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Abstract 

This meta-proteomics review focused on proteins identified as candidate biomarkers of beef 

tenderness by comparing extreme groups of tenderness using two-dimensional electrophoresis 

(2-DE) associated with mass spectrometry (MS). We reviewed in this integromics study the 

results of 12 experiments that identified protein biomarkers from two muscles, Longissimus 

thoracis (LT) and Semitendinosus (ST), of different types of cattle: young bulls, steers or cows 

from beef breeds (Charolais, Limousin, Blond d’Aquitaine), hardy breed (Salers) or mixed breed 

(PDO Maine-Anjou). Comparative proteomics of groups differing in their tenderness evaluated 

by instrumental Warner-Bratzler shear force (WBSF) or by sensory analysis using trained 

panelists, revealed 61 proteins differentially abundant (P < 0.05) between tender and tough 

groups. A higher number of discriminative proteins was observed for LT (50 proteins) compared 

to ST muscle (28 proteins). The Gene Ontology annotations showed that the proteins of 

structure and contraction, protection against oxidative stress and apoptosis, energy metabolism, 

70 family HSPs and proteasome subunits are more involved in LT tenderness than in ST. 

Amongst the list of candidate biomarkers of tenderness some proteins such as HSPB1 are 

common between the 2 muscles whatever the evaluation method of tenderness, but some 

relationships with tenderness for others (MYH1, TNNT3, HSPB6) are inversed. Muscle 

specificities were revealed in this meta-proteomic study. For example, Parvalbumin (PVALB) 

appeared as a robust biomarker in ST muscle whatever the evaluation method of tenderness. 

HSPA1B seems to be a robust candidate for LT tenderness (with WBSF) regardless the animal 

type. Some gender specificities were further identified including similarities between cows and 

steers (MSRA and HSPA9) in contrast to bulls. The comparison of the 12 proteomic studies 

revealed strong dissimilarities to identify generic biomarkers of beef tenderness. This integrative 

analysis allowed better understanding of the biological processes involved in tenderness in two 

muscles and their variations according to the main factors underlying this quality. It allowed 

also proposing for the first time a comprehensive list of candidate biomarkers to be evaluated 

deeply to validate their relationships with tenderness on a large number of cattle and breeds. 

Keywords: Integromics; Mass spectrometry; Proteomics; Meat; Cattle; Biological mechanisms 
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1. Introduction 

Beef tenderness is considered as the most important quality trait for consumer acceptability 

of fresh meat (Miller, Carr, Ramsey, Crockett, & Hoover, 2001). This quality trait strongly 

influences consumer satisfaction and thus the repeat of purchase, particularly of beef, at the 

point of sale (Grunert, Bredahl, & Brunsø, 2004; Troy & Kerry, 2010). It is well documented 

that the origin of tenderness is multifactorial (Gagaoua, Monteils, & Picard, 2019; Ouali et al., 

2013). It depends on the structural and biochemical properties of the muscles that develop and 

evolve throughout the life of the animal under the influence of factors related to the animal 

itself (age, sex, breed) and its rearing practices (Gagaoua, Picard, & Monteils, 2019; Gagaoua, 

Picard, Soulat, & Monteils, 2018; Listrat et al., 2016). Furthermore, processes such as post-

mortem rigor development and ageing are dependent on these factors and could be modified 

by pre-slaughter (such as diet, handling, temperament, and stress), slaughtering and post-

mortem conditions (pH and temperature decline, chilling regime, hanging method and carcass 

handling). This diversity of factors from the farm-to-fork (Gagaoua, Monteils, Couvreur, & 

Picard, 2019; Gagaoua, Picard, et al., 2018) explains why this quality trait is very variable and 

why there is difficulty to control or to predict it accurately despite the many research works 

carried out since decades. 

Several technologies such as electrical stimulation, pelvis hung, tenderstretch, tendercut, 

pulsed electric field or super stretch (Bhat, Morton, Mason, & Bekhit, 2018; Y. H. B. Kim, 

Warner, & Rosenvold, 2014; Sørheim & Hildrum, 2002; Suwandy, Carne, van de Ven, 

Bekhit, & Hopkins, 2015; Warner et al., 2017) have been proposed to control the post-mortem 

conversion of muscle into meat and consequently increase tenderness. However, these 

technologies are not always used by industrials. Moreover, the available techniques to 

measure tenderness can only be applied after the death of the animal on aged meat, and they 

cannot be used online and in serial time on large number of samples. Today, tenderness is 

evaluated by sensory or mechanical analysis and the relationship between these two methods 

is variable (Gagaoua, Bonnet, Ellies-Oury, De Koning, & Picard, 2018). It is therefore 

necessary for both stakeholders and researchers to develop simple and fast tools applicable at 

slaughter or on the living animal, to evaluate tenderness. This type of tool could have 

applications to evaluate the potential tenderness of an animal or a cut of meat, to manage its 

marketing according to this potential and to develop genetic selection schemes based on this 

quality trait. For this purpose, numerous works, such as OMICs have been proposed during 

the last two decades. 
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Genomics has been used to discover and identify without a priori biomarkers of tenderness 

by applying approaches developed in medicine (Rifai, Gillette, & Carr, 2006). A biomarker 

can be defined as a measurable indicator of a specific biological state. Among OMICs tools, 

proteomics offers large interest to identify biomarkers because proteins and their enzymes 

entities determine the phenotypic diversity arising from a set of common genes. Furthermore, 

posttranslational modifications (PTMs) revealed by proteomics regulate structure, function, 

localization, maturation and turnover of proteins. Accordingly, Rifai and co-workers proposed 

a specific proteomic pipeline to identify biomarkers for clinical use, diagnosis or to monitor 

the activity of diseases and guide molecularly targeted therapy or assess therapeutic response 

(Rifai et al., 2006). This pipeline is composed of 6 steps « discovery, qualification, 

verification, research assay optimization, clinical validation and commercialization ». 

Therefore, the same pipeline was adapted by meat scientists for the discovery of beef 

tenderness biomarkers (Picard & Gagaoua, 2017). The first phase (Figure 1) is the 

« discovery » considered by Rifai et al. (2006) as “an unbiased semi-quantitative process by 

which the differential expression of specific proteins between states is first defined”. The 

products of the discovery phase are lists of twenty to hundred proteins found to be differential 

between the two compared situations or conditions. These putative differentially abundant 

proteins can be considered as candidate biomarkers of the studied trait. Then, the relationships 

between the abundances of the putative biomarkers and the trait(s) of interest (phenome: a set 

of phenotypes) have to be evaluated with specific tools (Gagaoua, Bonnet, Ellies-Oury, et al., 

2018; Lopez-Pedrouso et al., 2019; Picard, Gagaoua, Al Jammas, & Bonnet, 2019; Picard et 

al., 2014). At the end, the validated biomarkers may be selected for the development of 

diagnostic test for commercialization (Kraus et al., 2011; Pierzchala et al., 2014; Marinus FW 

Te Pas, Hoekman, & Smits, 2011; M. F. Te Pas et al., 2013; Woelders, Te Pas, Bannink, 

Veerkamp, & Smits, 2011). 

The aim of the present meta-proteomics was to review for the first time the studies 

conducted under identical laboratory conditions during the last decade to identify candidate 

protein biomarkers of beef tenderness by comparing groups of samples of high versus low 

tenderness for a given muscle from cattle raised in similar conditions. These studies have 

been applied mainly in Longissimus thoracis (LT) muscle but also in Semitendinosus (ST) 

from young bulls, steers and cows grouping different breeds. Groups of meat samples 

differing in their tenderness have been constituted on the basis of sensory analysis or 

mechanical measurements (Warner-Bratzler Shear force) according to each proteomic study. 
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Thus, two-dimensional electrophoresis (2-DE) combined with mass spectrometry to separate 

and identify the proteins of the tender versus tough meat samples were used. We report in this 

meta-proteomic a comprehensive list of specific or common candidate biomarkers to several 

muscles and genders. These data are firstly a source of new knowledge to better understand 

the biological processes and pathways involved in beef tenderness and also a list of candidate 

biomarkers of tenderness that once validated can be proposed to develop routine evaluation 

tools according to the pipeline of biomarkers discovery. Furthermore, these data are the first 

to highlight the major protein biomarkers of beef tenderness that can be identified whatever 

the treatments and techniques cited above. 

2. Brief description of the experimental designs 

This meta-proteomics work integrated 12 studies with a total of 120 samples that were 

selected based on their tenderness (tender versus tough) from 5 different experimental designs 

(Table 1) that are all fully described in previously published trials (Aviles et al., 2014; Chaze 

et al., 2013; Couvreur, Le Bec, Micol, & Picard, 2019; Gagaoua, Monteils, Couvreur, & 

Picard, 2017; Guillemin, Jurie, et al., 2011; Jurie et al., 2005; Morzel, Terlouw, Chambon, 

Micol, & Picard, 2008; Picard, Chambon, Meunier, Jacob, & Jurie, 2006).Those studies are 

briefly summarized in the supplementary data of Table S1. The samples grouped different 

animal types (young bulls (15 – 17 months), cows (67 or 86 months) and steers (30 months)) 

and two divergent muscles (Longissimus thoracis (LT) and Semitendinosus (ST)) differing in 

their contractile and metabolic properties (Ouali et al., 2005; Picard et al., 2014) sampled 

from the main French breeds (Table 1).  

For each proteomic study, LT, a mixed fast oxido-glycolytic muscle sampled from 6th and 

7th rib and ST, a mixed fast glycolytic muscle sampled from the center of the muscle, were 

excised from the carcasses 15 min p-m for 6 studies (1, 2, 5, 9, 10 and 12), 60 min p-m for 2 

studies (3 and 11) and 24h p-m for 4 studies (4, 6, 7 and 8) as described in Table 1. The 

muscle samples were immediately frozen in liquid nitrogen and stored at -80°C until protein 

extractions for proteomic analysis.  

For sensory analysis or mechanical measurements (WBSF) of tenderness, other muscle 

samples were taken at 24 h p-m, and aged for 14 (for 9 studies) or 21 days (for 3 studies) at 

4°C (Table 1), then the chilled muscles were cut into steaks of about 1.5 cm thick, packed 

under vacuum and kept frozen at -20°C until analysis as previously described (Gagaoua, 

Bonnet, Ellies-Oury, et al., 2018). 
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3. Pipeline of beef tenderness biomarkers discovery 

The standard proteomic workflow described in Picard and Gagaoua (2017) for the 

identification and discovery of protein biomarkers of beef tenderness was followed in this 

meta-proteomics (Figure 1). Briefly and according to the large literature, the main strategy 

that includes 6 steps used for the identification of biomarkers of meat quality including 

tenderness is based on comparative proteomics (Picard, Gagaoua, & Hollung, 2017). 

Therefore, two-dimensional electrophoresis (2-DE) (for review: (Görg, Weiss, & Dunn, 

2004)) has been applied to analyze protein extracts from groups showing extremes (high vs. 

low) tenderness in order to reveal protein spots of interest with differential abundances. 

Statistical analyses and mass spectrometry, e.g., MALDI-TOF in this meta-proteomics 

(Jurinke, Oeth, & van den Boom, 2004) were then used to identify the corresponding proteins 

by the interrogation of specific bovine databases. When the candidate biomarkers have been 

identified, the next step is the evaluation and validation in large scale using several techniques 

such as immunobased techniques including Dot-Blot (Gagaoua, Terlouw, Boudjellal, & 

Picard, 2015; Gagaoua, Terlouw, Micol, et al., 2015; Guillemin, Bonnet, Jurie, & Picard, 

2011; Guillemin et al., 2009), Reverse Phase Protein Arrays (Gagaoua, Bonnet, De Koning, & 

Picard, 2018; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Picard et al., 2019) or targeted 

proteomic methods such as selected reaction monitoring (SRM) or sequential window 

acquisition of all theoretical spectra (SWATH) (Wu, Dai, & Bendixen, 2019).  

Step 1 

The first step of the pipeline of beef tenderness biomarkers discovery is the selection of 

extremes (contrasting) sample groups (Figure 1). According to the experimental design and 

facilities of each study, we used sensory panelists to assess meat cooked at end-point cooking 

temperature of 55°C as usual in France (Gagaoua, Terlouw, Richardson, Hocquette, & Picard, 

2019) using an unstructured scale from 0 to 10 or Warner-Bratzler shear force on cooked meat 

as a routine instrumental measure for tenderness to select extreme tender (TE) and tough (TO) 

samples from each experiment population. The details of the evaluation methods of 

tenderness are briefly summarized in the supplementary data of Table S2. The two techniques 

were applied on the whole 120 meat cut samples as described in previous studies (Dransfield 

et al., 2003; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Gagaoua, Micol, et al., 2016; 

Wheeler, Shackelford, & Koohmaraie, 1996) to select a minimum of 2 samples per tenderness 

group for studies 9, 10 and 12; 3 for studies 1 and 11; 4 for studies 2 and 5; 5 for studies 3 and 
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4; and 10 for studies 6, 7 and 8 (Table 1). The number of samples taken in each study varied 

from one project to another depending on the funding’s and objectives of each research 

project. WBSF alone (mostly evaluated in N/cm² and in kg for study 3 only) was used to 

evaluate the meat samples of studies 1 – 5, sensory panelists alone were used for studies 9 – 

12 and both sensory and instrumental methods were used for studies 6 – 8. 

Step 2 

The second step is sample and protein extracts preparation (Figure 1). Briefly, muscle 

proteins were extracted following the same procedure using frozen samples (Bouley, 

Chambon, & Picard, 2004). The frozen muscle tissue was homogenized in a lysis buffer 

containing 8.3 M urea, 2 M thiourea, 1% DTT, 2% CHAPS and 2% IPG buffer pH 3 – 10 and 

centrifuged at 10000 g for 30 min. The supernatant was harvested and the concentration of 

extracted protein was determined using the 2-DE Quant kit (Amersham Uppsala, Sweden). 

All protein samples were handled at 4°C to minimize the proteolytic activity.  

Step 3 

The protein extract samples were then subjected in the third step to 2-DE analysis 

following the same protocol (Bouley et al., 2005; Picard et al., 2016). Briefly, 800 μg of 

proteins were first subjected to isoelectrofocalisation (IEF) on 18 cm length IPG strips pH 

range 4 – 7 (Amersham-Biosciences, Uppsala, Sweden) in a Multiphor II gel apparatus at a 

temperature of 20.5°C. After a desalting step (50V, 7h), proteins were separated according to 

the following conditions: 200V for 1h, 200V increasing to 8000V over 5h, 8000V 

continuously until 73500Vh. Then, proteins were separated in the second dimension by SDS-

PAGE on 12%T, 2.6%C separating polyacrylamide gels using Hoefer DALTsix system. 2-DE 

gels from the whole 12 studies were stained with G250 Colloidal Coomassie Blue for 72h. 

After staining, gels were rinsed for 1h in fresh distilled water before digitization. Triplicate 

gels from each protein extract were analyzed. Spot detection and quantification were 

performed with ImageMaster 2D Elite software on scanned gels (scanner UMAX, Amersham 

Pharmacia Biotech) at 300 dots per inch (dpi). Image warping, spot detection and volume 

quantification were realized using the SameSpots v3 software (Nonlinear Dynamics, 

Newcastle, UK). For each experiment, a gel corresponding to tender meat was selected as 

reference. 2-D gel data for each study were normalized by dividing each spot volume by the 

total volume of all the matched spots in the 2-D gel image, to obtain a normalized spot 

volume value. The proteins differentially abundant between tenderness groups were identified 
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by mass spectrometry using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-

time-of-flight). 

Step 4 

The fourth step of the pipeline is the statistical comparisons of the protein spots between 

groups. Accordingly and for each proteomic study, the electrophoretic profiles of the two 

groups of tenderness (TE and TO) were all compared using the statistical approach described 

in Meunier et al. (2005). It is based on the use of the Significance Analysis of Microarray 

(SAM) method based on a modified t-test. This approach considers not only the individual 

variability but also the average variability of proteins with the same level of expression than 

the considered protein. Among the differentially abundant proteins between the 2 groups of 

tenderness, only the proteins with a fold change >1.5 were retained (ratio of abundance levels 

between the 2 groups).  

Step 5 

In the fifth step, significantly differential spots were carefully excised by hand from at least 

three different replicate gels and placed in clean Safe-Lock Tube (Eppendorf, Hamburg 

Germany). Each tube allowed spot distaining and acetonitrile (ACN) drying. First, the spots 

were washed in 25 mM ammonium bicarbonate 5% ACN for 30 min and twice in 25 mM 

ammonium bicarbonate 50% ACN for 30 min each. The spots were then dehydrated with 

100% ACN.  

Step 6 

In the last and sixth step, and for protein identification by MALDI-TOF, the dried gels 

were re-swelled in 25 mM ammonium bicarbonate and digested at 37 °C for 5 h with 10 to 15 

µL (depending on the gel volume to be treated) of trypsin solution (12 ng/µL; V5111, 

Promega, Madison, WI, USA). Generally, 8 to 12 µL of ACN (depending on gel volume) was 

added to extract the peptides. Trypsin digested peptides solution was diluted in equal amount 

of matrix (5 mg/mL alpha-cyano-4-hydroxycinnamic acid (CHCA) in 50% ACN/0.1% 

Trifluoroacetic acid (TFA)). Peptide mass fingerprints (PMF) of trypsin-digested spots were 

determined in a positive reflectron mode using a Voyager DE Pro MALDI-TOF (Perspective 

Biosystem, Farminghan, MA, USA). External calibration was performed with a standard 

peptide solution (Proteomix, LaserBio Labs, Sophia-Antipolis, France). Internal calibration 

was performed using peptides resulting from autodigestion of porcine trypsin with protonated 
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masses of 842.509, 1045.564, and 2211.104. PMF were compared to Bos taurus Swiss Prot 

database or to other mammalian using MASCOT software. PMF of unidentified proteins 

(using bovine database) were compared to the nrMammalia database. The search criteria used 

were one missing trypsin cleavage site, partial methionine oxidation, partial 

carbamidomethylation of cysteine, and a mass deviation lower than 30 ppm. We required at 

least four matched peptides per protein for identification, using MASCOT probabilistic scores 

and accuracy of the experimental theoretical isoelectric point (pI) and molecular weight 

(MW). Protein spots with more than one protein identified in the mixture were considered for 

biological interpretation only if they passed both of the following criteria: i) the relative 

abundance based on the number of sequenced peptides per protein (EmPAI protein content 

(mol%) for the most abundant protein was larger than 50%; and, moreover; ii) the ratio of the 

EmPAI for this most abundant protein to EmPAI for the second most abundant protein in the 

spot mixture was at least 2. 

4. Meta-proteomics database description and bioinformatics  

Across the 12 proteomic experiments, a total of 61 putative protein biomarkers (unique 

gene names) of beef tenderness from young bulls, cows and steers grouping different 

continental breeds evaluated by sensory panelists or WBSF on Longissimus thoracis (LT) and 

Semitendinosus (ST) muscles were differentially abundant (P < 0.05) between tender and 

tough groups (Table 2). Considering the 12 experiments, the number of differential proteins 

between extreme tenderness groups (Table 2) varies from 3 (study 12, ST muscle from young 

Salers bulls categorized by sensory panelists) to 22 proteins (study 2, LT muscle from young 

Charolais bulls categorized by WBSF). A higher number of putative protein biomarkers was 

observed for LT muscle (n = 50) compared to ST with 28 differential proteins (Table S3 and 

Table S4). Panther screening of the whole proteins allowed their clustering into 6 biological 

pathways (Table 2): 

i) Catalytic, metabolism & ATP metabolic process (n = 16): CKM, ENO1, ENO3, 

GAPDH, IDH1, MDH1, LDHB, PDHB, PGM1, PYGM, TPI1, GPD1, AKR1B1, SUCLA2, 

COX4I1 and NDUFS1. 

ii) Contractile & associated proteins (n = 15): ACTA1, CAPZA3, CAPZB, MYH7, 

MYH1, MYL2, MYBPH, MYL1, MYRL2, MYL3, TnnT3, TnnT1, DES, WDR1 and 

COL4A1. 
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iii) Chaperones & heat shock proteins (n = 11): HSPA9, HSPA5, HSPB6, HSPB1, 

HSPA2, HSPA8, HSPA1A, HSPA1B, STIP1, CRYAB and YWHAE. 

iv) Binding, cofactor & transport proteins (n = 11): ACBD5, ANKRD2, APOBEC2, DBI, 

GDI2, ALB, RABGGTA, TRIM72, AHCY, SRL and PVALB. 

v) Oxidative stress & cell redox homeostasis (n = 6): GSTP1, SOD1, PRDX6, PARK7, 

MSRA and PDIA3. 

vi) Proteasome & associated proteins (n = 2): PSMB2 and PSMC2. 

Among this list of 61 biomarkers, 17 proteins given in bold character above (PGM1, TPI1, 

NDUFS1, MYH1, MYL2, MYBPH, MYL1, TnnT3, TnnT1, WDR1, HSPB6, HSPB1, STIP1, 

CRYAB, YWHAE, ALB and PDIA3) are common to the two studied muscles.  

Gene ontology annotations of proteomic data was realized using the ProteINSIDE 

workflow tool (Kaspric, Picard, Reichstadt, Tournayre, & Bonnet, 2015) to analyze the 61 

proteins and gather biological information provided by functional annotations. The protein-

protein interactions (interactomics) of biological function of the proteins by muscle or for 

both LT and ST muscles were realized using STRING webservice database (http://string-

db.org/). Default settings of confidence of 0.5 and 4 criteria for linkage: Co-occurrence, 

experimental evidences, existing databases and text mining were used. Furthermore, the 

ProteQTL tool included in ProteINSIDE (http://www.proteinside.org) was used to search for 

tenderness Quantitative trait loci (QTL) among the list of putative protein biomarkers of 

tenderness. This tool interrogates a public library of published QTL in animal science: 

CattleQTLdb (Hu, Park, Wu, & Reecy, 2013) that contains cattle QTL and association data 

curated from published scientific papers. 

The degree of similarity between the protein biomarkers among the 12 proteomic studies to 

explain tenderness was estimated as the percentage of proteins shared based on the F 

coefficient (López-Pedrouso, Bernal, Franco, & Zapata, 2014): F = 2nxy/(nx + ny). Where nxy 

is the number of tenderness biomarkers shared by study x and y; and nx and ny are the total 

numbers of biomarkers retained in studies x and y, respectively (Gagaoua, Terlouw, et al., 

2019). Then, a pairwise of biomarker distance (D) expressed as a percentage based on the 

abundances of the biomarkers under the different factors was built as estimated by D = 1 – F. 

5. Gene Ontology annotations results of the protein biomarkers of beef tenderness  

The corresponding Gene Ontology annotations: cellular components, biological pathways 

and molecular functions are illustrated in Figure 2A,B for LT and ST muscles, respectively. 
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The distributions of the molecular functions are deeply described in Figure 3. Considering the 

two muscles together, the most represented functions are: catalytic, metabolism and ATP 

metabolic process (26%) and contractile and associated proteins (25%) followed by 

chaperones and heat shock proteins (18%) (Table 2 and Figure 3). Oxidative stress and cell 

redox homeostasis represents 12% of the biological functions in LT and only 4% in ST 

muscle (Figure 3). Proteasome and associated proteins were found only in LT muscle (4%).  

The interactomes constructed with the differential proteins for each muscle illustrated the 

main biological functions (Figure 4A,B). The contractile proteins MYL1, MYL2, MYH1, 

TnnT1, TnnT3, WDR1 and MYBPH are common to both muscles. On the contrary, structural 

proteins such as DES, CAPZB, CAPZA3 and ACTA1 were differential proteins in only LT 

muscle. For chaperones and Heat shock proteins pathways, 3 small HSP (HSPB1, HSPB6 and 

CRYAB) as well as STIP1 and YWHAE were differential in both 2 muscles. However, 

proteins of the HSP 70 family: HSPA1B, HSPA1A, HSPA2, HSPA8 and HSPA9 were 

specific to LT muscle. HSPA5 was found differential in only ST muscle. Concerning the 

catabolic and metabolic pathways, 3 proteins (TPI1, PGM1 and NDUFS1) were differential in 

both LT and ST muscles. A large number of glycolytic and oxidative proteins were found 

differential and specific to LT muscle (Figure 4A), and two proteins: COX4I1 and SUCLA2 

were differential only in ST muscle. The interactome in LT muscle illustrates numerous 

interactions among the different biological pathways and putative biomarkers. The oxidative 

stress and cell redox homeostasis in ST muscle is represented by only PDIA3 protein which 

was differential also in LT muscle with 5 other proteins: MSRA, GSTP1, PRDX6, PARK7 

and SOD1. Among the proteins of the binding, cofactor and transport proteins, only ALB was 

common to the two muscles with connections with all other biological pathways whatever the 

muscle. The other proteins of this cluster are specific to the considered muscle (Figure 4A,B).  

6. Description of the results for each factor of the meta-proteomics   

As stated above, the number of proteins is variable from one study to another and was also 

found to be variable from one biological pathway to another (Table 2 and Figure 3). The 

comparison of the common proteins among the 12 proteomic studies in terms of their 

redundancy  revealed a strong dissimilarity based on the pairwise biomarker distance (Figure 

5). The dissimilarity was particularly strong for muscles as there was an unbalance between 

the number of proteins identified for LT and ST muscle. The pairwise distance given in 
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Figure 5 highlights the strong dissimilarities to identify generic biomarkers of beef tenderness 

if we refer to the factors included in this study. 

The direction of the putative protein biomarkers with tenderness is also variable (Table 2, 

Table S3 and Table S4). Taken the 16 proteins belonging to catalytic, metabolism and ATP 

metabolic process together, 18 times positive and 14 times negative directions were observed 

between the proteins and tenderness for both LT and ST muscles and whatever the other 

factors (Table 2). For LT (13+, 11-) and ST (5+, 3-) muscles separately, the same trend was 

observed. From the second pathway of 15 contractile and associated proteins, a high number 

of associations was found for both muscles taken together with 23 times positive, 16 times 

negative and 2 times with both positive and negative directions. For LT muscle alone, there 

were 12 times positive, 13 times negative and 2 times both directions. For ST muscle, more 

positive (11 times) than negative (3 times) directions were found. In the third biological 

pathway of chaperones and heat shock proteins grouping 11 proteins, an equivalent 15 times 

associations of positive and negative directions was found with 5 times both signs depending 

of the isoform mostly of HSPB1 (4 times) and HSPB6 (1 time). For LT muscle alone, more 

negative association (12 times) than positive (9 times) were found with the same 5 in both 

directions. For ST muscle, few associations were found, with 6 times positive and 3 times 

negative associations with tenderness. In the fourth biological pathway grouping 11 binding, 

cofactor and transport proteins for the two muscles, 10 times positive and 5 times negative 

associations with tenderness were found (Table 2). For LT muscle, less association compared 

to ST were reported: 2 positive vs. 8 and 4 negative vs. 1, respectively. In the fifth pathway 

grouping 6 proteins belonging to oxidative stress and cell redox homeostasis process, 6 times 

positive and 5 times negative associations were reported for both muscles. Most of the 

associations were for LT muscle 5 times positive and 5 negative, compared to only 1 positive 

association for ST. finally, the 2 proteasome and associated proteins reported in this meta-

proteomic were specific to LT muscle and were both positive.  

6.1. Gender effect 

In Charolais LT muscle and among 3 proteomic studies, 28 proteins were differentially 

abundant between groups of tenderness evaluated by WBSF: 22 proteins in young bulls, 9 in 

steers and 10 in cows (Figure 6). Only two proteins HSPA1B and TPI1 were found to be 

differentially abundant for the 3 genders. The abundance of HSPA1B was always lower in 

tender meat for the three genders. The abundance of TPI1 was lower in tender meat of young 
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bulls and higher in tender meat of steers and cows. These differences could be explained 

mainly by differences in sex hormones between the genders. Indeed, the effect of estrogens on 

skeletal muscle properties has been largely studied (Enns & Tiidus, 2010; Sauerwein & 

Meyer, 1989) with important regulation of energy metabolism pathways, including glucose 

transport, glycolysis and tricarboxylic acid cycle (Y. Xu & López, 2018). 

On another hand, two proteins: TnnT3 and YWHAE were found differentially abundant 

only in males but inversely in steers and young bulls. In young bulls, TnnT3 was lower 

abundant in tender meat, while in steers it was higher. Two proteins MSRA and HSPA9 

(GRP75) were differentially abundant in groups of divergent tenderness in steers and cows 

but not in young bulls. MSRA was higher abundant and GRP75 was lower abundant in groups 

of high tenderness. Five proteins were common to cows and young bulls: HSPB1 and 

MYBPH in the same direction, and ENO1, MYH1 and PGM1 in opposite direction. In cows, 

PGM1 and ENO1 were higher abundant in tender group and MYH1 (MyHC-IIx) was lower 

abundant, the opposite was observed in young bulls. ENO3 was higher abundant in tender LT 

only of cows.  

6.2. Breed effect 

Considering LT tenderness groups only evaluated by sensory panelists in young bulls from 

3 breeds, a total of 26 proteins were found differentially abundant: 8 in Charolais (CH), 14 in 

Limousin (LI) and 15 in Blond d’Aquitaine (BA) (Figure 7). Two biomarkers, ACTA1 and 

HSPB1 were common to the three breeds. PGM1 and TnnT3 were lower abundant in tender 

LT in BA and CH but not different in LI. The oxidative protein PARK7 was higher abundant 

in tender LT in CH but lower abundant in LI and not different in BA breed. Four proteins 

were common to Li and BA: HSPB6, CRYAB, CAPZB and ENO3. This later protein was 

always lower in abundance for both LI and BA tender group and, the three other proteins 

showed inverse relations with tenderness.  

In ST muscle, 17 proteins were differentially abundant between the groups of tenderness 

evaluated by sensory analysis in young bulls and 9 proteins were identified for Charolais and 

Blond d’Aquitaine, 4 for Limousin and 3 for Salers (Figure 8). This number of divergent 

proteins is lower than observed in LT muscle. Among the putative biomarkers of ST muscle, 

PVALB was found for CH, BA and LI breeds and never for Salers. Three proteins were 

common between CH and BA young bulls: HSPB1, MYL1 and TnnT3 were higher abundant 

in tender ST from these 2 breeds. This is coherent with earlier studies indicating that ST 
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muscle is tenderer when it is likely fast glycolytic oriented (Picard et al., 2014). HSPB1 was 

differently abundant between groups of tenderness but inversely between the two breeds. 

MYL2 was lower abundant and MYBPH higher abundant in tender ST in LI and CH breeds.  

If we consider only the population of cows, from CH and PDO MA breeds, 21 putative 

protein biomarkers were found differently abundant between groups of tenderness evaluated 

by WBSF, 17 in PDO MA and 10 in CH cows (Figure 9). Six proteins, ENO1, ENO3, 

MYH1, HSPB1, HSPA1B and MSRA, were common to the two cow breeds. ENO1, ENO3 

and MSRA were higher abundant and MYH1 and HSPA1B were lower abundant in the tender 

LT. HSPB1 was inversely related with tenderness in the two cow breeds. Trim72 was found 

differentially abundant between groups of tenderness in only PDO MA breed in which it was 

lower abundant in the tender LT steaks (Figure 9).   

6.3. Muscle type effect 

The comparisons of ST and LT muscles from young Charolais bulls allowed identifying a 

total of 34 differentially abundant proteins between groups of tenderness evaluated by WBSF 

(Figure 10). A total of 22 proteins were identified in LT versus 16 in ST. Among them, 4 

biomarkers, TPI1, HSPB6, HSPB1 and YWHAE, were common to the two muscles. HSPB6 

was higher abundant in the tender group whatever the muscle. The 3 others were inversely 

related with tenderness in the two muscles. TPI1 and YWHAE were higher abundant in 

tender ST and lower abundant in tender LT. The inverse was observed for HSPB1. An inverse 

relationship between some proteins such as HSPB1 and tenderness was already reported in 

the large literature. For example, the results illustrated in Figure 10 highlighted that in LT 

muscle the proteins related with tenderness correspond mainly to contractile, structural and 

Heat shock proteins whereas in ST the proteins related with tenderness are mainly involved in 

metabolism in coherence with the Gene Ontology of Figure 2.  

6.4. Effect of evaluation method of tenderness 

For LT muscles of young Charolais bulls, 22 proteins were differentially abundant between 

groups of tenderness evaluated by WBSF and 8 between groups of tenderness evaluated by 

sensory panelists (Figure 11). Among a total of 25 proteins, 5 biomarkers, PGM1, ACTA1, 

TnnT3, HSPB1 and PARK7, were common to the two evaluation methods of tenderness. 

PGM1 and TnnT3 were lower abundant in tender LT whatever the methods used.  
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For ST muscles of young Charolais bulls, 16 proteins were differentially abundant between 

groups of tenderness evaluated by WBSF and 9 between groups of tenderness evaluated by 

sensory panelists (Figure 12). Three biomarkers, MYL2, HSPB1 and PVALB, were common 

to the two evaluation methods of tenderness. Among them, HSPB1 and MYL2 were lower 

abundant and PVALB higher abundant in the tender groups whatever the evaluation method.  

7. Overall discussion 

This integrative meta-proteomics study which gathered 61 proteins identified following the 

same procedure from one laboratory, provides new insights and robust results on the putative 

protein biomarkers of beef tenderness. It allowed us to identify the main proteins that are 

common to several muscles, animal types (gender) and evaluation method of tenderness, as 

well as those that are specific to each of these factors. This integrative review allows a better 

understanding of the biological pathways involved in beef tenderness that would explain its 

variability according to muscle, breed, gender or evaluation method of tenderness. For the two 

muscles considered in this review that are Longissimus thoracis (LT) and Semitendinosus 

(ST), a higher number of differential proteins discriminating tender versus tough meat groups 

were found for WBSF compared to sensory panelists. In the following discussion sections, we 

first compared the list of the candidate biomarkers (by biological family) identified in the 12 

proteomic studies to those of the literature by linking each putative biomarker to some earlier 

proteomic studies and then, we focused on the major biomarkers candidates of great interest 

(reported more than 4 times in the 12 studies) deserving further evaluation and validation 

studies following the pipeline of tenderness biomarkers discovery (Figure 1). 

7.1. Brief comparison of the list of the putative biomarkers to bovine proteomic studies 

from the large literature 

During the last two decades, meat scientists used OMICs tools more precisely proteomics, 

to identify accurate biological markers of beef tenderness that would make possible the 

categorization of meat cuts soon after slaughter on the basis of their potential final tenderness 

and/or to propose those biomarkers to optimize the genetic selection of beef animals on the 

basis of this quality. As highlighted above and following the guidelines of several studies in 

the large literature (D'Alessandro, Rinalducci, et al., 2012; D'Alessandro & Zolla, 2013; 

Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Gagaoua, Terlouw, et al., 2019; Longo, Lana, 

Bottero, & Zolla, 2015; Mullen, Stapleton, Corcoran, Hamill, & White, 2006; Ouali et al., 

2013; Picard & Gagaoua, 2017; Picard et al., 2017; Picard et al., 2015; Picard, Lefevre, & 
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Lebret, 2012), 6 distinct but interconnected biological pathways were identified (Gagaoua, 

Terlouw, Boudjellal, et al., 2015; Guillemin, Bonnet, et al., 2011; Picard et al., 2018).  

The 61 biomarkers identified in this meta-proteomics and their directions (positive, 

negative or both) with mechanical (WBSF) or sensory beef tenderness are given in Table 2. 

The discussion of the most interesting candidates according to the corresponding biological 

functions in which they are involved allow producing new insights about tenderness 

determinism. For instance, in the following sections, a brief description for each pathway and 

a comparison to the large literature are given. The directions will not be discussed in the 

following sub-sections and only non-exhaustive cattle references from the large literature for 

reported putative protein biomarkers by biological family are given. 

7.1.1. Biomarkers belonging to catalytic, metabolism & ATP metabolic pathway 

Among the list of the 16 putative protein biomarkers of this biological pathway, 14 were 

reported in earlier studies and two that are AKR1B1 (Aldo-keto reductase family 1 member 

B) and COX4I1 (Cytochrome c oxidase subunit 4 isoform 1, mitochondrial) were for the first 

time identified in this meta-proteomic. Of those reported in the large literature: CKM 

(Beldarrain et al., 2018; Bjarnadottir et al., 2012; Laville et al., 2009; Polati et al., 2012; 

Sierra et al., 2012; Zapata, Zerby, & Wick, 2009), ENO1 (D'Alessandro, Rinalducci, et al., 

2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Polati et al., 2012), ENO3 (Bjarnadottir et 

al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Marino et al., 2014; Polati et al., 2012; 

Zhao et al., 2014), GAPDH (D'Alessandro, Marrocco, et al., 2012; Laville et al., 2009; 

Mahmood, Turchinsky, Paradis, Dixon, & Bruce, 2018; Marino et al., 2014; Polati et al., 

2012), IDH1 (Zapata et al., 2009), MDH1 (Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Jia et 

al., 2009), LDHB (Baldassini et al., 2015; Laville et al., 2009; Picard et al., 2014; Polati et al., 

2012), PDHB (Grabez et al., 2015), PGM1 (Anderson, Lonergan, & Huff-Lonergan, 2014; 

Bjarnadottir, Hollung, Faergestad, & Veiseth-Kent, 2010; D'Alessandro, Rinalducci, et al., 

2012; Laville et al., 2009), PYGM (Laville et al., 2009), TPI1 (D'Alessandro, Rinalducci, et 

al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Grabez et al., 2015; Rosa et al., 2018), 

GPD1 (Bjarnadottir et al., 2010; Jia et al., 2007), SUCLA2 (Jia et al., 2006) and NDUFS1 

(Chaze et al., 2013). 

7.1.2. Biomarkers belonging to contractile & associated proteins  

Among the list of the 15 putative protein biomarkers of this biological pathway, 13 were 

reported in earlier studies and two that are CAPZA3 (F-actin-capping protein subunit alpha), 
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and COL4A1 (Collagen alpha-1 (iv) chain) were for the first time identified in this meta-

proteomic. Of those reported in the large literature: ACTA1 (Beldarrain et al., 2018; 

Bjarnadottir et al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Laville et al., 2009; 

Polati et al., 2012; Zapata et al., 2009), CAPZB (Bjarnadottir et al., 2010; Picard et al., 2014), 

MYH7 (Grabez et al., 2015; Zapata et al., 2009; Zhao et al., 2014), MYH1 (Beldarrain et al., 

2018; Picard et al., 2014; Polati et al., 2012; Zhao et al., 2014), MYL2 (Polati et al., 2012; 

Zapata et al., 2009), MYBPH (Guillemin, Bonnet, et al., 2011; Morzel et al., 2008; Picard et 

al., 2014), MYL1 (M. E. Carvalho et al., 2014; D'Alessandro, Marrocco, et al., 2012; 

D'Alessandro, Rinalducci, et al., 2012; Guillemin, Bonnet, et al., 2011; Rosa et al., 2018), 

MYRL2 (Bjarnadottir et al., 2012), MYL3 (Malheiros et al., 2019), TnnT3 (Beldarrain et al., 

2018; Malheiros et al., 2019; Muroya et al., 2004; Rosa et al., 2018; Sierra et al., 2012), 

TnnT1 (D'Alessandro, Rinalducci, et al., 2012; Malheiros et al., 2019; Rosa et al., 2018), DES 

(Guillemin, Bonnet, et al., 2011; Malheiros et al., 2019; Zapata et al., 2009) and WDR1 

(Chaze et al., 2013). 

7.1.3. Biomarkers belonging to chaperones & heat shock proteins  

Among the list of the 11 putative protein biomarkers of this biological pathway, 10 were 

reported in earlier studies and one only which is HSPA2 (Heat shock-related 70 kDa protein 

2), was for the first time identified in this meta-proteomic. Of those reported in the large 

literature: HSPA9 (Grabez et al., 2015; Jia et al., 2009; Rodrigues et al., 2017), HSPA5 

(Rodrigues et al., 2017), HSPB6 (D'Alessandro, Marrocco, et al., 2012; D'Alessandro, 

Rinalducci, et al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Gagaoua, Terlouw, et al., 

2019; Guillemin, Bonnet, et al., 2011; Polati et al., 2012; Zapata et al., 2009), HSPB1 (M. E. 

Carvalho et al., 2014; D'Alessandro, Rinalducci, et al., 2012; Gagaoua, Bonnet, Ellies-Oury, 

et al., 2018; Guillemin, Bonnet, et al., 2011; N. K. Kim et al., 2008; Polati et al., 2012), 

HSPA8 (D'Alessandro, Rinalducci, et al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 2018), 

HSPA1A (Bjarnadottir et al., 2012; M. E. Carvalho et al., 2014; D'Alessandro, Rinalducci, et 

al., 2012; Gagaoua, Terlouw, et al., 2019), HSPA1B (Baldassini et al., 2015; D'Alessandro, 

Rinalducci, et al., 2012), STIP1 (Chaze et al., 2013), CRYAB (D'Alessandro, Rinalducci, et 

al., 2012; Guillemin, Bonnet, et al., 2011; Morzel et al., 2008; Polati et al., 2012; Zapata et al., 

2009) and YWHAE (Chaze et al., 2013; D'Alessandro, Rinalducci, et al., 2012; Mahmood et 

al., 2018; Rodrigues et al., 2017). 

7.1.4. Biomarkers belonging to binding, cofactor & transport proteins  
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Among the list of the 11 putative protein biomarkers of this biological pathway, only 4 

biomarkers were reported in earlier studies and 7 which are ACBD5 (Acyl-CoA-binding 

domain-containing protein 5), ANKRD2 (Ankyrin repeat domain 2), APOBEC2 (Probable C-

>U-editing enzyme APOBEC-2), DBI (Acyl-CoA-binding protein), AHCY 

(Adenosylhomocysteinase), SRL (Sarcalumenin) and PVALB (Parvalbumin α) were for the 

first time identified in this meta-proteomics. Of those reported in the large literature: GDI2 

(Chaze et al., 2013; Mahmood et al., 2018), ALB (Baldassini et al., 2015; Laville et al., 2009; 

Polati et al., 2012), RABGGTA (Chaze et al., 2013) and TRIM72 (Gagaoua, Bonnet, Ellies-

Oury, et al., 2018; Rosa et al., 2018). 

7.1.5. Biomarkers belonging to oxidative stress & cell redox homeostasis  

Among the list of the 6 putative protein biomarkers of this biological pathway, 4 were 

reported in earlier studies and two only which are MSRA (Mitochondrial peptide methionine 

sulfoxide reductas) and PDIA3 (Protein disulfide-isomerase A3), were for the first time 

identified in this meta-proteomic. Of those reported in the large literature: GSTP1 (Chaze et 

al., 2013), SOD1 (D'Alessandro, Marrocco, et al., 2012; Grabez et al., 2015; Marino et al., 

2014), PRDX6 (Guillemin, Bonnet, et al., 2011; Jia et al., 2009; Zhao et al., 2014) and 

PARK7 (Jia et al., 2007; Jia et al., 2009; Mahmood et al., 2018; Picard et al., 2014; Polati et 

al., 2012). 

7.1.6. Biomarkers belonging to proteasome & associated proteins  

The 2 putative protein biomarkers of this biological pathway (PSMB2 and PSMC2), were 

both earlier reported to be related to beef tenderness (Chaze et al., 2013; Ouali et al., 2013). 

7.2. Quest for quantitative trait loci (QTL) from the list of the putative protein 

biomarkers  

Among the list of the 61 proteins candidate biomarkers of tenderness, the ProteQTL tool 

(http://www.proteinside.org/) revealed 15 of them (shown by blue ovals for both muscles in 

the networks) for which a QTL for WBSF or sensory tenderness has been reported (Figure 4). 

The 15 QTL proteins belong to the following biological functions: 

i) Catalytic, metabolism & ATP metabolic process (n = 3): PYGM, LDHB and PGM1. 

ii) Contractile & associated proteins (n = 4): MYL2, MYL3, CAPZB and CAPZA3. 

iii) Chaperones & heat shock proteins (n = 4): HSPA2, HSPA9, HSPA8 and STIP1. 
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iv) Binding, cofactor & transport proteins (n = 3): PVALB, GDI2 and AHCY. 

v) Oxidative stress & cell redox homeostasis (n = 1): GSTP1. 

vi) Proteasome & associated proteins (n = 0): none. 

The 3 putative biomarkers (PGM1, MYL2 and STIP1) given in bold character in this list 

are common to LT and ST muscles. The data of this meta-proteomics validated the important 

role that these 15 proteins would play in meat tenderness of cattle. This list of proteins needs 

further investigation in the evaluation and validation steps of the pipeline of beef tenderness 

biomarkers discovery (Figure 1), namely PGM1, MYL2, CAPZB, HSPA9 and PVALB that 

were identified in more than 3 proteomic studies and reported in earlier studies (Allais et al., 

2011; Hao et al., 2016; Hu et al., 2013; Hwang et al., 2015; Ramayo-Caldas, Renand, 

Ballester, Saintilan, & Rocha, 2016; Sorbolini et al., 2015). 

7.3. Major beef tenderness biomarkers common to LT and ST muscles 

7.3.1. Important role of HSPB1 and HSPB6 in beef tenderness 

Earlier meat proteomic studies whatever the quality trait and the species, have confirmed 

the implication of heat shock proteins (HSPs) including small, large and co-chaperones (For 

review: (Lomiwes, Farouk, Wiklund, & Young, 2014; Picard & Gagaoua, 2017; Picard et al., 

2017)). HSPs are ubiquitous and evolutionarily conserved proteins that are mainly classified 

into 5 subfamilies on the basis of their molecular mass, e.g., HSP60, HSP70, HSP90, and 

HSP100 and the small HSPs (MS: 12–43 kDa). These abundant and dynamically expressed 

proteins were for the first time suggested by Ouali et al. (2006) to play a role in muscle to 

meat transformation by decelerating post-mortem muscle apoptosis onset, and hence affecting 

the final quality of meat products. Although the exact underlying mechanisms in post-mortem 

muscle and in cooked meat are not yet understood, these superfamily of proteins appear to 

influence final tenderness through different mechanisms (Ouali et al., 2013; Picard & 

Gagaoua, 2017): i) modulation of initiators or effectors caspases activities (by inhibition); ii) 

protection of cellular structures against apoptosis (anti-apoptotic role); iii) myofibrillar protein 

protection (binding of protease cleavable substrate) from degradation by inhibition of 

proteolytic activity; iv) refolding of denatured proteins caused by pH decline and resultant 

protease activity dramatically altering protein integrity and native conformation; and last but 

not least v) maintenance of the correct conformation of proteins and preservation of their 

biological functions, folding and unfolding, and refolding of damaged protein entities. 
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From the most interesting HSPs proteins identified in this meta-proteomics and whatever 

the muscle, the small HSPB1 (HSP27) and HSPB6 (HSP20) proteins were reported 9 and 5 

times respectively from the 12 studies. The former was identified in different breeds and 

irrespective of the evaluation method of tenderness and the later was specific to young bulls 

but found irrespective of the same factors of HSPB1 (Table 2). However, the relations with 

tenderness for the two sHSP were not always in the same direction, a phenomenon that we 

already reported in previous studies (Gagaoua, Terlouw, et al., 2019; Gagaoua, Terlouw, 

Monteils, Couvreur, & Picard, 2017; Picard & Gagaoua, 2017; Picard et al., 2014; Rosa et al., 

2017).  

Small HSPs are intracellular stabilizers that are dynamically expressed in muscle after 

slaughter to respond in specific regions of muscle cells to the irreversible denaturation and 

aggregation during heat stimulation of muscle proteins and thus maintain cellular homeostasis 

(for review: (Lomiwes et al., 2014)). For HSPB1, an inverse relationship with tenderness was 

observed by different authors between ST and LT or between breeds (Picard et al., 2014). On 

another hand, an earlier study by Chaze et al. (2009) using western-blotting on 2D-E gels 

revealed 12 different isoforms of HSPB1 and showed that the differential spots among groups 

of tenderness differed according to the breed considered, in coherence with the results of the 

present review. For instance, it seems that the relation with tenderness depends on the 

contractile and metabolic properties of the considered muscle (Picard et al., 2018) as their 

expression differ between oxidative and glycolytic muscle (Golenhofen, Perng, Quinlan, & 

Drenckhahn, 2004).  

To better understand the role of this sHSP in meat tenderization, we produced null-HSPB1 

mice and investigated the effect on both the structure and the proteome of different muscles in 

comparison to their wild-types (Kammoun et al., 2016; Picard et al., 2016). The findings of 

these studies revealed that major modification of expressions of proteins are induced in 

Gastocnemius muscle (fast glycolytic) which most of them proposed in the present review as 

candidate biomarkers of tenderness: HSPA9, HSPA8, PARK7, TNNT3, TPI1, MDH1, 

PDHB, CKM, PYGM and ALB. From these original findings, one can speculate an 

interaction between all these proteins during meat tenderization. Moreover, in silico analysis 

identified the main interactors of HSPB1, among them YWHAE, also found differential 

between groups of tenderness (Guillemin, Bonnet, et al., 2011) and discussed below (sub-

section 7.3.4). It is worthwhile to note, that differences in proteins interacting with HSPB1 

were observed between Gastrocnemius (fast glycolytic) and Soleus (slow oxidative) muscles, 
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suggesting muscle-specific effects and thus the role that this protein would play in tenderness 

might differ from muscle cuts with different metabolic and contractile properties (Picard et 

al., 2014). Overall, these data suggest that HSPB1 seems to play a central role in beef 

tenderness determinism by interacting with five main protein families (HSPs, pro/anti-

apoptotic factors, translation factors, cytoskeletal proteins, and oxidative proteins) in 

accordance with the interactomes and correlation networks of tenderness proposed by 

(Guillemin, Bonnet, et al., 2011) and (Gagaoua, Terlouw, Boudjellal, et al., 2015).  

HSPB6, or HSP20, is another sHSP retained 5 times whatever the muscle for young bulls. 

Accordingly, it can be proposed as for HSPB1, as a potential biomarker of tenderness due to 

the role it can play in muscle to meat conversion (Christensen et al., 2017; Contreras-Castillo, 

Lomiwes, Wu, Frost, & Farouk, 2015; Lomiwes, Farouk, Frost, Dobbie, & Young, 2013; 

Lomiwes et al., 2014; Pulford, Frost, Lomiwes, & Farouk, 2008). As mentioned in sub-

section 7.1.3, several studies identified HSP20 as a good biomarker of beef tenderness in 

proteomic studies, and other meat qualities such as color and pH decline (Gagaoua, Bonnet, 

De Koning, et al., 2018; Gagaoua, Couvreur, Le Bec, Aminot, & Picard, 2017). For example, 

in LT muscle of Angus steers, it was found divergently abundant between sample groups 

contrasting in their tenderness (Malheiros et al., 2019; Zapata et al., 2009). HSPB6 acts by 

protecting structural proteins, including desmin, actin and titin (Ghosh, Houck, & Clark, 

2007).  

Furthermore, in skeletal muscle, this protein protects against atrophy, ischemia, 

hypertensive stress, and metabolic dysfunction (Dreiza et al., 2010). As HSPB6 has a binding 

domain to troponin 1 (Rembold, Foster, Strauss, Wingard, & Eyk, 2000), it could affect 

skeletal muscle contraction through the troponin complex. Moreover, in obese subjects with 

decreased insulin sensitivity, it promotes blood flow and increases glucose utilization during 

exercise (Y. Wang, Xu, & Cooper, 1999). So, HSPB6 is involved both in muscle contraction 

and metabolism. Phosphorylation of HSPB6 also leads to the disruption of the actin 

cytoskeleton. Therefore, its role in tenderness could be through these biological functions in 

different types of muscles.  

7.3.2. Troponin T Fast, a biomarker of tenderness irrespective of muscle and gender 

TnnT3 was found differential between groups of tenderness in 7 of the 12 proteomic 

studies (Table 2). After HSPB1, it is the most frequently identified differential biomarker in 

this meta-proteomic review. In LT muscle of young bulls, TnnT3 was less abundant in tender 
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meat and the inverse was observed for steers. Similar to LT muscle of steers, a higher 

abundance in tender ST meat of young BA and CH bulls evaluated by sensory panelists was 

observed. A difference between genders was further observed for sensory tenderness as 

TnnT3 was less abundant in tender LT of young bulls but higher in steaks of PDO Maine-

Anjou cows evaluated by WBSF as in CH steers. The TNNT gene encodes a protein that is a 

subunit of troponin, which embodies a regulatory complex on the thin filament of the 

sarcomere. Troponin T fast fragment was reported to play a role in the prevention of the 

formation of actomyosin ATPase complex (Fink, Momke, Wohlke, & Distl, 2008; Lehman, 

Galińska-Rakoczy, Hatch, Tobacman, & Craig, 2009). It is one of the myofibrillar proteins 

reported to be easily degraded by calpains during post-mortem aging of muscles. Indeed, 

Troponin T has been used as a marker of ongoing proteolysis (Iwanowska et al., 2010; 

Muroya et al., 2004) due to the appearance of polypeptides giving a product of 30 kDa and 

whose quantity progresses during the tenderization process and was found correlated to meat 

tenderness (Ho, Stromer, & Robson, 1994). As cited above in the sub-section 7.1.2, several 

proteomic studies reported TNNT fragments (fast and slow) as biomarkers of beef tenderness. 

This review highlights inverse relationships between LT and ST in agreement to studies from 

the large literature (de Oliveira, Delgado, Steadham, Huff-Lonergan, & Lonergan, 2019; 

Picard et al., 2018; Picard et al., 2014). Differences in line to this meta-proteomics among 

breeds or genders were further reported (Chaze et al., 2013; Rodrigues et al., 2017; Silva et 

al., 2019). For example, the recent study by Silva et al. (2019) found greater abundance of fast 

troponin T isoform (TNNT3) in steers LT muscle, while slow troponin T isoform (TNNT1) 

tended to be lower, compared to bulls.  

7.3.3. PGM1, a biomarker of toughness in bulls and of tenderness in cows 

Phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis (Anderson, 

Lonergan, & Huff-Lonergan, 2012; Anderson et al., 2014) and its identification as a 

biomarker of beef tenderness is in agreement with the idea that in the early post-mortem 

period, glycolysis will continue, thereby affecting different quality traits of meat. PGM1 

catalyzes the interconversion of glucose-1-phosphate and glucose-6-phosphate through the 

intermediate glucose-1,6-bisphosphate and thus plays an important role in the regulation of 

glycogen metabolism. Several posttranslational modifications (PTMs) through 

phosphorylation, acetylation and methylation of PGM1 were reported (Anderson et al., 2014). 

For example, 9 sites on PGM1 have been identified as phosphorylation sites and these include 

2 serine, 3 tyrosine, and 4 threonine residues. PTMs were proposed to influence metabolism 



22 

and post-mortem muscle to meat conversion (Huang et al., 2011; Huang, Larsen, & Lametsch, 

2012; Huang, Larsen, Palmisano, Dai, & Lametsch, 2014; Jiang, Liu, Shen, Zhou, & Shen, 

2019; Li et al., 2015; Zhang et al., 2016). In fact, previous proteomic studies by D'Alessandro, 

Marrocco, et al. (2012) and (Silva et al., 2019) suggested that phosphorylation of muscle 

proteins, including PGM1, can be responsible for the differences in the final beef tenderness 

of steaks. Moreover, PGM1 is among the QTLs that were identified in this review whatever 

the muscle (Figure 4). We found this enzyme to be the lowest in young bulls (5 times) 

whatever the muscle and the highest in LT Charolais cows (1 time). Accordingly and in line 

to an earlier work, we reported that protein extracts from tender beef samples has less PGM1 

compared to proteins extracted from tough beef steaks (Picard et al., 2010). It is worthwhile to 

note, that most proteomic studies identified multiple isoforms of PGM1 and their 

relationships with the targeted meat quality differ among isoforms according to the studied 

factors that are muscle, animal types, stress statue of the animal or response to postmortem 

electrical stimulation (Anderson et al., 2014; Bjarnadottir et al., 2010; D'Alessandro, 

Rinalducci, et al., 2012; Laville et al., 2009; Li et al., 2015). 

7.3.4. TPI1 and YWHAE as biomarkers of tenderness whatever the muscle but with inverse 

relationships 

Triosephosphate isomerase (TPI1) was identified only in Charolais breed, with lower 

abundance in tender LT of young bulls but not in ST and higher abundance in tender LT of 

steers and cows evaluated by WBSF. TPI1 is a glycolytic enzyme playing an important role in 

energy generation. It is the last enzyme of the first preparatory phase of glycolysis where it 

catalyzes the reversible conversion of D-glyceraldehyde 3-phosphate from phosphate 

dihydroxyacetone. Proteomic studies cited in sub-section 7.1.1 reported mainly positive and 

also negative associations with beef tenderness (D'Alessandro, Rinalducci, et al., 2012; 

Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Grabez et al., 2015; Rosa et al., 2018). For 

example, it has been reported to be up regulated in LT tender meat of bulls by D'Alessandro, 

Marrocco, et al. (2012) and Grabez et al. (2015). TPI1 gene was found to be significantly 

higher expressed in marbled cattle and proposed by several studies as a biomarker of 

intramuscular fat (Bazile, Picard, Chambon, Valais, & Bonnet, 2019; Ceciliani, Lecchi, 

Bazile, & Bonnet, 2018; N. K. Kim et al., 2009; Mao et al., 2016). From these, one can 

speculate that greater abundances in steers and cows known to be fatter than young bulls 

(Gagaoua, Terlouw, et al., 2016) could explain the inverse relationships with tenderness 

observed in the animal groups of this meta-proteomics. TPI1 including its phosphorylation 
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were further related with post-mortem muscle pH decline rate, comforting its role in meat 

tenderization (Gagaoua, Bonnet, De Koning, et al., 2018; Huang et al., 2011).  

YWHAE was reported 4 times in this review and mostly with samples of LT and ST 

muscles of Charolais bulls and Steers evaluated by WBSF and also by sensory analysis in BA 

bulls (Table 2). The gene of this protein encodes tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, 14-3-3 epsilon. The 14-3-3 proteins (phospho-serine/-

threonine binding proteins) belong to a large, highly conserved family functioning as a dimer 

in diverse biological processes such as signal transduction, metabolism, protein trafficking, 

signal transduction, apoptosis, cell cycle regulation and potassium channel regulation (Jin, 

Lyu, Kozak, & Jeang, 1996). This protein was reported as an interesting biomarker of beef 

tenderness in very recent studies (Chaze et al., 2013; D'Alessandro, Rinalducci, et al., 2012; 

Mahmood et al., 2018; Rodrigues et al., 2017). It was further reported by E. B. Carvalho et al. 

(2019) as a differential biomarker related to energy metabolism in skeletal muscle of beef 

cattle identified for low and high residual feed intake. This would explain as for TPI1, its link 

with tenderness of meat. Indeed, an earlier phosphoproteomic study reported that 14-3-3 

proteins are able to regulate glucose homeostasis in response to insulin or to energetic stress 

(Ogihara et al., 1997). Furthermore, YWHAE is known to negatively regulate apoptosis (J. 

Kim et al., 2012), an important phase of muscle to meat conversion (Ouali et al., 2013; Ouali 

et al., 2006) with major consequences on final tenderness (Gagaoua, Hafid, et al., 2015). It 

was also reported to interact with HSPs such as HSPB1 as described in Picard et al. (2016). 

The results allowed to propose this protein as a candidate biomarker of mechanical tenderness 

in both LT and ST muscle mainly in males as it was higher abundant in tender ST and LT 

steers and lower abundant for LT young bulls, but not differential in cows. 

7.3.5. Importance of structural MYH1, MYL1, MYL2 and MYBPH in beef tenderness 

Myosin heavy, light and binding protein chains were identified as expected (Lana & Zolla, 

2016; Mato et al., 2019) to play important role in the determinism of meat tenderness of 

young bulls and also of cows in both LT and ST muscle. Most of these proteins are grouped 

in the M-band which consists of a series of parallel electron dense lines in the central region 

of the A-band that comprises a filament system cross-linking the myosin filaments (For 

review: (Ertbjerg & Puolanne, 2017)). MYL1 was identified to be related positively only (3 

times) in LT muscle of cows and ST of CH and BA of young bulls. Inversely, MYL2 that is 

also identified with a tenderness QTL, and negatively was less abundant in tender meat 
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whatever the evaluation method of tenderness and specific to young CH bulls (3 times) in LT 

and ST muscles and one time for ST muscle of LI bulls. MYBPH was less abundant in LT 

muscle of CH young bulls and cows, and highly abundant in ST muscle of LI and CH young 

bulls. Finally, MYH1 was negatively linked with tenderness in cows (LT muscle of CH and 

PDO Maine-Anjou cows) and positively in young bulls (ST and LT muscles of CH and BA 

young bulls). Myosins are the most abundant proteins of thick filaments and interaction of 

these structural proteins occur through the actomyosin complex that associates myosin light 

chains with myosin heavy chains and actin (Anderson et al., 2012). The identification of the 4 

structural proteins as good biomarkers of beef tenderness agrees with several studies that we 

cited in sub-section 7.1.2 and further summarized in some recent comprehensive reviews 

(Ouali et al., 2013; Picard & Gagaoua, 2017; Picard et al., 2017). Among some studies, recent 

cattle proteomics on LT muscle showed similar findings with MYL1 that was reported in high 

abundance in less tender meat (Franco et al., 2015; Rodrigues et al., 2017; Rosa et al., 2018). 

In accordance to the findings of this meta-proteomics, Bjarnadottir et al. (2012) reported that 

MYL1 was more abundant in muscle biopsies from tender meat, while MYL2 was present in 

less abundance. The identification of MYL2 only in young bulls agrees with the findings by 

Rodrigues et al. (2017) showing increased muscle abundance in LT muscle of leaner breeds. 

Another work by Franco and co-workers identified that several muscle myosin light chains 

(MYL3 and MYL6B) and regulatory light chain 2 isoforms (MYL2 and MYLPF) participate 

in the conversion of cattle muscle to DFD meat in Rubia Gallega animals affected by pre-

slaughter stress (Franco et al., 2015). In line to our findings namely the protein-protein 

networks of both muscles, the authors found also that all these structural proteins appeared to 

be involved in the main network of functionally associated proteins. Indeed, this is not a 

surprising finding when the myosin is a major structural protein of the muscle sarcomere in 

association with actin and other contractile proteins. Accordingly, all these structural proteins, 

well discussed in the comprehensive review by Lana and Zolla (2016), deserve further 

evaluation following the pipeline of biomarkers discovery and under other conditions to 

validate their robustness as biomarkers of beef tenderness.  

7.4. Major beef tenderness biomarkers specific to LT muscle 

7.4.1. HSPA1B, a robust candidate biomarker of WBSF whatever the gender 

HSPA1B, a large HSP protein, for the three genders (young bulls, steers and cows) of 

different breeds (mostly CH and PDO Maine-Anjou) was less abundant in meat samples of 
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high tenderness evaluated by WBSF only,. This protein belongs to the most highly conserved 

70 kDa HSPs family playing key roles as molecular chaperones and involved in promoting 

cellular proteostasis and survival during periods of stress (Mayer, 2013). They further regulate 

various cell signaling pathways involved in cell growth and inflammation (Daugaard, Rohde, 

& Jaattela, 2007). By interacting with other HSPs, HSPA1B protein stabilizes existing 

proteins against aggregation and mediates the folding of newly translated proteins in the 

cytosol and in organelles (M. E. Carvalho et al., 2014). It is particularly involved in the 

ubiquitin-proteasome pathway in accordance with the 2 proteasome subunits PSMB2, PSMC2 

found differential between groups of tenderness only in LT muscle in the present review. 

These data suggest a role of ubiquitin-proteasome pathway in tenderness mainly in muscles 

with mixed oxido-glycolytic properties as LT. As cited above in sub-section 7.1.3 and not 

only for HSPA1B but also for the other 70 kDa HSPs proteins (HSPA1A, HSPA8 and 

HSPA5), dozen studies reported their involvement in meat tenderness under several factors 

such as breed (Chaze et al., 2013; Gagaoua, Terlouw, & Picard, 2017; Keady et al., 2013; 

Picard et al., 2014; Rodrigues et al., 2017), gender/animal type (Guillemin, Jurie, et al., 2011; 

Picard et al., 2019; Silva et al., 2019), rearing practices (Gagaoua, Monteils, et al., 2017), 

muscle type (Gagaoua, Couvreur, et al., 2017; Picard et al., 2014), evaluation method of 

tenderness (Gagaoua, Monteils, & Picard, 2018) and country origin of the panelists and end-

point cooking temperature of meat (Gagaoua, Terlouw, et al., 2019). Recently, we proposed 

three main actions by which 70 kDa HSPs (HSPA1B) would intervene in post-mortem muscle 

and cooked meat, namely by i) responding to cellular stress since these proteins has been 

reported to be induced in skeletal muscle, ii) binding to the structural proteins to maintain 

homeostasis, or iii) protection roles of post-mortem muscle cells (Gagaoua, Terlouw, et al., 

2019; Picard & Gagaoua, 2017). 

7.4.2. ACTA1, a candidate biomarker specific to LT tenderness of young bulls and cows 

ACTA1 or α-actin, a structural protein was related 5 times with tenderness in LT muscle 

only of young bulls whatever the breed (CH, LI and BA) and PDO Maine-Anjou cows. It was 

more abundant in the tender group samples and its direction varies in LI and CH breeds 

evaluated by WBSF and sensory LT of BA breed (Table 2). We previously stated that 

structural proteins, in general, are more related to tenderness in LT than in ST muscle, in 

coherence with the data of this review (Lana & Zolla, 2016; Picard & Gagaoua, 2017). 

According to Ouali et al. (2013), actin release from muscle cytoskeleton suggests apoptosis 

onset where caspases initiate with other interacting proteases the breakdown of actin into 
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fragments of different molecular weights (Goll, Neti, Mares, & Thompson, 2008; Ouali et al., 

2013). ACTA1 is among the structural protein biomarkers of beef tenderness that were mostly 

identified in proteomic studies (Beldarrain et al., 2018; Bjarnadottir et al., 2012; Franco et al., 

2015; Gagaoua, Bonnet, Ellies-Oury, et al., 2018; Lana & Zolla, 2016; Laville et al., 2009; 

Morzel et al., 2008; Picard & Gagaoua, 2017; Picard et al., 2017; Polati et al., 2012; Zapata et 

al., 2009). From these, ACTA1 deserves special attention as a robust biomarker of beef 

tenderness as it is further considered as a hallmark of apoptosis (Ouali et al., 2013). Indeed, 

during apoptosis, ACTA1 is the first protein targeted by effector caspases and some actin 

fragments have been considered to be accurate markers of apoptosis (Mashima, Naito, & 

Tsuruo, 1999; Yang et al., 1998). According to experiments by Du et al. (2004) and during 

apoptosis, the initial step in myofibrillar proteolysis would be the breakdown of the 

actomyosin complex by direct action of caspase 3. The authors pointed out that both intact 

monomeric actin and fragments of actin appear since early post-mortem including bovine 

muscle (Ouali et al., 2013). In a second step, these products will be then further degraded by 

the ATP-dependent ubiquitin-proteasome system, in line with the identification of the two 

proteasome subunits PSMB2 and PSMC2 found differential between groups of tenderness 

only in LT muscle of the same breeds where greater abundance of ACTA1 was found. 

7.4.3. ENO1 and ENO3 highlight similarities between young bulls and cows 

Enolase 1 (ENO1) and 3 (ENO3) are two isoforms catalyzing the conversion of 2-

phosphoglycerate to phosphoenolpyruvate during glycolysis. ENO1 is ubiquitous in cell 

cytoplasm, whereas ENO3 is mainly present in skeletal muscle. These two enzymes are 

predominately reported in proteomic studies to be related to beef tenderness and other 

qualities. From those studies and as highlighted in the sub-section 7.1.1, we report for  ENO1 

the studies by (D'Alessandro, Rinalducci, et al., 2012; Gagaoua, Bonnet, Ellies-Oury, et al., 

2018; Polati et al., 2012) and for ENO3 those by (Bjarnadottir et al., 2012; Gagaoua, Bonnet, 

Ellies-Oury, et al., 2018; Marino et al., 2014; Polati et al., 2012; Zhao et al., 2014). In this 

meta-proteomics and in line with the findings of most of the above references, the two 

enolases were found 4 times. ENO1 was positively related with tenderness in LT muscle of 

cows (CH and PDO MA) and LI young bulls but negatively for CH young bulls. ENO3 was 

as for the former positively related with tenderness for cows whatever the breed (CH and 

PDO MA) but negatively for young bulls whatever the breed (BA and LI). The link of these 

two enzymes with meat tenderness was reported to be isoform specific (Picard & Gagaoua, 

2017; Picard et al., 2017). The associations of tenderness with enolases may partly reflect a 
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cellular stress response to the deprivation of oxygen supply and to glucose metabolism (low 

glucose levels) (Sedoris, Thomas, & Miller, 2010). Indeed, these last authors reported that 

ENO3 expression is influenced by differences in glucose levels and deprivation of oxygen 

supply. It is worthwhile to note that ENO3 participates in multi-enzyme complexes present on 

the sarcomere (Keller et al., 2000) and their role in the tenderization process may further 

depend on the presence of other proteins identified in this meta-proteomics such as HSPs 

(Wulff, Jokumsen, Højrup, & Jessen, 2012). 

7.4.4. HSPA9 and MSRA highlight similarities between steers and cows 

HSPA9 (Stress-70 protein, mitochondrial GRP75) and MSRA (Mitochondrial peptide 

methionine sulfoxide reductase) were identified only in LT muscle and were specific to steers 

and cows (Table 2). The former was negatively related with tenderness and further reported 

one time and positively with sensory LT of young Limousin bulls. The later was positively 

related to tenderness of CH steers and cows and PDO Maine-Anjou cows.  

HSPA9 is a member of Hsp70 family of chaperone proteins that is not heat-inducible. 

HSPA9 identified also as a tenderness QTL is known as mitochondrial HSP70, GRP75 or 

mortalin, that is predominantly localized in mitochondria but also in other cellular 

compartments such as endoplasmic reticulum, plasma membrane and cytoplasm (Kaul, 

Deocaris, & Wadhwa, 2007; Liu, Liu, Song, & Zuo, 2005). It is described as a multifunctional 

DnaK-type chaperone involved in many biological processes such as transportation of 

nucleus-encoded proteins to the mitochondrial matrix, cell protection against oxidative stress 

and apoptosis, import and translocation of cytosolic proteins, control of cell proliferation, 

muscle activity and proteasomal degradation of proteins (Kaul et al., 2007). This protein is the 

only chaperone described to be regulated by glucose privation, Ca2+ homeostasis and 

perturbation of glycolysis (Mayer, 2013). Accordingly, we previously found HSPA9 to be 

related to pH decline with strong correlation with pH3h and ultimate pH (Gagaoua, Terlouw, 

Micol, et al., 2015). Numerous proteomic studies identified this protein as a good biomarker 

of beef tenderness (Grabez et al., 2015; Jia et al., 2009; Rodrigues et al., 2017). HSPA9 is 

able to enhance Ca2+ trafficking from endoplasmic reticulum toward mitochondria and cytosol 

(Glancy & Balaban, 2012).  

In previous studies in cattle where this protein was identified as an interesting biomarker of 

beef qualities (Gagaoua, Couvreur, et al., 2017; Gagaoua, Terlouw, Boudjellal, et al., 2015; 

Gagaoua, Terlouw, Micol, et al., 2015; Gagaoua, Terlouw, & Picard, 2017), we suggested that 
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increased Ca2+ levels may exert regulatory effects on many proteolytic systems, namely, μ-

calpain and proteins involved in metabolic and apoptotic processes. Accordingly, a biological 

mechanism involving HSPA9 in muscle to meat conversion was described (Picard & 

Gagaoua, 2017). The differential abundance of HSPA9 between groups of tenderness only in 

cows and steers and in LT muscle could mean that the protection against apoptosis and 

oxidative stress is higher in oxidative than in glycolytic muscles. The same hypothesis could 

be proposed for PARK7, or DJ-1, identified as a candidate biomarker of tenderness (Table 2) 

only in LT muscle in coherence with an interaction between these two proteins (Gagaoua, 

Terlouw, Boudjellal, et al., 2015). 

MSRA is one of two mammalian methionine sulfoxide reductase isoforms. It is ubiquitous 

and highly conserved with mitochondrial and cytosolic forms translated from a single gene 

with localization dependent on alternative translation initiation sites. It is involved in the 

repair of oxidatively damaged proteins to restore their biological activity. Its main function is 

to convert methionine sulfoxide formed after methionine oxidation due to exposure to reactive 

oxygen species (ROS), to reduced methionine (Bin, Huang, & Zhou, 2017). Therefore, the 

action of MSRA has many cellular and physiological consequences as protection of cells 

against oxidative damage (Kantorow, Lee, & Chauss, 2012). The normal distribution of 

MSRA in the mammalian cell is approximately three folds greater in the cytosol than in 

mitochondria, hence suggesting potential role as antioxidant repair enzyme but with important 

role in apoptosis (Hunnicut, Liu, Richardson, & Salmon, 2015).  

This meta-proteomics is the first to identify MSRA as a tenderness biomarker, but it was 

recently reported for beef color (Joseph, Suman, Rentfrow, Li, & Beach, 2012; Wu et al., 

2016). The role of MSRA in tenderness and other meat quality traits could be through its 

cellular response to oxidative stress induced by post-mortem physiological conditions. It is 

well documented that oxidative stress induces damage to cellular proteins compromising their 

functions and leading to cellular dysfunction and finally cell death (Lana & Zolla, 2015; Ouali 

et al., 2013; L. L. Wang et al., 2018; Xing, Gao, Tume, Zhou, & Xu, 2019). Some authors 

described associations between MSRA with lipids and lipid-binding proteins (Lim, Kim, & 

Levine, 2017; Y. Y. Xu et al., 2015). This could partly explain why MSRA was found to be 

positively related to tenderness only in steers and cows which are known to be fatter than 

young bulls (Gagaoua, Terlouw, et al., 2016). We could speculate that in muscles with high 

intramuscular fat content that are likely with greater oxidative metabolism, oxidative stress is 

high and proteins such as MSRA would play pivotal role. 
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7.5. Major beef tenderness biomarkers specific to ST muscle 

PVALB or Parvalbumin, was found in this review (4 times) specifically related to 

tenderness in ST muscle and only in young bulls whatever the breed and evaluation method 

(Table 2). To our knowledge, this meta-proteomic study is the first to report PVALB as a 

biomarker of beef tenderness. It was further identified by the ProteQTL tool of ProteINSIDE 

(http://www.proteinside.org/) as tenderness QTL. In Charolais (in 2 experiments) and 

Limousin young bulls, PVALB was higher abundant in tender groups a PVALB is a low 

molecular mass (9 – 11 kDa) calcium binding protein that regulates muscle contraction and 

relaxation (Cai et al., 2001). Several studies showed that PVALB is located exclusively in the 

sarcoplasm of type II (fast-twitch) mammalian skeletal muscle fibers (Muntener, Kaser, 

Weber, & Berchtold, 1995). The basic mechanism underlying the contraction–relaxation 

cycle of vertebrate muscles is based on a Ca2+ exchange between the sarcoplasmic reticulum 

and the myofibrils. Relaxation is achieved by retrieval of Ca2+ from the myofibrils and 

transfer to the sarcoplasmic reticulum. For example, mice with knockout of PVALB cannot 

properly regulate their intracellular Ca2+ concentration and require longer time to attain peak-

twitch tension than their littermates (Cai et al., 2001). Its affinity to Ca2+ is higher than 

troponin C, but less than the sarcoplasmic reticulum Ca2+ ATPase pumps. From these, the role 

of PVALB in tenderness could be explained by its role in muscle relaxation through calcium 

binding and reduction of intracellular Ca2+. The fact that PVALB is expressed in fast fibers 

could explain why it discriminated groups of tenderness in ST muscle and not those of LT. It 

is well documented in cattle that ST contains a higher proportion of fast fibers than LT 

(Gagaoua, Terlouw, Boudjellal, et al., 2015). Moreover, muscles of the hardy Salers breed are 

characterized by higher proportions of slow oxidative fibers than the other CH, LI or BA 

breeds (Jurie et al., 2005), thereby, explaining why PVALB was not identified as a 

discriminating biomarker of Salers tenderness groups. On another hand, it has been reported 

that ST muscle from continental and French beef breeds are tenderer when they are likely fast 

glycolytic (Picard et al., 2014). This is totally coherent with a higher abundance of PVALB in 

this type of muscle.  

8. Conclusion and future perspectives 

This integromics work of comparative proteomic studies from one laboratory aimed to 

identify robust candidate biomarkers of beef tenderness. Combined with data about published 

tenderness QTL and proteomics studies from the large literature, the results of this review 
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allow selecting among the list of 61 potential candidates those, which are more frequently 

differential between groups of tenderness according to the evaluation method of tenderness, 

muscles differing in their contractile and metabolic properties and breeds for three genders 

(young bulls, steers and cows). This meta-proteomics highlighted the importance of myriad 

biological pathways, namely the involvement of heat shock proteins with both small and large 

HSPs such as HSPB1 and HSPB6 identified whatever the factors described above. On another 

hand, HSPA1B, was found as a robust candidate biomarker of WBSF whatever the gender. 

Structural proteins were as expected identified in several studies and the most interesting for 

validation seemed to be Troponin T Fast (TnnT3), MYH1, MYL1, MYL2 MYBPH and 

ACTA1. Among the metabolic enzymes, PGM1, was found as a biomarker of toughness in 

bulls and of tenderness in cows and ENO1 and ENO3 highlight similarities between young 

bulls and cows. Among the list of the biomaekers, some of them highlighted muscle 

specificities such as Parvalbumin (PVALB) foud a major beef tenderness biomarker specific 

to ST muscle. Taken all together, the selected candidates are proposed for a deep analysis in 

the step “qualification and verification” of the pipeline of biomarkers discovery (Rifai et al., 

2006) in order to validate their relationships with tenderness on a large number of samples 

and using several proteomics based approaches. 
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Figure captions 

Figure 1. Pipeline of beef tenderness biomarkers discovery followed in this meta-proteomics 

study. The pipeline is based on 6 phases from identification/discovery of biomarkers to the 

commercialization of a tool based on the list of validated biomarkers. The main proteomic 

workflow strategy includes 6 steps following comparative proteomics based (1) on extreme 

tenderness groups (Tender vs. Tough) selected using instrumental Warner-Bratzler shear force 

(WBSF) or sensory analysis by trained panellists on Longissimus thoracis (LT) or 

Semitendinosus (ST) muscles of different types of cattle: young bulls, steers and cows of several 

breeds. Then, (2) muscle protein extracts are prepared using frozen samples homogenised and 

centrifuged using an accurate buffer. The protein extract samples are then (3) subjected to 2-DE 

analysis where the proteins are first fractionated by isoelectrofocalisation (IEF) on 18 cm length 

IPG strips pH range 4 – 7 followed by a separation of the proteins in the second dimension of 

the SDS-PAGE gel using their molecular weights. Afterwards, (4) statistical comparisons are 

performed on the whole protein spots between tender vs. tough groups for each gel. Significance 

Analysis of Microarray (SAM) method based on a modified t-test is used to consider not only 

the individual variability but also the average variability of proteins with the same level of 

expression than the considered protein. Only the proteins with a fold change >1.5 were retained. 

Therefore, (5) the significantly differential spots were carefully excised by hand from at least 

three different replicate gels and placed in clean Safe-Lock Tube for distaining and preparation 

for identification by mass spectrometry. Finally, (6) protein spots are trypsin digested and 

subjected to identification using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-

time-of-flight) and each Peptide mass fingerprints (PMF) of trypsin-digested spots are compared 

to Bos taurus Swiss Prot database or to other mammalian using MASCOT software. 

Figure 2. Enriched Gene Ontology (GO) terms of the annotated A) 50 putative protein 

biomarkers of Longissimus thoracis and B) 28 proteins of Semitendinosus identified in the 12 

experiments. The results were generated with ProteINSIDE tool, and the protein gene names 

annotated by a GO term are listed. 

Figure 3. Pie charts highlighting the distribution of the protein biomarkers by biological 

pathway for A) both muscles (n = 61 proteins), B) Longissimus thoracis (n = 50) and C) 

Semitendinosus (n = 28). 

Figure 4. STRING protein-protein interaction networks (http://string-db.org) linking the 

annotated A) 50 putative protein biomarkers of Longissimus thoracis and B) 28 proteins of 
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Semitendinosus identified in the 12 experiments. The ProteQTL tool 

(http://www.proteinside.org/) revealed 14 QTL in comparison to the large literature that are 

shown in the interactomes by blue ovals for both muscles. 

Figure 5. Pairwise protein distance (D) matrix expressed as a percentage based on the 61 

putative protein biomarkers identified in each of the 12 proteomic experiments. The meat 

samples measured for tenderness by WBSF are highlighted by a grey colour and those evaluated 

by a sensory panel are let blank.  

Figure 6. Venn diagram highlighting the distribution of 28 putative protein biomarkers from 

Longissimus thoracis muscle among Charolais young bulls (n = 22 proteins), steers (n = 9) and 

cows (n = 10) and related to tenderness evaluated by Warner-Bratzler Shear Force (WBSF). 

Two biomarkers, HSPA1B and TPI1, were common to the three Charolais animal types. The 

UniprotID of the proteins and direction (positive (green), negative (red), or positive/negative 

(orange)) of the relationships with tenderness are given in the table by biological family for all 

the proteins. 

Figure 7. Venn diagram highlighting the distribution of 26 putative protein biomarkers from 

Longissimus thoracis muscle and young bulls related to tenderness evaluated by sensory panel 

from three breeds: Charolais (n = 8 proteins), Limousin (n = 14) and Blond d’Aquitaine (n = 

15). Two biomarkers, ACTA1 and HSPB1, were common to the three breeds. The UniprotID of 

the proteins and direction (positive (green), negative (red), or positive/negative (orange)) of the 

relationships with tenderness are given in the table by biological family for all the proteins. 

Figure 8. Venn diagram highlighting the distribution of 17 putative protein biomarkers from 

Semitendinosus muscle and young bulls related to tenderness evaluated by sensory panel from 

four breeds: Charolais (n = 9 proteins), Limousin (n = 4), Blond d’Aquitaine (n = 9) and Salers 

(n = 3). The UniprotID of the proteins and direction (positive (green) or negative (red)) of the 

relationships with tenderness are given in the table by biological family for all the proteins. 

Figure 9. Venn diagram highlighting the distribution of 21 putative protein biomarkers from 

Longissimus thoracis muscle among Charolais (n = 10 proteins) and PDO Maine-Anjou cows (n 

= 17), and related to tenderness evaluated by Warner-Bratzler Shear Force (WBSF). Six 

biomarkers, ENO1, ENO3, MYH1, HSPB1, HSPA1B and MSRA, were common to the two 

cow breeds. The UniprotID of the proteins and direction (positive (green) or negative (red)) of 

the relationships with tenderness are given in the table by biological family for all the proteins. 
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Figure 10. Venn diagram highlighting the distribution of 34 putative protein biomarkers among 

Longissimus thoracis (n = 22 proteins) and Semitendinosus muscles (n = 16) from young 

Charolais bulls and related to tenderness evaluated by Warner-Bratzler Shear Force (WBSF). 

Four biomarkers, TPI1, HSPB6, HSPB1 and YWHAE, were common to the two muscles. The 

UniprotID of the proteins and direction (positive (green), negative (red), or positive/negative 

(orange)) of the relationships with tenderness are given in the table by biological family for all 

the proteins. 

Figure 11. Venn diagram highlighting the distribution of 25 putative protein biomarkers from 

Longissimus thoracis muscle from young Charolais bulls comparing the proteins related to 

WBSF (n = 22 proteins) and sensory panel (n = 8). Five biomarkers, PGM1, ACTA1, TnnT3, 

HSPB1 and PARK7, were common to the two evaluation methods of tenderness. The UniprotID 

of the proteins and direction (positive (green), negative (red), or positive/negative (orange)) of 

the relationships with tenderness are given in the table by biological family for all the proteins. 

Figure 12. Venn diagram highlighting the distribution of 22 putative protein biomarkers from 

Semitendinosus muscle from young Charolais bulls comparing the proteins related to WBSF (n 

= 16 proteins) and sensory panel (n = 9). Three biomarkers, MYL2, HSPB1 and PVALB, were 

common to the two evaluation methods of tenderness. The UniprotID of the proteins and 

direction (positive (green) or negative (red)) of the relationships with tenderness are given in the 

table by biological family for all the proteins. 
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Figure 3.  

A) Both muscles  
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Figure 4.  Figure 4.
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Figure 5. 

LT_WBSF_Steers_CH *  75 - 80%

LT_WBSF_Bulls_CH 87 *  80 - 85%

LT_WBSF_Cows_CH 84 78 *  85 - 90%

LT_WBSF_Cows_PDO MA 88 87 78 *  90 - 100%

ST_WBSF_Bulls_CH 92 89 92 94 *

LT_Sensory_Bulls_CH 94 83 89 88 92 *

LT_Sensory_Bulls_LI 100 83 88 87 90 86 *

LT_Sensory_Bulls_BA 88 81 84 84 84 83 79 *

ST_Sensory_Bulls_CH 94 87 84 88 88 76 96 83 *

ST_Sensory_Bulls_LI 100 96 93 100 90 92 100 100 77 *

ST_Sensory_Bulls_BA 94 87 89 85 92 88 91 88 78 92 *

ST_Sensory_Bulls_SA 100 92 92 100 89 91 94 89 92 100 100 *
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Table 1. Brief description of the experimental designs, muscle and breeds and proteomics conditions followed in the 12 proteomic studies.  

 

 

 

 

Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 Study 7 Study 8 Study 9 Study 10 Study 11 Study 12

References of the experimental 

design 
Guillemin et al.  2011 Guillemin et al. 2011 Aviles et al. 2014

Gagaoua et al. 2017

Couvreur et al. 2019
Guillemin et al. 2011 Chaze et al.  2013 Chaze et al.  2013 Chaze et al. 2013 Jurie et al.  2005 Jurie et al. 2005

Morzel et al. 2008 

Picard et al.  2006
Jurie et al.  2005
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Breed Charolais Charolais Charolais PDO Maine Anjou Charolais Charolais Limousin Blond d'Aquitaine Charolais Limousin Blond d'Aquitaine Salers 

Animal type Steers Bulls Cows Cows Bulls Bulls Bulls Bulls Bulls Bulls Bulls Bulls 

Age at slaughter 30 months 17 months 86 months 67 months 17 months 16 months 16 months 15 months 15 months 15 months 15 months 15 months

Muscle and sampling position 
Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Semitendinosus in the 

center

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Longissimus thoracis, 

between 6
th
 & 7

th
 rib

Semitendinosus in the 

center

Semitendinosus in the 

center

Semitendinosus i n the 

center

Semitendinosus in the 

center

Sampling time 15 min post-mortem 15 min post-mortem 60 min post-mortem 24 h post-mortem 15 min post-mortem 24 h post-mortem 24 h post-mortem 24 h post-mortem 15 min post-mortem 15 min post-mortem 60 min post-mortem 15 min post-mortem

Ageing 21 days 21 days 14 days 14 days 21 days 14 days 14 days 14 days 14 days 14 days 14 days 14 days 

Sensory evaluation, 55°C No No No No No Yes Yes Yes Yes Yes Yes Yes

Sensory scores (0 - 10) of TE vs. TO - - - - - 7.24 ± 0.40 vs.  5.0 ± 0.65 7.17 ± 0.65 vs.  4.4 ± 4.97  5.52 ± 0.2 vs. 3.73 ± 0.5 6.52 ± 0.0 vs. 4.36 ± 0.3 7.46 ± 0.9 vs. 4.26 ± 0.2 5.10 ± 0.2 vs. 3.92 ± 0.1 6.64 ± 0.3 vs. 4.21 ± 0.1

WBSF Yes Yes Yes Yes Yes Yes Yes Yes No No No No

Shear force values, N/cm² (unless 

study 3 which is in kg) of TE vs. TO
23.4 ± 2.3 vs. 43.2 ± 3.5 27.7 ± 4.9 vs. 44.5 ± 6.1 1.75 ± 0.4 vs.  3.44 ± 0.2 27.9 ± 2.7 vs. 69.6 ± 7.6 33.7 ± 2.97 vs. 81.3 ± 8.55 30.9 ± 5.4 vs. 57.0 ± 16.3 32.2± 4.75 vs.  59.2 ± 9.8 45.6 ± 9.3 vs. 78.3 ± 5.5 - - - -

Number of  samples in TE vs.  TO 6 (3 + 3) 8 (4 + 4) 10 (5 + 5) 10 (5 + 5) 8 (4 + 4) 20 (10 + 10) 20 (10 + 10) 20 (10 + 10) 4 (2 + 2) 4 (2 + 2) 6 (3 + 3) 4 (2 + 2)

Protein extract 

Proteomic approach 

IPG strips 18 cm, pH 4 - 7

2DE + MALDI-TOF/TOF 

Myofibrillar & sarcoplasmic proteins 
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Table 2. List of the 61 putative protein biomarkers by biological pathway identified in the 12 

experiments.1 

1 The proteins in the rows shown in green are highest in tender meat, those in red are lowest in tender meat 

and those in orange are both positive and negative depending on the protein isoform. 
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Q9XSC6 Creatine kinase M-type CKM 1 18 times +

Q9XSJ4 Alpha-enolase ENO1 1 1 1 1 14 times -

Q3ZC09 Beta-enolase ENO3 1 1 1 1

P10096 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 1

Q9XSG3 Isocitrate dehydrogenase [NADP] cytoplasmic IDH1 1

Q3T145 Malate dehydrogenase, cytoplasmic MDH1 1

Q5E9B1 L-lactate dehydrogenase B chain LDHB 1 1

P11966 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial PDHB 1

Q08DP0 Phosphoglucomutase-1 PGM1 1 1 1 1 1 1

P79334 Glycogen phosphorylase PYGM 1

Q5E956 Triosephosphate isomerase TPI1 1 1 1 1

Q5EA88 Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic GPD1 1

P16116 Aldo-keto reductase family 1 member B1 AKR1B1 1

F1MGC0 Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial SUCLA2 1

P00423 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial COX4I1 1

P15690 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial NDUFS1 1 1

P68138 Actin, alpha skeletal muscle ACTA1 1 1 1 1 1 23 times +

Q32KS3 F-actin-capping protein subunit alpha CAPZA3 1 16 times -

P79136 F-actin-capping protein subunit beta CAPZB 1 1 1 2 times +/-

Q9BE39 Myosin-7 MyH7 1

Q9BE40 Myosin-1 MyH1 1 1 1 1

Q3SZE5 Myosin regulatory light chain 2, skeletal muscle isoform type 1 MYL2 1 1 1 1

Q0VBZ1 Myosin binding protein H MYBPH 1 1 1 1

A0JNJ5 Myosin light chain 1A,slow isoforme MYL1 1 1 1

Q5E9E2 Myosin regulatory light chain2,phosphorylée MLC2-P MYRL2 1

P85100 Myosin light chain3, MYL3 1 1

Q8MKI3 Troponin T, Fast TnnT3 1 1 1 1 1 1 1

Q8MKH6 Troponin T, slow TnnT1 1 1

O62654 Desmin DES 1

Q2KJH4 WD repeat-containing protein 1 WDR1 1 1

Q7SIB2 Collagen alpha-1(iv) chain COL4A1 1

Q3ZCH0 Stress-70 protein, mitochondrial (GRP75) HSPA9 1 1 1 15 times +

Q0VCX2 Endoplasmic reticulum chaperone BiP (GRP78) HSPA5 1 15 times -

Q148F8 Heat shock protein beta-6 (Hsp20) HSPB6 1 1 1 1 1 5 times +/-

Q3T149 Heat shock protein beta-1 (Hsp27) HSPB1 1 1 1 1 1 1 1 1 1

P34933 Heat shock-related 70 kDa protein 2 HSPA2 1

P19120 Heat shock cognate 71 kDa protein HSPA8 1

Q27975 Heat shock 70 kDa protein 1A HSPA1A 1 1

Q27965 Heat shock 70 kDa protein 1B HSPA1B 1 1 1 1

P31948 Stress-induced-phosphoprotein 1 STIP1 1 1

P02510 Alpha-crystallin B chain CRYAB 1 1 1

P62261 14-3-3 protein epsilon YWHAE 1 1 1 1

P07106 Acyl-CoA-binding domain-containing protein 5 ACBD5 1 10 times +

F1MX12 Ankyrin repeat domain 2 ANKRD2 1 5 times -

Q3SYR3 Probable C->U-editing enzyme APOBEC-2 APOBEC2 1

P07107 Acyl-CoA-binding protein DBI 1

P50397 Rab GDP dissociation inhibitor beta GDI2 1

P02769 Serum albumin ALB 1 1

Q5EA80 Geranylgeranyl transferase type-2 subunit alpha RABGGTA 1

E1BE77 Tripartite motif-containing protein 72 TRIM72 1

Q3MHL4 Adenosylhomocysteinase AHCY 1

Q86TD4 Sarcalumenin SRL 1

Q0VCG3 Parvalbumin alpha PVALB 1 1 1 1

P28801 Glutathione S-transferase P GSTP1 1 6 times +

P00442 Superoxide dismutase [Cu-Zn] SOD1 1 5 times -

O77834 Peroxiredoxin 6 PRDX6 1

Q5E946 Protein/nucleic acid deglycase DJ-1 PARK7 1 1 1

P54149 Mitochondrial peptide methionine sulfoxide reductase MSRA 1 1 1

P38657 Protein disulfide-isomerase A3 PDIA3 1 1

Q5E9K0 Proteasome subunit beta type-2 PSMB2 1 2 times +

Q5E9F9 26S proteasome regulatory subunit 7 PSMC2 1

Total 9 22 10 17 16 8 14 15 9 4 9 3 74 times +

55 times -

7 times +/-
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Highlights 

· First meta-proteomics gathering a comprehensive list of candidate biomarkers of beef 

tenderness. 

· Integration of 61 putative biomarkers of beef tenderness from 12 proteomic studies from the 

same laboratory. 

· Biomarkers of Longissimus thoracis and Semitendinosus muscles were grouped into 6 

biological pathways. 

· Biological mechanisms underpinning muscle to meat conversion. 

· Robust biomarkers under several factors of genders, breeds, muscles and evaluation method 

of tenderness. 

· Hsp27 (HSPB1) is an interesting biomarker of beef tenderness. 
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