A. Verma and K. Ambatipudi, Challenges and opportunities of bovine milk analysis by mass spectrometry, Clinical Proteomics, vol.13, 2016.

S. L. Bislev, A Bovine PeptideAtlas of milk and mammary gland proteomes, Proteomics, vol.12, pp.2895-2899, 2012.

P. Roncada, Farm animal milk proteomics, Journal of Proteomics, vol.75, pp.4259-4274, 2012.

M. Zachut and U. Moallem, Consistent magnitude of postpartum body weight loss within cows across lactations and the relation to reproductive performance, J Dairy Sci, vol.100, pp.3143-3154, 2017.

A. W. Bell and D. E. Bauman, Adaptations of Glucose Metabolism During Pregnancy and Lactation, Journal of Mammary Gland Biology and Neoplasia, vol.2, pp.265-278, 1997.

J. K. Drackley, Biology of dairy cows during the transition period: The final frontier, Journal of Dairy Science, vol.82, pp.2259-2273, 1999.

Y. Chilliard, Biology of lactation, vol.20, pp.503-552, 1999.

T. Roberts, Metabolic parameters in transition cows as indicators for early-lactation culling risk, Journal of Dairy Science, vol.95, pp.3057-3063, 2012.

J. A. Mcart, D. V. Nydam, G. R. Oetzel, T. R. Overton, and P. A. Ospina, Elevated non-esterified fatty acids and betahydroxybutyrate and their association with transition dairy cow performance, Veterinary Journal, vol.198, pp.560-570, 2013.

J. Lu, Changes in Milk Proteome and Metabolome Associated with Dry Period Length, Energy Balance, and Lactation Stage in Postparturient Dairy Cows, Journal of Proteome Research, vol.12, pp.3288-3296, 2013.

S. L. Greenwood and M. C. Honan, Symposium review: Characterization of the bovine milk protein profile using proteomic techniques, Journal of Dairy Science, vol.102, pp.2796-2806, 2019.

T. A. Reinhardt, J. D. Lippolis, B. J. Nonnecke, and R. E. Sacco, Bovine milk exosome proteome, Journal of Proteomics, vol.75, pp.1486-1492, 2012.

A. Nissen, E. Bendixen, K. L. Ingvartsen, and C. M. Rontvedt, Expanding the bovine milk proteome through extensive fractionation, Journal of Dairy Science, vol.96, pp.7854-7866, 2013.

L. N. Zhang, A. D. Van-dijk, and K. Hettinga, An interactomics overview of the human and bovine milk proteome over lactation, Proteome Science, vol.15, 2017.

M. Samuel, Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth, Scientific Reports, vol.7, 2017.

S. E. Van-altena, A proteomics-based identification of putative biomarkers for disease in bovine milk, Veterinary Immunology and Immunopathology, vol.174, pp.11-18, 2016.

A. Nissen, P. H. Andersen, E. Bendixen, K. L. Ingvartsen, and C. M. Rontved, Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach, Journal of Dairy Science, vol.100, pp.2711-2728, 2017.

M. Vaudel, Exploring the potential of public proteomics data, Proteomics, vol.16, pp.214-225, 2016.

B. Kuhla, Involvement of Skeletal Muscle Protein, Glycogen, and Fat Metabolism in the Adaptation on Early Lactation of Dairy Cows, Journal of Proteome Research, vol.10, pp.4252-4262, 2011.

P. R. Wankhade, Metabolic and immunological changes in transition dairy cows: A review, Veterinary World, vol.10, pp.1367-1377, 2017.

J. Gross, H. A. Van-dorland, R. M. Bruckmaier, and F. J. Schwarz, Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation, Journal of Dairy Science, vol.94, pp.1820-1830, 2011.

T. A. Reinhardt and J. D. Lippolis, Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk, Journal of Dairy Science, vol.91, pp.2307-2318, 2008.

X. Zheng, Quantitative proteome analysis of bovine mammary gland reveals protein dynamic changes involved in peak and late lactation stages, Biochemical and biophysical research communications, vol.494, pp.292-297, 2017.

A. L. Skibiel, M. Zachut, B. C. Do-amaral, Y. Levin, and G. E. Dahl, Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period, J Dairy Sci, vol.101, pp.705-716, 2018.

M. Zachut, Proteome dataset of subcutaneous adipose tissue obtained from late pregnant dairy cows during summer heat stress and winter seasons, Data Brief, vol.12, pp.535-539, 2017.

N. Rifai, M. A. Gillette, and S. A. Carr, Protein biomarker discovery and validation: the long and uncertain path to clinical utility, Nature Biotechnology, vol.24, pp.971-983, 2006.

Y. Zhen, Nuclear import of exogenous FGF1 requires the ER-protein LRRC59 and the importins Kpnalpha1 and Kpnbeta1, Traffic, vol.13, pp.650-664, 2012.

F. Sinowatz, D. Schams, F. Habermann, B. Berisha, and M. Vermehren, Localization of fibroblast growth factor I (acid fibroblast growth factor) and its mRNA in the bovine mammary gland during mammogenesis, lactation and involution, Anatomia, histologia, embryologia, vol.35, pp.202-207, 2006.

M. Ostrowska, Expression of PC, PCK1, PCK2, LDHB, FBP1 and G6PC genes in the liver of cows in the transition from pregnancy to lactation, Animal Science Papers and Reports, vol.31, pp.281-290, 2013.

M. Uhlen, Tissue-based map of the human proteome, Science, vol.347, 2015.

R. Weikard, T. Goldammer, R. M. Brunner, and C. Kuehn, Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows, Physiological genomics, vol.44, pp.728-739, 2012.

D. H. Jones, D. M. Raymer, and S. L. Schoelen, The activity of phosphoenolpyruvate carboxykinase throughout the lactation cycle of the guinea-pig mammary-gland, Proceedings of the Society for Experimental Biology and Medicine, vol.192, pp.16-22, 1989.

N. I. Nielsen, N. C. Friggens, M. G. Chagunda, and K. L. Ingvartsen, Predicting risk of ketosis in dairy cows using in-line measurements of beta-hydroxybutyrate: A biological model, Journal of Dairy Science, vol.88, pp.72922-72924, 2005.

G. R. Oetzel, Monitoring and testing dairy herds for metabolic disease, Veterinary Clinics of North America-Food Animal Practice, vol.20, 2004.

I. Hazekawa, Y. Nishina, K. Sato, M. Shichiri, and K. Shiga, Substrate activating mechanism of short-chain acyl-coA, medium-chain acyl-coA, long-chain acyl-coA, and isovaleryl-coA deshydrogenases from bovine liver -a resonance raman-study on the 3-ketoacyl-coA complexes, Journal of Biochemistry, vol.118, pp.900-910, 1995.

M. Farhadian, S. A. Rafat, K. Hasanpur, M. Ebrahimi, and E. Ebrahimie, Cross-Species Meta-Analysis of Transcriptomic Data in Combination With Supervised Machine Learning Models Identifies the Common Gene Signature of Lactation Process, Frontiers in Genetics, vol.9, 2018.

J. Verbeke, M. Van-poucke, L. Peelman, and S. De-vliegher, Differential expression of CXCR1 and commonly used reference genes in bovine milk somatic cells following experimental intramammary challenge, BMC genetics, vol.16, 2015.

B. Qu, Y. Jiang, F. Zhao, J. Xiao, and Q. Z. Li, Changes of endoplasmic reticulum and mitochondria in mammary epithelial cells during mammogenesis in Chinese Holstein dairy cows, Acta Histochemica, vol.114, pp.448-453, 2012.

M. Yang, Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS, Food Research International, vol.92, pp.17-25, 2017.

L. Murgiano, Comparison of Milk Fat Globule Membrane (MFGM) Proteins of Chianina and Holstein Cattle Breed Milk Samples Through, Proteomics Methods. Nutrients, vol.1, pp.302-315, 2009.

A. Nissen, E. Bendixen, K. L. Ingvartsen, and C. M. Rontved, In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques, Proteomics, vol.12, pp.2866-2878, 2012.

L. P. Golinelli, C. A. Conte, V. M. Paschoalin, and J. Silva, Proteomic Analysis of Whey from Bovine Colostrum and Mature Milk, Brazilian Archives of Biology and Technology, vol.54, pp.761-768, 2011.

M. Yang, Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS, Int. J. Food Sci. Nutr, vol.68, pp.671-681, 2017.

L. Zhang, Bovine Milk Proteome in the First 9 Days: Protein Interactions in Maturation of the Immune and Digestive System of the Newborn, Plos One, vol.10, 2015.

R. Tacoma, J. Fields, D. B. Ebenstein, Y. W. Lam, and S. L. Greenwood, Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows, Journal of Dairy Science, vol.100, pp.7246-7261, 2017.

R. Tacoma, J. Fields, D. B. Ebenstein, Y. Lam, and S. L. Greenwood, Characterization of the bovine milk proteome in earlylactation Holstein and Jersey breeds of dairy cows, Journal of Proteomics, vol.130, 2016.

J. L. Boehmer, D. D. Bannerman, K. Shefcheck, and J. L. Ward, Proteomic Analysis of Differentially Expressed Proteins in Bovine Milk During Experimentally Induced Escherichia coli Mastitis, Journal of Dairy Science, vol.91, pp.4206-4218, 2008.

M. Danielsen, Quantitative milk proteomics -Host responses to lipopolysaccharide-mediated inflammation of bovine mammary gland, Proteomics, vol.10, pp.2240-2249, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173553

I. Alonso-fauste, Proteomic characterization by 2-DE in bovine serum and whey from healthy and mastitis affected farm animals, Journal of Proteomics, vol.75, pp.3015-3030, 2012.

S. S. Li, J. S. Shen, D. X. Ren, and J. X. Liu, Effects of the processing methods of corn grain and soybean meal on milk protein expression profiles in dairy cows, Animal, vol.9, pp.267-274, 2015.

D. Vincent, Milk Bottom-Up Proteomics: Method Optimization, Frontiers in Genetics, vol.6, 2016.

I. Boggs, Proteomics data in support of the quantification of the changes of bovine milk proteins during mammary gland involution, Data in brief, vol.8, pp.52-55, 2016.

M. Mudaliar, Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics, Molecular Biosystems, vol.12, pp.2748-2761, 2016.

T. U. Consortium, UniProt: the universal protein knowledgebase, 2017.

S. P. Wein, Improvements in the protein identifier cross-reference service, Nucleic Acids Research, vol.40, pp.276-280, 2012.

N. Kaspric, M. Reichstadt, B. Picard, J. Tournayre, and M. Bonnet, Protein Function Easily Investigated by Genomics Data Mining Using the ProteINSIDE Online Tool, Genomics and Computational Biology, vol.1, pp.1-14, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02631468

J. A. Pires, C. Delavaud, Y. Faulconnier, D. Pomiès, and Y. Chilliard, Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows, Journal of Dairy Science, vol.96, pp.6423-6439, 2013.

, Scientific RepoRts |, vol.9, p.9718, 2019.

C. Weber, Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows, Journal of Dairy Science, vol.96, pp.165-180, 2013.

Y. Chilliard, Dietary-fat and adipose-tissus metabolism in ruminants, pigs, and rodents -A review, Journal of Dairy Science, vol.76, issue.93, pp.77730-77739, 1993.

M. Eichinger, Etude de la qualité (immunologique et bactériologique) de colostrums de vaches laitières de la communauté de communes Chamousset en Lyonnais dans le cadre d'une valorisation du colostrum bovin, vol.1, 2014.

D. V. Diagram and . Vib/ugent, , 2018.