G. Alderson, The Numerical and Genetic Status of Native Horse and Pony Breeds in Britain, vol.116, pp.91-98, 2005.

G. P. Adams, M. H. Ratto, and C. W. Collins, Artificial Insemination in South American Camelids and Wild Equids, Theriogenology, vol.71, pp.166-175, 2009.

K. Smits, M. Hoogewijs, and H. Woelders, Breeding or Assisted Reproduction? Relevance of the Horse Model Applied to the Conservation of Endangered Equids, Reprod Domest Anim, vol.47, pp.239-248, 2012.

G. Goudet, C. Douet, and A. Kaabouba-escurier, Establishment of Conditions for Ovum Pick up and IVM of Jennies Oocytes toward the Setting up of Efficient IVF and in vitro Embryos Culture Procedures in Donkey (Equus asinus), Theriogenology, vol.86, pp.528-535, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512140

G. Gandini, F. Pizzi, and A. Stella, The Costs of Breed Reconstruction from Cryopreserved Material in Mammalian Livestock Species, Genet Sel Evol, vol.39, pp.465-479, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00894589

Y. H. Choi, D. D. Varner, and C. C. Love, Production of Live Foals via Intracytoplasmic Injection of Lyophilized Sperm and Sperm Extract in the Horse, Reproduction, vol.142, pp.529-538, 2011.

K. Hinrichs, Assisted Reproduction Techniques in the Horse, Reprod Fertil Dev, vol.25, pp.80-93, 2012.

B. Leemans, B. M. Gadella, and T. Stout, Why Doesn't Conventional IVF Work in the Horse? The Equine Oviduct as a Microenvironment for Capacitation/fertilization, Reproduction, vol.152, pp.233-245, 2016.

E. Palmer, J. Bézard, M. Magistrini, and G. Duchamp, In vitro fertilization in the Horse. A Retrospective Study, J Reprod Fertil, vol.44, pp.375-384, 1991.

S. Mugnier, M. Kervella, and C. Douet, The Secretions of Oviduct Epithelial Cells Increase the Equine in vitro fertilization Rate: Are Osteopontin, Atrial Natriuretic Peptide A and Oviductin Involved?, Reprod Biol Endocrinol, vol.7, p.129, 2009.

D. Campo, M. R. Donoso, M. X. Parrish, and J. J. , In vitro fertillization of invitro matured equine oocytes, J Equine Vet Sci, vol.10, pp.18-22, 1990.

J. J. Zhang, L. Z. Muzs, and M. S. Boyle, In vitro fertilization of Horse Follicular Oocytes Matured in vitro, Mol Reprod Dev, vol.26, pp.361-365, 1990.

Y. H. Choi, Y. Okada, and S. Hochi, In vitro fertilization Rate of Horse Oocytes with Partially Removed Zonae, Theriogenology, vol.42, pp.795-802, 1994.

C. Gr0ndahl, T. Hst, and I. Brck, In vitro production of equine embryos, Equine Reproduction VI, vol.1, pp.299-307, 1995.

H. Alm, H. Torner, and S. Blottner, Effect of Sperm Cryopreservation and Treatment with Calcium Ionophore or Heparin on in vitro fertilization of Horse Oocytes, Theriogenology, vol.56, pp.817-829, 2001.

M. E. Dell'aquila, S. Fusco, and G. M. Lacalandra, In vitro Maturation and Fertilization of Equine Oocytes Recovered during the Breeding Season, Theriogenology, vol.45, pp.547-560, 1996.

M. E. Dell'aquila, Y. S. Cho, and P. Minoia, Intracytoplasmic Sperm Injection (ICSI) versus Conventional IVF on Abattoir-Derived and in vitro-Matured Equine Oocytes, Theriogenology, vol.47, pp.1139-1156, 1997.

L. M. Roasa, Y. H. Choi, and C. C. Love, Ejaculate and Type of Freezing Extender Affect Rates of Fertilization of Horse Oocytes in vitro, Theriogenology, vol.68, pp.560-566, 2007.

L. A. Mcpartlin, S. S. Suarez, and C. A. Czaya, Hyperactivation of Stallion Sperm Is Required for Successful in vitro fertilization of Equine Oocytes, Biol Reprod, vol.81, pp.199-206, 2009.

B. Ambruosi, G. Accogli, and C. Douet, Deleted in Malignant Brain Tumor 1 Is Secreted in the Oviduct and Involved in the Mechanism of Fertilization in Equine and Porcine Species, Reproduction, vol.146, pp.119-133, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129750

B. Leemans, B. M. Gadella, and T. Stout, Procaine Induces Cytokinesis in Horse Oocytes via a pH-Dependent Mechanism, Biol Reprod, vol.93, p.23, 2015.

R. Yanagimachi and . Mammalian-fertilization, Physiology of Reproduction, 1994.

P. E. Visconti, J. L. Bailey, and G. D. Moore, Capacitation of Mouse Spermatozoa. I. Correlation between the Capacitation State and Protein Tyrosine Phosphorylation, Development, vol.121, pp.1129-1137, 1995.

P. E. Visconti, J. Stewart-savage, and A. Blasco, Roles of Bicarbonate, cAMP, and Protein Tyrosine Phosphorylation on Capacitation and the Spontaneous Acrosome Reaction of Hamster Sperm, Biol Reprod, vol.61, pp.76-84, 1999.

F. M. Flesch and B. M. Gadella, Dynamics of the Mammalian Sperm Plasma Membrane in the Process of Fertilization, Biochim Biophys Acta, vol.1469, pp.197-235, 2000.

H. Tateno, D. Krapf, and T. Hino, Ca 2+ Ionophore A23187 Can Make Mouse Spermatozoa Capable of Fertilizing in vitro without Activation of cAMP-Dependent Phosphorylation Pathways, Proc Natl Acad Sci U S A, vol.110, pp.18543-18548, 2013.

M. G. Buffone, E. V. Wertheimer, and P. E. Visconti, Central Role of Soluble Adenylyl Cyclase and cAMP in Sperm Physiology, Biochim Biophys Acta, vol.1842, pp.2610-2620, 2014.

J. Romero-aguirregomezcorta, C. Matás, and P. Coy, ?-L-Fucosidase Enhances Capacitation-Associated Events in Porcine Spermatozoa, Vet J, vol.203, pp.109-114, 2015.

Y. Hiradate, H. Inoue, and N. Kobayashi, Neurotensin Enhances Sperm Capacitation and Acrosome Reaction in Mice, Biol Reprod, vol.91, p.53, 2014.

K. Umezu, Y. Hiradate, and T. Oikawa, Exogenous Neurotensin Modulates Sperm Function in Japanese Black Cattle, J Reprod Develop, vol.62, pp.409-414, 2016.

N. Moein-vaziri, I. Phillips, and S. Smith, Heat-Shock Protein A8 Restores Sperm Membrane Integrity by Increasing Plasma Membrane Fluidity, Reproduction, vol.147, pp.719-732, 2014.

E. G. Bromfield, R. J. Aitken, and Z. Gibb, Capacitation in the Presence of Methyl-?-Cyclodextrin Results in Enhanced Zona Pellucida-Binding Ability of Stallion Spermatozoa, Reproduction, vol.147, pp.153-166, 2014.

B. Macías-garcía, L. González-fernández, and S. C. Loux, Effect of Calcium, Bicarbonate, and Albumin on Capacitation-Related Events in Equine Sperm, Reproduction, vol.149, pp.87-99, 2015.

A. C. Pommer, J. Rutllant, and S. A. Meyers, Phosphorylation of Protein Tyrosine Residues in Fresh and Cryopreserved Stallion Spermatozoa under Capacitating Conditions, Biol Reprod, vol.68, pp.1208-1214, 2003.

S. C. Loux, K. R. Crawford, and N. H. Ing, CatSper and the relationship of hyperactivated motility to intracellular calcium and pH kinetics in equine sperm, Biol Reprod, vol.89, p.123, 2013.

L. González-fernández, B. Macías-garcía, and I. C. Velez, Calciumcalmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm, Reproduction, vol.144, pp.411-433, 2012.

M. Aalberts, E. Sostaric, and R. Wubbolts, Spermatozoa recruit prostasomes in response to capacitation induction, Biochim Biophys Acta, vol.1834, pp.2326-2335, 2013.

E. Tecle and P. Gagneux, Sugar-Coated Sperm: Unraveling the Functions of the Mammalian Sperm Glycocalyx, Mol Reprod Dev, vol.82, pp.635-650, 2015.

T. L. Tollner, C. L. Bevins, and G. N. Cherr, Multifunctional Glycoprotein DEFB126--a Curious Story of Defensin-Clad Spermatozoa, Nat Rev Urol, vol.9, pp.365-375, 2012.

M. Liu, Capacitation-Associated Glycocomponents of Mammalian Sperm, Reprod Sci, vol.23, pp.572-594, 2016.

N. Sharon, H. Lis, and . Glycobiology, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, vol.14, pp.53-62, 2004.

J. J. Calvete, M. Raida, and L. Sanz, Localization and Structural Characterization of an Oligosaccharide O-Linked to Bovine PDC-109. Quantitation of the Glycoprotein in Seminal Plasma and on the Surface of Ejaculated and Capacitated Spermatozoa, FEBS Lett, vol.350, pp.203-206, 1994.

A. Chandra, K. R. Srinivasan, and F. Jamal, Post-translational Modifications in Glycosylation Status during Epididymal Passage and Significance in Fertility of a 33 kDa Glycoprotein (MEF3) of Rhesus Monkey (Macaca mulatta), Reproduction, vol.135, pp.761-770, 2008.

S. Desantis, G. Ventriglia, and S. Zizza, Lectin-binding Sites on Ejaculated Stallion Sperm During Breeding and Non-breeding Periods, Theriogenology, vol.73, pp.1146-1153, 2010.

G. Accogli, G. M. Lacalandra, and G. Aiudi, Differential Surface Glycoprofile of Buffalo Bull Spermatozoa during Mating and Non-Mating Periods, Animal, pp.1-9, 2017.

I. Barrier-battut, A. Kempfer, and J. Becker, Development of a New Fertility Prediction Model for Stallion Semen, Including Flow Cytometry, Theriogenology, vol.86, pp.1111-1131, 2016.

F. J. Peña, P. Martín-muñoz, and C. Ortega-ferrusola, Flow Cytometry Probes to Evaluate Stallion Spermatozoa, J Equine Vet Sci, vol.33, pp.23-28, 2016.

F. J. Peña, C. Ortega-ferrusola, and P. Martín-muñoz, New Flow Cytometry Approaches in Equine Andrology, Theriogenology, vol.86, pp.366-372, 2016.

L. González-fernández, B. Macías-garcía, and S. C. Loux, Focal Adhesion Kinases and Calcium/calmodulin-Dependent Protein Kinases Regulate Protein Tyrosine Phosphorylation in Stallion Sperm, Biol Reprod, vol.88, p.138, 2013.

L. A. Vieira, J. Gadea, and F. A. García-vázquez, Equine Spermatozoa Stored in the Epididymis for up to 96h at 4°C Can Be Successfully Cryopreserved and Maintain Their Fertilization Capacity, Anim Reprod Sci, vol.136, pp.280-288, 2013.

G. Accogli, S. Desantis, and N. A. Martino, A lectin-based Cell Microarray Approach to Analyze the Mammalian Granulosa Cell Surface Glycosylation Profile, Glycoconj J, vol.33, pp.717-724, 2016.

E. Pillet, C. Labbe, and F. Batellier, Liposomes as an Alternative to Egg Yolk in Stallion Freezing Extender, Theriogenology, vol.77, pp.268-279, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129583

C. Matás, L. Vieira, and F. A. García-vázquez, Effects of Centrifugation through Three Different Discontinuous Percoll Gradients on Boar Sperm Function, Anim Reprod Sci, vol.127, pp.62-72, 2011.

D. E. Wolf, S. S. Hagopian, and R. G. Lewis, Lateral Regionalization and Diffusion of a Maturation-Dependent Antigen in the Ram Sperm Plasma Membrane, J Cell Biol, vol.102, pp.1826-1831, 1986.

C. Da-silva, M. Balao-da, and B. Macías-garcía, Melatonin Reduces Lipid Peroxidation and Apoptotic-like Changes in Stallion Spermatozoa, J Pineal Res, vol.51, pp.172-179, 2011.

I. Horváth, G. Multhoff, A. Sonnleitner, and L. Vígh, Membrane-Associated Stress Proteins: More than Simply Chaperones, Biochim Biophys Acta, vol.1778, pp.1653-1664, 2008.

R. M. Elliott, R. E. Lloyd, and A. Fazeli, Effects of HSPA8, an Evolutionarily Conserved Oviductal Protein, on Boar and Bull Spermatozoa, Reproduction, vol.137, pp.191-203, 2009.

R. E. Lloyd, R. Elliott, and A. Fazeli, Effects of Oviductal Proteins, Including Heat Shock 70 kDa Protein 8, on Survival of Ram Spermatozoa over 48 H in vitro, Reprod Fertil Dev, vol.21, pp.408-418, 2009.

L. Águila, M. E. Arias, and T. Vargas, Methyl-?-Cyclodextrin Improves Sperm Capacitation Status Assessed by Flow Cytometry Analysis and Zona Pellucida-Binding Ability of Frozen/Thawed Bovine Spermatozoa, Reprod Domest Anim, vol.50, pp.931-938, 2015.

J. Baumber and S. A. Meyers, Changes in Membrane Lipid Order with Capacitation in Rhesus Macaque (Macaca mulatta) Spermatozoa, J Androl, vol.27, pp.578-587, 2006.

P. W. Reed and H. A. Lardy, A23187: A Divalent Cation Ionophore, J Biol Chem, vol.247, pp.6970-6977, 1972.

P. Talbot, R. G. Summers, and B. L. Hylander, The Role of Calcium in the Acrosome Reaction: An Analysis Using Ionophore A23187, J Exp Zool, vol.198, pp.383-392, 1976.

A. Reyes, B. Goicoechea, and A. Rosado, Calcium Ion Requirement for Rabbit Spermatozoal Capacitation and Enhancement of Fertilizing Ability by Ionophore A23187 and Cyclic Adenosine 3':5'-monophosphate, Fertil Steril, vol.29, pp.451-455, 1978.

S. S. Suarez, L. Vincenti, and M. W. Ceglia, Hyperactivated Motility Induced in Mouse Sperm by Calcium Ionophore A23187 Is Reversible, J Exp Zool, vol.244, pp.331-336, 1987.

O. Uçar and T. J. Parkinson, In vitro Induction of the Acrosome Reaction in Ovine Spermatozoa by Calcium Ionophore A23187, Acta Vet Hung, vol.51, pp.103-109, 2003.

J. Zhang, X. Ding, and Z. Bian, The Effect of Anti-Eppin Antibodies on Ionophore A23187-Induced Calcium Influx and Acrosome Reaction of Human Spermatozoa, Hum Reprod, vol.25, pp.29-36, 2010.

J. E. Osheroff, P. E. Visconti, and J. P. Valenzuela, Regulation of Human Sperm Capacitation by a Cholesterol Efflux-Stimulated Signal Transduction Pathway Leading to Protein Kinase A-Mediated up-Regulation of Protein Tyrosine Phosphorylation, Mol Hum Reprod, vol.5, pp.1017-1026, 1999.

T. Takeo, T. Hoshii, and Y. Kondo, Methyl-Beta-Cyclodextrin Improves Fertilizing Ability of C57BL/6 Mouse Sperm after Freezing and Thawing by Facilitating Cholesterol Efflux from the Cells, Biol Reprod, vol.78, pp.546-551, 2008.

P. E. Visconti, H. Galantino-homer, and X. Ning, Cholesterol Efflux-Mediated Signal Transduction in Mammalian Sperm. Beta-Cyclodextrins Initiate Transmembrane Signaling Leading to an Increase in Protein Tyrosine Phosphorylation and Capacitation, J Biol Chem, vol.274, pp.3235-3242, 1999.

S. Shadan, P. S. James, and E. A. Howes, Cholesterol Efflux Alters Lipid Raft Stability and Distribution during Capacitation of Boar Spermatozoa, Biol Reprod, vol.71, pp.253-265, 2004.

H. L. Galantino-homer, P. E. Visconti, and G. S. Kopf, Regulation of Protein Tyrosine Phosphorylation during Bovine Sperm Capacitation by a Cyclic Adenosine 3'5'-monophosphate-Dependent Pathway, Biol Reprod, vol.56, pp.707-719, 1997.

J. M. Vazquez, E. Martinez, and L. M. Pastor, Lectin Histochemistry during in vitro Capacitation and Acrosome Reaction in Boar Spermatozoa: New Lectins for Evaluating Acrosomal Status of Boar Spermatozoa, Acta Histochem, vol.98, pp.93-100, 1996.

I. Jiménez, H. Gonzalez-marquez, and R. Ortiz, Expression of Lectin Receptors on the Membrane Surface of Sperm of Fertile and Subfertile Boars by Flow Cytometry, Arch Androl, vol.48, pp.159-166, 2002.

E. Garénaux, M. Kanagawa, and T. Tsuchiyama, Discovery, Primary, and Crystal Structures and Capacitation-Related Properties of a Prostate-Derived Heparin-Binding Protein WGA16 from Boar Sperm, J Biol Chem, vol.290, pp.5484-5501, 2015.

C. M. Medeiros and J. J. Parrish, Changes in Lectin Binding to Bovine Sperm during Heparin-Induced Capacitation, Mol Reprod Dev, vol.44, pp.525-532, 1996.

A. J. Xin, L. Cheng, and H. Diao, Comprehensive Profiling of Accessible Surface Glycans of Mammalian Sperm Using a Lectin Microarray, Clin Proteomics, vol.11, p.10, 2014.

G. Kaul, G. S. Sharma, and B. Singh, Capacitation and Acrosome Reaction in Buffalo Bull Spermatozoa Assessed by Chlortetracycline and Pisum Sativum Agglutinin Fluorescence Assay, Theriogenology, vol.55, pp.1457-1468, 2001.

S. Schröter, C. Osterhoff, and W. Mcardle, The Glycocalyx of the Sperm Surface, Hum Reprod Update, vol.5, pp.302-313, 1999.

P. Nardone, A. S. Cerezo, and J. M. De-cerezo, Cytochemical Characterization and Localization of Ligomannosidic Oligosaccharide Receptors on the Normal Human Spermatozoa Using Fluorescent Lectins: Comparison of Different Fixation Procedures, Am J Reprod Immunol, vol.9, pp.124-128, 1985.

J. S. Chen, G. F. Doncel, C. Alvarez, and A. A. Acosta, Expression of Mannose-Binding Sites on Human Spermatozoa and their Role in Sperm-Zona Pellucida Binding, J Androl, vol.16, pp.55-63, 1995.

E. Töpfer-petersen, J. Calvete, and W. Schäfer, Complete Localization of the Disulfide Bridges and Glycosylation Sites in Boar Sperm Acrosin, FEBS Lett, vol.275, pp.139-142, 1990.

F. E. Franke, S. Kraus, and C. Eiermann, MU`C1 in Normal and Impaired Spermatogenesis, Mol Hum Reprod, vol.7, pp.505-512, 2001.

D. Ghaderi, S. A. Springer, and F. Ma, Sexual Selection by Female Immunity Against Paternal Antigens Can Fix Loss of Function Alleles, Natl Acad Sci USA, vol.108, pp.17743-17748, 2011.

M. A. Schwarz and J. K. Koehler, Alterations in Lectin Binding to Guinea Pig Spermatozoa Accompanying in vitro Capacitation and the Acrosome Reaction, Biol Reprod, vol.21, pp.1295-1307, 1979.

F. Ma, D. Wu, and L. Deng, Sialidases on mammalian sperm mediate deciduous sialylation during capacitation, J Biol Chem, vol.287, pp.38073-38079, 2012.

R. Focarelli, F. Rosati, and B. Terrana, Sialyglycoconjugates Release during in vitro Capacitation of Human Spermatozoa, J Androl, vol.11, pp.97-104, 1990.

S. S. Spicer and B. A. Schulte, Diversity of Cell Glycoconjugates Shown Histochemically: A Perspective, J Histochem Cytochem, vol.40, pp.1-38, 1992.