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Synoptic-scale atmospheric circulations define the 
conditions in which rainfall can occur. However, 
for the particular set of meteorological conditions 

at a given site, aerosols play a vital role in the forma-
tion and quantity of precipitation by determining the 
number and rate at which eventual raindrops form. 
Cloud-active aerosols include cloud condensation 
nuclei (CCN) (the particles on which cloud drops 
form), giant cloud concentration nuclei (GCCN; 
CCN > 2 µm diameter), and ice nucleating particles 
(INPs), which aid the formation of ice crystals in the 
atmosphere. Weighing the importance of aerosols in 
the outcome of events leading to rainfall is a challenge 
because aerosols are always present under all meteo-
rological conditions.

Bigg and colleagues (2015) suspected that for the 
cloud-active aerosols that are usually present only at 
low concentrations in the atmosphere (GCCN and 
certain INPs), increases in their abundance due to 

rainfall could have notable effects on subsequent 
rainfall leading to feedback. They reasoned that the 
intensity of rainfall feedback and its directionality 
(positive or negative) could give clues about processes 
that would lead to persistent increases in cloud-active 
aerosols after a rainfall event, and would provide 
location-specific insight into precipitation’s sensitiv-
ity to aerosols that depended on factors such as orog-
raphy and land use. They developed an analytical tool 
to quantify an index value of rainfall feedback from 
changes in rainfall patterns following relatively heavy 
rainfall events (called “key days,” as illustrated in 
Fig. 1) that are persistent enough to be distinguished 
in historical time-series data of daily precipitation 
(Soubeyrand et al. 2014). This index can be used to 
quantify feedback at precise geographic locations, 
to delimit regions with homogenous index values of 
feedback, and to identify changes in feedback over 
time (Bigg et al. 2015; Soubeyrand et al. 2014).

Recently, the probability of next-day precipitation 
following rainfall events was assessed for rainfall-
induced changes in soil moisture across sites in 
the United States (Tuttle and Salvucci 2016). Soil 
moisture anomalies significantly influenced rainfall 
probabilities in about 40% of the studied areas, but 
varied from positive to negative from east to west. 
Although this study did not consider aerosols, it 
nevertheless highlights the geographic variability 
in rainfall feedback and the need for tools to help 
reveal site- or region-specific processes. If aerosols 
are involved in such feedbacks, it is likely that varia-
tions in cloud-active particles, their emission, aging, 
interaction with other aerosols, and their response to 
weather conditions could compound these feedbacks 
by inducing additional variability across geographic 
sites and over time. These traits of aerosols could also 
be influenced by regional meteorological conditions 
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(i.e., temperature, relative humidity, and dynamics). 
Disentangling the macrophysical meteorological 
factors from the aerosol microphysical effects on 
precipitation remains a grand challenge because 
meteorological conditions cannot be disassociated 
from the aerosol context under real field conditions. 
Furthermore, neither a coherent, universal approach 
for anticipating how aerosol traits vary among sites, 
nor a set of rationale for intersite comparisons of 
aerosol effects on precipitation to account for the 
different specific effects, exists to date.

Here we illustrate how maps of rainfall feedback 
indices can provide a framework for understanding 
how aerosols leverage meteorological conditions to 
have decisive effects on rainfall. By mapping the 
values of the index, hypotheses could be generated 
about aerosols emitted specifically from different 
types of land use. This would lead to criteria to 
choose experimental sites for testing these hypoth-
eses. We report the characteristics of maps for data 
from 1,250 weather stations in the 17 states of the 
western continental United States, many of which 
are states where drought has attained unprecedented 
proportions. The reason for focusing on the western 
United States was based on not only the recent water 
restrictions due to drought, but also on the particular 
topography that fosters processes of precipitation 
formation due to large-scale synoptic patterns and 
water vapor transport, and the influence of a multi-
tude of regional and long-range transported aerosol 
sources, orography, and a combination of land sur-
face vegetation and urban development (Creamean 
et al. 2015; Guan et al. 2012; Hayhoe et al. 2004; 
Pandey et al. 1999; Ralph et al. 2013; Rauber 1992; 
Rosenfeld et al. 2008). These maps and the associated 

data are freely available at http://w3.avignon.inra.fr 
/rainfallfeedback/index.html, a site that also provides 
instructions for making maps of additional sites in 
other regions around the world. This website can 
serve as a platform to share these maps and as a 
tool to design experiments to test hypotheses about 
mechanisms underlying rainfall feedback and the 
sensitivity of rainfall to aerosols.

CALCULATING AND MAPPING THE 
RAINFALL FEEDBACK INDEX. Rainfall feed-
back was assessed with the open-source R package 
FeedbackTS (http://cran.r-project.org/web/packages 
/FeedbackTS/), with time-series algorithms de-
scribed previously (Soubeyrand et al. 2014), for freely 
available daily rainfall data from NOAA’s National 
Centers of Environmental Information (www.ncdc 
.noaa.gov/). We accessed 90 GB of daily rainfall data 
from the Global Historical Climate Network on the 
NOAA website for weather stations having approxi-
mately 100 consecutive years of data in the 17 states 
of the western continental United States. There were 
1,250 such sites. Rainfall feedback was assessed for 
rainfall occurrence and quantity as previously de-
scribed (Soubeyrand et al. 2014). Significant trends 
in feedback were more readily identified for rainfall 
occurrence than for rainfall quantity; therefore, in-
dices for feedback trends in rainfall occurrence were 
plotted on maps. Significance was calculated via a 
randomization test that yields a p value (indicated in 
the drop-down menu for each location on the website) 
as described previously (Soubeyrand et al. 2014). The 
plotted indices correspond to the variable named D 
[Soubeyrand et al. 2014, Eq. (3)] multiplied by 20 and 
corrected for seasonal asymmetry. Modifications to 

Fig 1. Daily precipitation (in tenths of mm) leading up to and following a key-day rainfall event of 32.5 mm on 21 
Jan 1961 from the historical records from the weather station at Winters, California (site USC00049742 in the 
NOAA database at www.ncdc.noaa.gov/data-access/quick-links#ghcn). The data used to assess the intensity 
of rainfall feedback (FeedbackStat, F) in the 20 days preceding and after the key day are highlighted in gray.

http://w3.avignon.inra.fr/rainfallfeedback/index.html
http://w3.avignon.inra.fr/rainfallfeedback/index.html
http://cran.r-project.org/web/packages/FeedbackTS/
http://cran.r-project.org/web/packages/FeedbackTS/
http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/data-access/quick-links#ghcn


JUNE 2017AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017| 11111110

the previously described calculation are described in 
this paper’s online supplement. The index described 
here, equal to D × 20 and corrected for seasonal 
asymmetry, is named FeedbackStat (F). Hence, the 
values plotted on the maps indicate the cumulative 
number of rainfall events in a 20-day period after a 
key rain date in excess of the average number of rain-
fall events expected in that period. By characterizing 
a large number of sites as densely as possible across 
a region, the site-level tests can be used as indicators 
of regional properties independent of the statistical 
significance per se of each site. Hence, contour lines 
on the maps represent spatial trends in F assessed 
with a geostatistical approach. Contours were ob-
tained with universal kriging incorporating a linear 
trend in the coordinates (Chilès and Delfiner 1999). 
Briefly, kriging consists of estimating the values of a 
variable across space based on i) point observations 
of this variable spread in the study domain, and ii) 
a weighted average technique generally giving more 
weight to neighbor observations.

From the entire rainfall datasets and subsets divided 
into seasonal periods (spring–summer: April–Septem-
ber; fall–winter: October–March) and historical periods 
(up until 1960; after 1960), 12 maps were created that 
indicate the geographic distribution of F. The year 1960 
was chosen to assess the impact of time, as this was an 
approximate date of intensification of a range of global 
changes, including industrialization, urbanization, and 
land use, and was linked to notable changes in rainfall 
feedback in Australia (Bigg et al. 2015). The trends 
described below concern mostly the period of January 
to December for the entire 100 years unless indicated 
otherwise and specified with subscripts for F. Positive 
values of F indicate a greater number of rainfall events 
than expected (positive feedback). Likewise, negative 
values indicate negative feedback.

According to the assumptions of our model, a key 
day represents a rainfall event of sufficient intensity to 
set off the generation of aerosols as described above. 
However, to calculate F, key rainfall days must be suf-
ficiently separated in time (Soubeyrand et al. 2014). 
Therefore, the rain intensity of the key days used in 
the calculation varied among sites because of the rain-
fall patterns in each data series, and is reported on the 
maps for each site. The constraints of the calculation 
limiting the number of key days have likely led to an 
underestimation of the magnitude of the feedbacks. 
Furthermore, the strongest feedback effects are likely 
to occur downwind of sites where a key day occurs, 
but are not accounted for here because the calculation 

of the feedback index is site-specific (i.e., is made 
separately for each site by exploiting rainfall data 
collected only at this site). We have not considered 
downwind relationships in feedback because this 
would involve geographic offsetting of the temporal 
relationships. Such calculations are a future challenge.

TRENDS IN RAINFALL FEEDBACK PAT
TERNS. For all 1,250 sites over the entire time pe-
riod, F decreased slightly from west to east across all 
17 states. However, there was no trend in a meridional 
direction over all states (Fig. 2). The zonal trend could 
be in part due to storm activity along the West Coast 
traveling eastward with westerly wind patterns. It is 
difficult to elucidate the large-scale effects of rainfall 
feedback. However, focusing on specific hypotheses 
on regional scales may provide better insight into 
aerosol and rainfall feedback effects in the western 
United States.

A map of the sites with the most extreme values 
of F (Fig. 3) [F ≥ 0.5 (blue and lavender pins on map) 
or F ≤ –0.5 (red pins)] suggested that orographic 
precipitation was a predisposing factor for positive 
feedback. For the top 50 percentile (47 sites) of the 94 
sites with F ≥ 0.5, 34 (72%) were on the windward side 
of mountain ranges where orographic precipitation 
occurs. This is in sharp contrast to the geographic 
context of the 29 sites with near-zero values of F, 
where 21 (72%) are in the plains east of the Rocky 
Mountains (Fig. 3). Furthermore, 97% (57 of 59) of 
the values for F in California for sites between 34.65° 
and 40.27°N latitude and west of the Sierra Nevada 
mountain range were positive, and they were among 
the greatest values for all 1,250 sites analyzed here. 
In this region, from the northern to southern limits 
of California’s Central Valley, water resources are de-
rived primarily from orographic precipitation during 
the cold season and storm systems that are typically 
advected and orographically ascend the Sierra Nevada 
and pass over San Francisco, San Jose, and Oakland 
(Dettinger 2011; Pandey et al. 1999). Other areas with 
notable densities of sites with highly positive F also 
included the western side of the Sawtooth Mountain 
range north of Boise, Idaho, and the western edge 
of the Rocky Mountain Range from North Rim in 
the Grand Canyon in Arizona to Ennis, Montana. 
The short residence time of an air parcel within an 
orographic cloud means that precipitation is much 
more dependent on the efficiency or speed of de-
velopment of precipitation than in nonorographic 
clouds (Letcher and Cotton 2014). Interestingly, field 
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observations show that INPs active at temperatures 
warmer than –10°C (i.e., most likely biological INPs) 
are lost early in the precipitation history of orographic 
clouds (Stopelli et al. 2015).

For the sites west of –120°E, feedback increased 
significantly from north to south (Fig. 2, lower right 
panel), and 56% (5 out of 9) of the sites with the most 
extreme negative feedback (≤–0.5, red pins) were 
in Oregon and Washington (Fig. 3). This trend has 
also been exaggerated over time, as revealed by the 
significant decrease of Fpre-1960–Fpost-1960 with increas-
ing latitude (slope of the linear regression = –0.062, 
p = 0.00002). Because there are distinctly different 
land uses north and south of 40°N, and in particular 
linked to changes in the nature and health of the 
forests of the Pacific Northwest and to intensification 
of agriculture in California’s Central Valley since the 
1950s (Grossmann et al. 2008; Hart 2001), we explored 
the seasonal trends in feedback.

There were 733 sites in the database with sufficient 
rainfall events in both the spring-summer and the 
fall-winter seasons to allow us to calculate F values 
for each season. From these, we mapped sites with 

the most pronounced seasonal differences in rainfall 
feedback, viz. those that had values of F ≥ 0.5 in one 
season and negative values of F in the counter season 
that were at least 1 unit of F different from the former 
season (Fig. 4). There was a distinct transect from 
northwest to southeast. In the northwest there was 
high positive feedback in the spring-summer season 
and negative feedback in the fall-winter season. In 
contrast, the inverse trend prevailed toward the 
southeast with a transition along the western edge of 
the Rocky Mountain Range. This raises the question 
about the factors at these sites that would be favor-
able to rainfall during one season and inhibitory to 
rainfall in another season.

HOW THE BIOLOGY OF AEROSOLS 
C O U L D  U N D E R L I E  P E R S I S T E N T 
RAINFALL FEEDBACK. Although aerosol 
concentrations can be reduced by heavy rain, and this 
potentially affects subsequent rainfall during the next 
few days, several studies provide an alternative point 
of view by demonstrating that atmospheric aerosols 
increase after rainfall. We consider biological aerosols 

Fig 2. Trends of F across the western part of the continental United States at 1,250 weather stations. The left 
panel is a map of F at each site for the entire 100-yr period as presented on the website (http://w3.avignon 
.inra.fr/rainfallfeedback/), with positive values in blue and negative values in red. The east-west trend in F (up-
per right panel) shows different north-south amplitudes of F depending on the region, but no overall east-west 
trend. The north-south trend in F for sites west of –120°E longitude (lower right panel) revealed a significant 
decrease in F from north to south (The red line represents the linear regression F = 3.02–0.066 × Latitude 
(°N), R2 = 0.418, p < 0.00000).

Opacity (0-100%)
Line weight (pixels)

      LEGEND
Feedback Stat

Contour Lines

Weather Stations

http://w3.avignon.inra.fr/rainfallfeedback/
http://w3.avignon.inra.fr/rainfallfeedback/
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in particular because of i) their particular capacities 
and efficiencies as INPs, ii) their intimate link to land 
use, iii) the rapid response to water of the microorgan-
isms that are at the origin of these aerosols, and iv) the 
minimal consideration that they have had as potential 
actors in meteorological phenomena.

Some researchers have made observations within 
the 24-h period following a rain event and have noted 
large increases, starting within the first hour after the 
event, in airborne biological particles or particles con-
taining organic matter (Huffman et al. 2013; Wright 
et al. 2014; Yue et al. 2016). Huffman and colleagues 
observed increases in INPs active at –15°C on the 
order of 10-fold just after rain onset, whereas Yue and 
colleagues assessed only biological-like particles and 
observed that those resembling bacteria increased 

two-fold. Bigg and colleagues measured aerosol dy-
namics over longer periods of time after rain events 
and observed enhancement of INPs that began early 
after a rain event but that persisted over about a 3-week 
period following certain rain events (Bigg 1958; Bigg 
et al. 2015). In these studies, 10-fold increases in INPs 
active at –15°C occurred within 2 weeks after the key 
rain event. These observations support the notion that 
rainfall events lead to a rapid increase in cloud-active 
aerosols—within hours of a rain event—that can 
persist for longer periods of up to several weeks. In 
further support of this potential feedback, modeling of 
cloud processes showed that increases in accumulated 
precipitation at ground level occurred within a week 
when insoluble organic aerosols were increased by a 
factor of about 10 (Phillips et al. 2009).

Fig 3. Location of the sites with the most positive and the most negative values of F. For sites labeled with blue 
and lavender pins, F � 0.5: those with blue pins were in the top 50 percentile of the sites with F � 0.5 and those 
with lavender pins were in the bottom 50 percentile of this group of sites. For sites with red pins, F � –0.5. The 
map was made with GPS visualizer (www.gpsvisualizer.com/) using the Google Terrain maps background.

http://www.gpsvisualizer.com/
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There are several possible ways in which prolonged 
increases in cloud-active aerosols can occur (Fig. 5). 
First, rainfall triggers the growth of microorganisms, 
some of which subsequently become airborne and can 
serve as INPs. Those living on plant surfaces include 
Pseudomonas syringae and other related bacteria 
(Després et al. 2012; Murray et al. 2012) and rust fungi 
including Puccina species (Morris et al. 2013). These 
organisms represent the most efficient INPs in the 
atmosphere (Morris et al. 2013; Murray et al. 2012). 
Ice nucleation–active strains of Pseudomonas species 
are more efficient at –10°C and warmer than all other 
INPs including inert INPs (i.e., those without any 

organic matter) by a factor of 1,000 or more, in terms 
of the number of ice nuclei per surface of particle (see 
Fig. 18 of Murray et al. 2012). Likewise, based on the 
size and ice nucleation activity of urediospores of rust 
fungi (Morris et al. 2013), their efficiency as INPs 
would be about 100-fold more than that of inert INPs. 
Soil and decaying leaf material also harbor fungi such 
as Mortierella alpina with similar efficiency as INPs 
(Fröhlich-Nowoisky et al. 2015). For rusts, rain events 
are critical for dissemination and growth, and are 
used to predict rust epidemics (Morris et al. 2013, and 
references therein). For P. syringae, a rapid increase 
in their population sizes is set off by the impact of 

Fig 4. Location of sites with the most pronounced seasonal differences in rainfall feedback among the 1,250 
sites analyzed. Sites considered to have pronounced seasonal differences had values of F � 0.5 in one sea-
son and negative values of F in the counter season that were at least 1 unit of F different from the former 
season. Sites indicated with red circles had strongly positive rainfall feedback in the spring-summer season 
and negative rainfall feedback in the fall-winter season, where FApr-Sept �0.5 and FApr-Sept–FOct-Mar � 1. Sites indi-
cated with blue circles had strongly positive rainfall feedback in the fall-winter season and negative rainfall 
feedback in the spring-summer season where FOct-Mar � 0.5 and FOct-Mar – FApr-Sept � 1. The map was made with 
GPS visualizer (www.gpsvisualizer.com/) using the Google Terrain maps background.

http://www.gpsvisualizer.com/
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rain drops on leaves (Hirano et al. 1996), leading to 
enhanced population sizes on leaves for 10 or more 
days, consistent with the increases in atmospheric 
INPs observed after rainfall (Bigg 1958; Bigg et al. 
2015). Hirano and colleagues assessed changes in 
the population sizes of P. syringae according to the 
number of INPs active at –2.5°C that they produce 
(Hirano et al. 1985), thereby showing that the num-
ber of highly active INPs increased 10-fold within 
the first day after rain and 1,000-fold within 4 days 
after rainfall. Although these bacteria can be readily 
removed from leaf surfaces by wind (Lindemann et al. 
1982), the fraction that actually becomes airborne is 
unknown. Active discharge of fungal spores and as-
sociated liquids from spore sacks is also favored by 
rain or high humidity (Elbert et al. 2007). Hence, rain 
and the subsequent damp soil following rain could 
encourage successive cycles of fungal spore genera-
tion and emissions leading to intermittent and slowly 
decreasing emissions as the soil dried out.

A second process involves rainfall-triggering 
phenomena that can lead to the creation of new INPs. 
Small (~100-nm diameter) particles active as INPs in 
leaf litter can attach to soil particles that later become 
airborne (Schnell and Vali 1976), a process confirmed 
via laboratory experiments (Augustin-Bauditz et al. 
2015) leading to particles with the same ice nucleat-
ing efficiency as observed in organic soils (Conen et 
al. 2011; O'Sullivan et al. 2014). Ice nucleation–active 

materials can be released from bacterial vesicles and 
cell fragments (Phelps et al. 1986), proteinaceous 
material, and nanoparticles from soil-borne fungi 
(Fröhlich-Nowoisky et al. 2015; O'Sullivan et al. 2015). 
Hence, rainfall could lead to microbial growth and 
fragmentation or wash-off of ice nucleation-active 
compounds that could subsequently adhere to soil or 
other fine particulate matter and be lofted into the 
atmosphere (O'Sullivan et al. 2015).

Additionally, aerosols that are formed by the con-
densation of gas-phase compounds (called new par-
ticle formation, NPF) also increase after rainfall (Bigg 
2004; Creamean et al. 2011) and grow to sizes that can 
function as CCN (Merikanto et al. 2009). Microor-
ganisms release volatile organic compounds (VOCs) 
that can foster NPF via the conversion of the gas phase 
of these biogenic compounds to particles (Kulmala 
et al. 2004). This is in part due to the scavenging of 
aerosols by falling precipitation, creating relatively 
clean conditions for gas-phase species to form new 
particles as compared to condensing onto preexist-
ing particles (Bigg 2004; Creamean et al. 2011). NPF 
is the most important factor contributing to particle 
number concentration in the atmosphere (Riccobono 
et al. 2014). Microbial activity is responsible for the 
emission of organic compounds from litter (Leff and 
Fierer 2008), and this emission has been observed to 
increase markedly after a rain event (Greenberg et al. 
2012). Increases in NPF in forests can continue for up 

-

Fig 5. Sources of cloud-active aerosols that can persist in the atmosphere after rainfall.
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to 4 days after a rain event, probably due to prolonged 
emission of biogenic compounds by microorganisms 
in pine needle litter that are stimulated by rainfall 
(Bigg 2004).

SUMMARY AND PERSPECTIVES. Based 
on a time-series analysis of rainfall leading up to 
and following key rainfall events that are known to 
stimulate persistent increases of airborne INPs and 
other cloud-active aerosols, we have developed a tool 
to help identify the conditions under which aerosols 
have important effects on the outcome of meteorologi-
cal contexts that are favorable for rainfall. This tool 
consists of open-source software for calculation of 
rainfall feedback indices and a website where maps of 
the indices can be explored. As argued above, there is 
a strong foundation from field observations of aerosol 
behavior and from environmental microbiology to 
justify investigating the role of biological aerosols in 
persistent effects of rainfall on subsequent rainfall. 
Therefore, this tool provides a means to explore the 
roles of biological aerosols, in particular, in rainfall. 
From the observations about trends in F that we ob-
served, we have developed a series of hypotheses about 
the underlying biological phenomena, and we suggest 
a framework for generating more such hypotheses 
(http://biorxiv.org/content/early/2016/08/21/070532). 
Tackling such hypotheses would require the deploy-
ment of microbiological techniques sensu stricto (i.e., 
techniques to identify, quantify, and characterize the 
specific microorganisms involved), and would herald 
in a new era of interdisciplinary research.

The software, maps, and open-source website we 
describe are a rich and readily exploitable resource to 
develop rationale for choosing cohorts of experimen-
tal sites to elucidate the impact of aerosols on rainfall 
under specific land surface and source emission con-
ditions. The resulting research could provide data that 
lead to the integration of a rational parameterization 
of aerosol effects into precipitation forecasting mod-
els. Furthermore, use of rainfall feedback maps and 
the overall approach we describe here will reveal the 
importance of land use as it relates to rainfall because 
of the major role of plants and agriculture as sources 
of biological INPs and other biological aerosols. There 
is increasing awareness that human activities that 
generate aerosols have marked impacts on precipita-
tion (Levin and Cotton 2008), as do changes in land 
cover (Pielke et al. 2007). Hence, mapping rainfall 
feedback could help elucidate the effects of agricul-
ture, urban centers, forests, industrial centers, and 

other types of land use on rainfall, thereby raising 
prospects for rational management of their impact 
on rainfall.
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