Tóth, T. Hermann, M. Da-silva, and L. Montanarella, Heavy metals in agricultural soils of the European Union with implications for food safety, Environment International, vol.88, pp.299-309, 2016.

W. Tracy, J. Dawson, V. Moore, and J. Fisch, Intellectual property rights and public plant breeding: Recommendations, and proceedings of a conference on best practices for intellectual property protection of publically developed plant germplasm, p.70, 2016.

S. Trybush, ?. Jahodová, W. Macalpine, and A. Karp, A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species, BioEnergy Research, vol.1, pp.67-79, 2008.

C. J. Tsai, Next-generation sequencing for next-generation breeding, and more, New Phytologist, vol.198, pp.635-637, 2013.

G. A. Tuskan, S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev et al., The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science, vol.313, pp.1596-1604, 2006.

G. A. Tuskan and M. E. Walsh, Short-rotation woody crop systems, atmospheric carbon dioxide and carbon management: A US case study. The Forestry Chronicle, vol.77, pp.259-264, 2001.

R. Van-den-broek, D. Treffers, M. Meeusen, A. Van-wijk, E. Nieuwlaar et al., Green energy or organic food? A life-cycle assessment comparing two uses of set-aside land, Journal of Industrial Ecology, vol.5, pp.65-87, 2001.

J. Van-der-schoot, M. Pospiskova, B. Vosman, and M. J. Smulders, Development and characterization of microsatellite markers in black poplar, Populus nigra L.). Theoretical and Applied Genetics, vol.101, pp.317-322, 2000.

T. Van-der-weijde, O. Dolstra, R. G. Visser, L. M. Trindade, T. Van-der-weijde et al., Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments, Global Change Biology Bioenergy, vol.7, pp.770-782, 2004.

T. Van-der-weijde, C. L. Kamei, E. I. Severing, A. F. Torres, L. D. Gomez et al., Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels, BMC Genomics, vol.18, p.406, 2017.

T. Van-der-weijde, A. Kiesel, Y. Iqbal, H. Muylle, O. Dolstra et al., Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products, Global Change Biology Bioenergy, vol.9, pp.176-190, 2017.

B. Vanholme, I. Cesarino, G. Goeminne, H. Kim, F. Marroni et al., Breeding with rare defective alleles (BRDA): A natural Populus nigra HCT mutant with modified lignin as a case study, New Phytologist, vol.198, pp.765-776, 2013.

K. P. Vogel, R. B. Mitchell, M. D. Casler, and G. Sarath, Registration of 'Liberty' Switchgrass, Journal of Plant Registrations, vol.8, pp.242-247, 2014.

X. Wang, T. Yamada, F. Kong, Y. Abe, Y. Hoshino et al., Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop, Global Change Biology Bioenergy, vol.3, pp.322-332, 2011.

L. S. Watrud, E. H. Lee, A. Fairbrother, C. Burdick, J. R. Reichman et al., Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.14533-14538, 2004.

H. Weisgerber, Poplar breeding for the purpose of biomass production in short-rotation periods in Germany -Problems and first findings, Forestry Chronicle, vol.69, pp.727-729, 1993.

N. C. Wheeler, K. C. Steiner, S. E. Schlarbaum, and D. B. Neale, The evolution of forest genetics and tree improvement research in the United States, Journal of Forestry, vol.113, pp.500-510, 2015.

C. Whittaker, W. J. Macalpine, N. E. Yates, and I. Shield, Dry matter losses and methane emissions during wood chip storage: The impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat, BioEnergy Research, vol.9, pp.820-835, 2016.

Q. Xi, Investigation on the distribution and potential of giant grasses in China, 2000.

Q. Xi and S. Jezowkski, Plant resources of Triarrhena and Miscanthus species in China and its meaning for Europe, Plant Breeding and Seed Science, vol.49, pp.63-77, 2004.

S. Xue, O. Kalinina, and I. Lewandowski, Present and future options for the improvement of Miscanthus propagation techniques, Renewable and Sustainable Energy Reviews, vol.49, pp.1233-1246, 2015.

K. Q. Yin, C. X. Gao, and J. L. Qiu, Progress and prospects in plant genome editing, Nature Plants, 2017.

M. Yook, Genetic diversity and transcriptome analysis for salt tolerance in Miscanthus, 2016.

S. S. Zaidi, M. M. Mahfouz, and S. Mansoor, CRISPR-Cpf1: A new tool for plant genome editing, Trends in Plant Science, vol.22, pp.550-553, 2017.

R. S. Zalesny, J. A. Stanturf, E. S. Gardiner, J. H. Perdue, T. M. Young et al., Ecosystem services of woody crop production systems, BioEnergy Research, vol.9, pp.465-491, 2016.

Q. X. Zhang, Y. Sun, H. K. Hu, B. Chen, C. T. Hong et al., Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis, Vitro Cellular & Developmental Biology-Plant, vol.48, pp.50-57, 2012.

Y. Zhang, J. E. Zalapa, A. R. Jakubowski, D. L. Price, A. Acharya et al., Post-glacial evolution of Panicum virgatum: Centers of diversity and gene pools revealed by SSR markers and cpDNA sequences, Genetica, vol.139, pp.933-948, 2011.

H. Zhao, B. Wang, J. He, J. Yang, L. Pan et al., Genetic diversity and population structure of Miscanthus sinensis germplasm in China, PloS One, vol.8, p.75672, 2013.

X. H. Zhou, T. B. Jacobs, L. J. Xue, S. A. Harding, and C. J. Tsai, Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy, New Phytologist, vol.208, pp.298-301, 2015.

R. Zhou, D. Macaya-sanz, E. Rodgers-melnick, C. H. Carlson, F. E. Gouker et al., Characterization of a large sex determination region in Salix purpurea L. (Salicaceae), Molecular Genetics and Genomics, pp.1-16, 2018.

L. Zsuffa, A. Mosseler, Y. Raj, J. Clifton-brown, A. Harfouche et al., Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar, Swedish University of Agricultural Sciences. How to cite this article, vol.15, pp.118-151, 1984.