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Abstract

Metabarcoding of feces has revolutionized the knowledge of animal diets by providing

unprecedented resolution of consumed resources. However, it is still unclear how different

methodological approaches influence the ecological conclusions that can be drawn from

such data. Here, we propose a critical evaluation of several data treatments on the inferred

diet of the bat Plecotus auritus using guano regularly collected from various colonies

throughout the entire active season. First and unlike previous claims, our data indicates that

DNA extracted from large amounts of fecal material issued from guano accumulates yield

broader taxonomic diversity of prey than smaller numbers of pellets would do, provided that

extraction buffer volumes are adapted to such increased amounts of material. Second, tro-

phic niche analyses based on prey occurrence data uncover strong seasonality in the bat’s

diet and major differences among neighboring maternity colonies. Third, while the removal

of rare prey items is not always warranted as it introduces biases affecting particularly sam-

ples with greater prey species richness. Fourth, examination of distinct taxonomic depths in

diet analyses highlights different aspects of food consumption providing a better under-

standing of the consumer’s diet. Finally, the biologically meaningful patterns recovered with

presence-absence approaches are virtually lost when attempting to quantify prey consumed

using relative read abundances. Even in an ideal situation where reference barcodes are

available for most potential prey species, inferring realistic patterns of prey consumption

remains relatively challenging. Although best practice in metabarcoding analyses will

depend on the aims of the study, several previous methodological recommendations seem

unwarranted for studying such diverse diets as that of brown long-eared bats.
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Introduction

The advent of high-throughput sequencing (HTS) and metabarcoding approaches in particu-

lar provides unprecedented resolution in the study of animal diets [1–3]. Such sequencing

techniques and related automated species identification allow the characterization of multiple

assemblages of prey species through a single sequencing process, and has typically been applied

to identify food resources recovered in feces, stomach contents or regurgitates [4]. So far,

metabarcoding approaches has been used to unravel the diet of a diversity of invertebrates [5–

7], fishes [8–10], reptiles [11], birds [12] or mammals [13–16]. It has been widely used in

descriptive studies of diet composition, foraging strategies, and to resolve more complex ques-

tions about trophic ecology (e.g., resource partitioning, food web studies). These molecular

techniques enable the study of elusive species’ diet such as that of insectivorous bats [17–25].

Before HTS, traditional methods of diet analysis of bat guano were based on morphological

identification of macroscopic prey remains and relied on expert knowledge of invertebrate

anatomy and diversity. Hence the taxonomic resolution was often limited to the order or fam-

ily level [26–30]. With molecular methods of identification, the trophic ecology of these mam-

mals can be characterized with much higher resolution across numerous samples [31–34],

potentially unravelling overlooked dietary diversity, or identifying resource partitioning

between species that was missed by traditional approaches [35].

Despite their huge promises, DNA-based methods are not free of limitations and potential

methodological biases [36–39]. Experimental issues such as preferential amplification during

PCR steps or the process of sequence demultiplexing and species identification have been

examined in previous reviews [40–43]. However potential implications for a number of other

factors that could lead to inaccurate diet analyses are still under explored. Here, we compare

how some methodological choices may influence conclusions on dietary diversity and varia-

tions of trophic niche overlap in the diet of an insectivorous bat species, the brown long-eared

bat Plecotus auritus (Linnaeus, 1758), which predominantly feeds on moths [28, 35]. Such a

specialized diet offers ideal conditions for metabarcoding analyses as lepidopterans have been

covered by global barcoding initiatives (see [44] and references therein), and thus relatively

comprehensive reference databases exist for the molecular identification of most potential

prey. Furthermore, the maternity colonies of long-eared bats are frequently established in

buildings, allowing the easy collection of bat droppings without disturbing the animals.

Here, we monitored several maternity roosts established in close geographic proximity and

throughout an entire period of occupancy to explore seasonal and inter-colonial variations in

the exploited prey spectrum. The analyzed samples either included aggregates of few pellets

(typically three) as recommended by Mata et al. [45], or larger pools of pellets (typically 15–20

pellets) in order to evaluate the diversity of prey consumed by animals from each maternity

colony. As no bat was captured to avoid disturbances, we did not attempt to estimate individ-

ual-based diets, but only community or roost-level samples. Whole DNA extracts were sub-

jected to classical metabarcoding approaches for molecular identification of prey, but the

resulting original dataset was then altered in three different ways to see how such alterations

would influence our conclusions about the long-eared bat’s diet. The alteration of the original

dataset included (1) discarding rare prey items, (2) relying on a lower taxonomic depth and (3)

quantifying prey contribution using sequence read counts. Indeed, removal of unique prey

items from dataset is often recommended in metabarcoding studies, as rare items are purport-

edly more susceptible to reflect sequencing errors or may exaggerate their importance in diet

diversity [36, 40]. However, no standard threshold has been established so far to define what a

rare item is. Furthermore, the resulting effect of such removal on ecological conclusions still

needs to be examined. The impact of the level of taxonomic resolution used for prey

Methodological biases in metabarcoding study of diversified diets

PLOS ONE | https://doi.org/10.1371/journal.pone.0219135 July 5, 2019 2 / 17

https://doi.org/10.1371/journal.pone.0219135


identification may also impact on ecological conclusions. This is especially likely when meta-

barcoding studies need to be compared with the ones leading to coarser identification levels,

typically those using morphological identification of prey remains or those using barcoding

markers with low taxonomic resolution. Finally, a recent study based on simulated datasets

suggest that weighting prey occurrence according to read counts rather than simply recording

their presence-absence may provide a more accurate view of consumers’ diet [38]. However

results from these simulations have been poorly evaluated with real biological datasets that

often include much more diversified diets.

Material and methods

Feces sampling and pooling

The sampling included feces collected from April to October 2015 from five monospecific col-

onies of genetically identified Plecotus auritus [46, 47]. These maternity colonies were situated

in buildings (attics, steeples and a tunnel) and established within a 10 km-radius area in the

Geneva region (Fig 1). They comprised a variable number of 10 to 60 individuals each. Four

colonies were found in the lowlands at about 450 m a.s.l., while the fifth one was located in a

more mountainous area at about 900 m a.s.l., but still in close geographic proximity to the oth-

ers. In order to ensure that the fresh fecal material would dry quickly, thick absorbent paper

sheets were set under hanging areas used by the bats. All accumulated feces were removed

every two weeks (i.e. 11 dates in total), from the establishment of the maternity colony until

bats eventually left the roost to complete their life cycle elsewhere. These sampling dates corre-

spond to major periods in maternity roosts of bats [48], hereafter referred to as spring (from

mid-April to mid-June, i.e. before pups are born), summer (from mid-June to mid-August,

when pups are reared) and autumn (from mid-August to mid-October, when juveniles are

weaned). The collected guano was stored in paper envelopes and preserved in a dry atmo-

sphere before extraction.

For each colony and at each sampling date, we considered a “community sample” as a ran-

dom aggregate of 15–20 pellets taken from the bulk of the collected droppings. These commu-

nity samples weighted approximatively 60 ± 3 mg and likely represented the cumulated diet of

the entire maternity colony during the two-weeks intervals, not the contribution of single indi-

viduals. In order to test whether smaller samples would yield an equivalent number of prey

[45], we also sampled 6 independent biological replicates from each of the 11 collecting dates

in the maternity colony of Satigny. In each of these replicates, hereafter called “small repli-

cates”, only three pellets (about 8 mg) were randomly taken from the collected guano samples.

Molecular analysis

DNA was extracted from each sample with the QIAamp DNA Stool Mini Kit (Qiagen, Switzer-

land) using protocol modifications suggested by Zeale et al. [49]. For the community samples,

a further technical step was added to prevent the pipetting of too much fecal material into the

centrifuge tube. We used two Eppendorf tubes instead of one filled with Buffer ASL; the guano

samples were thus ground and soaked in twice the recommended volume of buffer before cen-

trifugation. The supernatant of both tubes was then pooled for subsequent extraction steps.

Purified DNA was preserved at -20˚C. DNA extracts from all colonies and dates were random-

ized on plates to prevent artefactual colony or seasonal autocorrelation due to contamination

between adjacent wells. To amplify a wide range of potential invertebrate prey, we used the

primer pair ZBJ-ArtF1c and ZBJ-ArtR2c [49] which amplifies 157 bp of the COI barcode gene

[50]. After library construction and equimolar multiplexing of purified PCR products, the

final pool was sequenced on an Illumina Genome Analyzer II using 150 by 150 paired-end
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reads. Raw sequences were sorted and filtered using a script mixing FASTX Toolkit (http://

hannonlab.cshl.edu/fastx/toolkit; 23-09-16) and USEARCH [51] functions as proposed by

André et al. [52]. Briefly, the paired-end reads were joined on their overlapping ends. The

overlap had to be at least 10 bases long with an 8% maximum difference. Primers were

removed and sequences were filtered to keep only those with at least 90% of the bases with a

quality index greater than Q30 [52]. DNA sequences shorter than 149 bp or represented by

less than five reads were filtered out in order to remove likely sequencing errors. Within each

sample, sequences represented by less than 0.1‰ of read counts were discarded in order to

ensure evenness of sequencing depth across samples, and as recovery biases of this order of

magnitude have been reported in metabarcoding analyses of mock communities [53]. The

retained reads were clustered into unique molecular operational taxonomic units (MOTUs)

using the software MEGAN [54], allowing for one mutation within each MOTU (Min Percent

Identity: 99.0). MOTUs were then submitted to the NCBI BLAST tool [55] which relies on the

GenBank database, and taxonomic identification from the resulting file was performed with

MEGAN. The same MOTUs were independently identified through the BOLD sequence iden-

tification engine [56]; this taxonomically well-curated database allowed to gain taxonomic res-

olution for some MOTUs. The presence of blank extractions and PCR negative controls

allowed us to exclude MOTUs likely originating from extraction or PCR contaminants from

Fig 1. Sampling dates and map of the five colonies of long-eared bats studied in the Geneva region. Topographic

slopes are shaded from pale (flat) to dark grey (steep). The dotted circle represents a virtual 10 km-radius area

encompassing all the five sampled colonies: (1) Satigny, (2) pont Butin, (3) Choulex, (4) Presinge and (5) Sappey. The

inset (lower left) provides a location map of the study area near Lake Geneva in southwestern Switzerland.

https://doi.org/10.1371/journal.pone.0219135.g001
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further analyses. A final taxonomic check was performed manually in order to ensure that

each identified MOTU indeed corresponded to species known from inventories of inverte-

brates at local scale [57, 58] or across all Switzerland [59].

Analyzed datasets

We followed Deagle et al. [38] to calculate the percentage of occurrence (POO) for each food

item in the total dataset, weighted by the total number of prey found in a given sample (hereaf-

ter called dataset “wPOO”). This wPOO dataset was considered to be the original, unaltered

dataset. We considered two altered versions of this wPOO dataset. Firstly, we removed all rare

MOTUs, defined here as those found only in a single sample (dataset “No rare items”). Notice

that such singletons were usually represented by high read numbers, so should not be assimi-

lated to those MOTUs excluded from the raw database because they were represented by low

read counts (see previous section). A second altered dataset was generated by retaining only

the family of each identified prey to obtain a coarser level of taxon identification (dataset

“Family level”). Finally, we also calculated the relative read abundance of each prey (dataset

“RRA”), which assumes that the abundance of a prey is proportional to its sequence read

counts. All data manipulations, computations, statistical tests and plotting were performed in

R [60], using the packages dplyr [61], tidyr [62] and ggplot2 [63]. The effectiveness of sampling

effort and that of sequencing depth per sample were analyzed using accumulation curves cal-

culated with the package iNEXT [64]. The Chao2 minimum estimator of asymptotic species

richness [65, 66] was computed with the software EstimateS 9.1.0 [67] for each sampling

regime.

Ecological indices

Trophic niche breadth for each community sample was calculated using the Levins’ index [68].

We calculated the seasonal niche breadth for each of the three periods considered (Fig 1), as

the mean of Levins’ indices measured for all community samples in a given season. Departure

from normality was assessed with Shapiro’s tests, and homogeneity (equality of variance) of

indices was subsequently assessed either with Levene’s or F-tests, depending on the outcome

of Shapiro’s tests. Statistical significance of differences in niche breadth was then tested by per-

forming t-tests, accounting for differences in variance when necessary. For more detailed com-

parisons among colonies and across seasons, community samples from related dates were

grouped within seasons (Fig 1). Trophic niche overlap between these seasonal samples was

then measured with the Morisita-Horn index Cλ [69, 70]. This measure is derived from the

Simpsons diversity index and ranges from 0 (no overlap in utilization of resources) to 1 (com-

plete overlap). Pairwise niche overlap constituted similarity matrices between samples of inter-

est, and were graphically represented by multidimensional scaling (MDS), using the Principal

Coordinates Analysis (PCoA) function implemented in the R package ade4 [71].

Results

Diet composition

The sequencing and initial sequence validation yielded to a total of 1973378 usable reads, or a

mean of 16583 reads per sample (n = 119). These reads produced 881 distinct sequences that

were clustered into 654 MOTUs, each represented by a 1125 read counts per sample on aver-

age (90% quantile: 5–5409). We discarded 111 of these MOTUs (17%) that did not match to

any referenced sequence (i.e. with<40% similarity values). We also discarded 57 other

MOTUs that obviously did not belong to the bat’s diet but likely resulted from environmental

Methodological biases in metabarcoding study of diversified diets

PLOS ONE | https://doi.org/10.1371/journal.pone.0219135 July 5, 2019 5 / 17

https://doi.org/10.1371/journal.pone.0219135


contamination. The sequences either did not represent animals (enterobacteriae, algae, fungi

or rotifers), or were small arthropods known to be attracted or feeding on guano deposits

(mites, machilids, anobiid and dermestid beetles). Finally, two species of slugs were also

removed from the full dataset, as they likely represented secondary prey consumed by carabid

beetles eaten by the long-eared bats. Extrapolation of species richness indicated that the

sequencing of all samples was deep enough for detecting all prey species present in the sampled

feces.

The final, complete dataset (used for wPOO and RRA) represented a panel of 521 identified

arthropods consumed by brown long-eared bats in the Geneva region. These arthropods were

classified into 3 classes, 15 orders and 94 families (S1 Table). 505 of these prey species (97%)

were insects, 12 were spiders (2%), and the remaining 4 (1%) were woodlice. Among insects,

53% were lepidopterans (n = 269), 34% were flies (n = 173), while bugs, beetles, neuropterans

and hymenopterans represented each 2% of consumed species. The other taxonomic groups

(barklice, caddisflies, cockroaches, earwigs, orthopterans, scorpionflies and snakeflies) were

only represented by less than five species. In addition to these well-identified arthropods, 63

MOTUs (12%) could not be reliably assigned to a species and were thus either kept identified

to the family (n = 49) or to the order level (n = 14).

Community samples vs. small replicates

The 11 community samples and 66 small replicates collected in the maternity colony of Satigny

produced a total 150 and 299 identifiable prey species, respectively, 109 of which were shared

by both sampling regimes (Fig 2A). However, for a comparable sampling effort, community

samples provided a significantly (P< 0.001) higher species richness (mean of 23.5 ± 3.1 prey

species per sample) than did small replicates (14.6 ± 5.4; Fig 2B). When considering the 53

community samples collected in all five maternity colonies, the mean prey species richness

(23.5 ± 7.1) was not different from that of Satigny only (Fig 2B). Extrapolations from accumu-

lation curves further suggested that these numbers only represent 50 to 60% of potential prey

richness inferred with Chao2 estimator (Fig 2C). These extrapolations also indicated that at

least. 266 community samples would have been necessary to detect 95% of total species rich-

ness inferred for the five colonies (818 MOTUs).

Seasonal variation of niche breadth

Analysis of the complete dataset, comprising all retained prey items, each considered as

weighted occurrence data (dataset wPOO), indicated that trophic niche breadth measured

across all colonies was significantly higher in community samples gathered during the summer

than during other seasons (P < 0.04) (Fig 3A). When expressed as number of prey species

detected per community sample, a mean of 21.8 was observed in spring, 26.9 during the nurs-

ing season and 21.4 after reproduction. When rare prey species were removed (i.e. 232

MOTUs or 56% of all identified prey species), summer samples exhibited the highest niche

breadth (21.7 prey species), which was significantly higher than during spring (16.8 prey spe-

cies). Species richness of samples gathered in summer and autumn(18.9 prey species) did not

differ significantly (Fig 3B). When using occurrences of prey identified at a coarser taxonomic

resolution (dataset Family level), niche breadth statistically differed between all seasons, and

continuously decreased throughout the year (Fig 3C). A mean of 5.6 families per sample were

represented in spring, 4.0 families in summer, and 2.4 families in autumn, indicating a taxo-

nomically more focused diet. Finally, when using the RRA dataset, no significant differences

in trophic niche breadth were observed between seasons, and seasonal mean Levins’ measures

ranged from 3.4 to 3.9 prey species (Fig 3D). Similar results were retrieved when using the
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Shannon-Wiener index of niche breadth [72], although it gives more weight to the rare

resources (S1 File).

Seasonal and geographic niche overlap

In the similarity matrix calculated for the wPOO dataset, Morisita-Horn indices measuring

trophic niche overlaps between maternity colonies and seasons ranged from 6 to 72%. Lowest

overlap values were observed between spring and autumn (6–28%; mean 25%), while overlap

values within seasons were systematically higher (28–72%; mean 47%), regardless of the colony

considered. The Sappey colony consistently exhibited lower overlap measures with other colo-

nies (28–52%; mean 38% within seasons), while all other colonies had larger overlaps (35–

72%; mean 54% within season). This tendency was clearly recovered in MDS projection, since

the three sampling seasons were well segregated along the first two axes of the PCA (Fig 4A).

Fig 2. Species diversity statistics for different regimes of guano sampling: Community samples for all colonies in

green (n = 53), community samples for the Satigny colony in red (n = 11), and small replicates in blue (n = 66). A)

Area-proportional Euler diagram of the total species diversity found under each sampling regime. B) Number of

species per sample, with significant differences between sampling regimes indicated by stars (��� P< 0.001). C)

Extrapolated accumulation curves of the number of detected prey species for each sampling regime.

https://doi.org/10.1371/journal.pone.0219135.g002
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The third axis consistently separated the Sappey colony during all the three seasons considered

(Fig 4A). The removal of rare prey items resulted in a very similar MDS representation (Fig

4B), and therefore did not affect the conclusions drawn from the full dataset. Conversely, both

the use of family-level prey identification (Fig 4C) and the RRA method (Fig 4D) failed to pro-

vide a clear-cut segregation of samples from a given colony or of samples from a given season.

When using such data alteration, samples were poorly discriminated by date on the first axis,

Fig 3. Seasonal trophic niche breadth variation (Levins’ index) measured in P. auritus. The four panels correspond

to different data manipulations: A) full dataset, with all prey items kept and identified to the species level and

considered as weighted occurrence data (wPOO); B) all unique occurrences discarded from the dataset (No rare

items); C) prey identified to the family level only (Family level); D) all prey items weighted according to their relative

read abundance (RRA). Significant differences are indicated by a star (P< 0.05).

https://doi.org/10.1371/journal.pone.0219135.g003

Fig 4. Multidimensional-scaling of trophic niche overlap (Morisita-Horn index) measured between fecal samples

of P. auritus from different colonies and collected in distinct seasons. Each colony is represented by a distinct shape,

and seasons by different colors. Size of symbols corresponds to their relative position along the third MDS axis. The

four panels correspond to different data manipulations: A) full dataset, with all prey items kept and identified to the

species level and considered as weighted occurrence data (wPOO); B) all unique occurrences discarded from the

dataset (No rare items); C) prey identified to the family level only (Family level); D) all prey items weighted according

to their relative read abundance (RRA).

https://doi.org/10.1371/journal.pone.0219135.g004
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and failed to identify the colony from Sappey as having lower dietary overlap compared to all

other colonies. The use of taxonomic depth limited to the family level provided higher indices

of niche overlap with most values being greater than 60%, while quantification by read abun-

dance provided much lower values of this measure with most being lower than 20%. Compara-

ble results were retrieved e,g, when using the Pianka’s Ojk measure of niche overlap [73, 74]

(S2 File).

Discussion

Prey detectability does not saturate in pooled poo samples

Mata et al. [45] compared the dietary diversity estimated for community samples against indi-

vidual pellets, and observed no significant difference in the number of prey species detected

under these two sampling regimes. They suggested that PCR competition between DNA tem-

plates could likely explain this saturation in prey detection, as DNA present in low frequency

may be outcompeted by more abundant ones during amplification. They recommended avoid-

ing pooling fecal samples to obtain a more accurate estimate of diet. We did not observe such

saturation in our community samples consisting of 15–20 pellets versus smaller amounts of

fecal material (3 pellets). Indeed, the former sampling regime allowed detection of 52% more

prey species per sample than the latter (23.5 versus 14.9 prey species, respectively; Fig 2B).

These results indicate that, given the same sequencing effort, the more pellets are pooled for

the extraction, the higher diversity of prey species will be recovered. The apparent saturation

in prey detection reported by Mata et al. [45] might therefore reflect a methodological problem

during the extraction step (e.g., clogged membrane) rather than an amplification bias during

PCR. Our extraction improvement consisted of using larger initial volumes of digestion buffer

when extracting large volumes of fecal material and probably overcame this problem. Contrary

to recommendation from Mata et al. [45], we thus suggest that community samples uncover

greater dietary diversities than individual samples do. Furthermore, such community samples

include droppings accumulated during several days and by several bats and thus better reflect

the range of prey species consumed by the colony members. They also reduce the stochasticity

associated with smaller samples, that are more affected by individual variation of prey con-

sumption (e.g., [45, 75, 76]).

Seasonal and geographical variation matters

Due to the marked seasonal phenologies of insect activity observed in most habitats [77], prey

assemblages available for insectivorous bats varies greatly throughout the year, in terms of

abundance, diversity and composition. With the complete dataset (wPOO; Fig 3A), we showed

that this seasonality is strongly reflected in the diet of P. auritus, which appears to exploit insect

prey opportunistically, with a peak in prey species richness marked during the summer, when

females are rearing their pups. Members of all maternity colonies appear to exploit the same

seasonal spectrum of insects, as niche overlap is much larger within a given season than

between different periods (Fig 4A). These seasonal shifts in prey consumption imply that die-

tary habits measured at a given period may poorly reflect the global diet, both in terms of tro-

phic niche breadth and composition, as already evidenced in other bats from temperate zones

[19, 35]. Hence, studies focusing on temporarily limited samplings that are typically conducted

during the summer (e.g., [78]; i.e. when prey availability may not represent limiting trophic

resources) could miss crucial information about diet composition, or niche partitioning.

Despite the small geographic scale envisioned here (i.e., within a radius of 10 km; Fig 1),

our data also shows that geographic location can be an important factor of variation. Indeed,

the four colonies of brown long-eared bats from the lowlands had systematically higher niche
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overlaps among them as opposed to the one located higher in the mountains (Fig 4A). Such

local effects of diet composition may thus confound effects of diet variation, when trophic

niche overlaps are evaluated in distant localities (e.g., [28, 35]). To avoid these potential con-

founding factors of variation (season and location), we argue that niche overlap should be

assessed using populations or species sampled in close proximity and within the same period

of the year.

Discarding rare prey occurrences is not always warranted

Rare prey items are sometimes removed from metabarcoding datasets, since they may have an

exaggerated weight in analyses compared to their actual importance in the diet [21, 40], espe-

cially for animals consuming relatively few prey species [38]. However, this is not always war-

ranted, as we show here with the highly diversified diet of the brown long-eared bat. In this

case, removing rare occurrences, which represent more than half of all prey items recovered,

did not notably affect indices of niche overlap (about 5% of increase), nor results concerning

seasonal and geographic variation of diet (Fig 4B). Thus, we concur with Clare et al. [40] that

discarding unique occurrences has little effect regarding some ecological conclusions, but

would restrict this recommendation to the estimation of resource partitioning. Indeed, we

show here that removing these rare items may lead to a significant shrinking of other measures

such as indices of niche breadth. Since samples with the highest prey species richness also are

the ones most susceptible to carry rare prey items, removal of the latter artificially increases

similarities of niche breadths (Fig 3B).

In other situations where reference databases for taxonomic identification are incomplete

(e.g., [79]) and rare MOTUs are difficult to tease apart from artefactual sequences [36], the

removal of rare items is justified. In more ideal conditions, like shown here, these rare prey

sequences can be easily and unambiguously assigned to plausible insect species and thus reflect

real prey choices. The high number of unique prey occurrences observed throughout the year

indeed reflects the opportunistic feeding behavior of the brown long-eared bat reported in

other studies [29, 80]. These prey items should therefore be retained for an accurate descrip-

tion of the richness of the diet of this insectivore.

Different taxonomic depth leads to different conclusions

The level of taxonomic resolution in prey consumed is known to greatly affect ecological anal-

yses, such as food web connectance [81]. Taxonomic resolution is particularly limited in the

case of diet studies using morphological identification of prey remains, but is also limited in

molecular studies when reference databases are incomplete or when conserved markers are

used in an attempt to reduce amplification biases. In the last case for instance, less than 67% of

sequences were identified to the genus level and less than 30% to the species level in recent

studies [82, 83]. In the context of dietary assessment, an increase in niche breadth and a

decrease in niche overlap are expected when taxonomic resolution increases [35]. Accordingly,

we observed that the trophic niche overlap between colonies of brown long-eared bats was

clearly higher (by about 80%) when only taxonomic identifications to the order-level were

considered (Fig 3A, Fig 3C). Moreover, this overestimation due to coarser taxonomic identifi-

cation of prey systematically led to increased niche overlap between seasons. This overlap was

even higher than the 60% threshold classically used to characterize strong dietary overlaps

[84]. When using a better taxonomic resolution (species level), all indices were lower than 49%

(mean 25%) and we would reach the opposite conclusion. The study of dietary overlap among

colonies and seasons was also severely affected by the use of lower taxonomic depth, as both

season- and colony-specific differences were much less apparent or lost (Fig 4C). This increase
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in values of niche overlap was probably exacerbated by the fact that P. auritus is a moth-spe-

cialist, and less dramatic effects can be expected when studying species with wider taxonomic

dietary breadth. Still, when coarse levels of prey identification fail to reveal trophic resource

partitioning between species (e.g., [85, 86]), metabarcoding techniques with high-resolution

markers might be useful before rejecting the potential for competitive exclusion and invoking

stabilizing mechanisms for coexistence.

Both detailed and coarser levels of taxonomic depths of prey identification might, however,

highlight different aspects of food exploitation by insectivorous bats. The fully resolved dataset

(Fig 3A) indicated that the brown long-eared bat exploits significantly higher prey species rich-

ness during the summer, but when comparisons were restricted to family level only (Fig 3C) a

higher diversity of insects was consumed in spring. Although less numerous in terms of species

richness, the spring prey insects represent a broader spectrum of families, suggesting that bats

cannot rely on a few preferred taxonomic groups (e.g., the largest or the most profitable prey

such as noctuid or geometrid moths), but must be more eclectic during this season. The con-

stant decrease of taxonomic diversity of preys observed at the family level throughout the year

(Fig 3C) might again be a sign of opportunistic feeding behavior of the brown long-eared bat,

which is known to exploit the peaks of moth diversity and abundance in July-August [29].

This hypothesis, however, should be tested properly with feeding choices in order to be

validated.

When weighted occurrences perform better than relative read abundance

Comparisons of data treatments (Fig 4) showed that using quantitative methods based on

sequence read counts (RRA) had also a dramatic effect on patterns of diet variation. Account-

ing for read abundance (Fig 4D) completely blurred the strong seasonal and geographical sig-

nature recovered with the wPOO approach (Fig 4A). Deagle et al. [38] suggested RRA

approaches provide more accurate view of consumer’s diet when moderate amplification and

recovery biases are present in the metabarcoding process. To show this, they simulated in silico

biases ranging from 4× to 20× relatively to a standard amplification. Several lines of evidence

indicate that much higher levels of recovery biases might actually occur in real metabarcoding

analyses (up to 5000×[53]), and could therefore explain the poor performance of RRA in the

case shown here (Fig 3, Fig 4). First, very few prey species received high relative read abun-

dance, while most others were represented by extremely low values (<1‰; see S3 File), drasti-

cally downsizing the importance of the latter in measurements of niche overlap. Furthermore,

several other potential biases due to the prey composition itself (e.g., presence of eggs) or to its

digestibility certainly also influence the final outcome of read counts and can hardly be

accounted for [34, 36, 87]. Other approaches, unexplored here, such as the use of multiple

primer pairs [41, 88], the use of primers known to provide quantitative results [37, 43] or

avoiding the PCR step by doing shotgun sequencing [89, 90] may be used to overcome part of

the mentioned biases. It is also possible that composition of simpler diets may be better esti-

mated by RRA than in the situation here [91, 92].
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