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Abstract. Managing an invasive species is particularly challenging as little is generally known about the
species’ biological characteristics in its new habitat. In practice, removal of individuals often starts before
the species is studied to provide the information that will later improve control. Therefore, the locations
and the amount of control have to be determined in the face of great uncertainty about the species charac-
teristics and with a limited amount of resources. We propose framing spatial control as a linear program-
ming optimization problem. This formulation, paired with a discrete reaction-diffusion model, permits
calculation of an optimal control strategy that minimizes the remaining number of invaders for a fixed cost
or that minimizes the control cost for containment or protecting specific areas from invasion. We propose
computing the optimal strategy for a range of possible model parameters, representing current uncertainty
on the possible invasion scenarios. Then, a best strategy can be identified depending on the risk attitude of
the decision-maker. We use this framework to study the spatial control of the Argentine black and white
tegus (Salvator merianae) in South Florida. There is uncertainty about tegu demography and we considered
several combinations of model parameters, exhibiting various dynamics of invasion. For a fixed one-year
budget, we show that the risk-averse strategy, which optimizes the worst-case scenario of tegus’dynamics,
and the risk-neutral strategy, which optimizes the expected scenario, both concentrated control close to the
point of introduction. A risk-seeking strategy, which optimizes the best-case scenario, focuses more on
models where eradication of the species in a cell is possible and consists of spreading control as much as
possible. For the establishment of a containment area, assuming an exponential growth we show that with
current control methods it might not be possible to implement such a strategy for some of the models that
we considered. Including different possible models allows an examination of how the strategy is expected
to perform in different scenarios. Then, a strategy that accounts for the risk attitude of the decision-maker
can be designed.

Key words: decision under uncertainty; invasive species; linear programming; reaction-diffusion model; Salvator
merianae; spatial control.
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INTRODUCTION

Invasive species management is important
worldwide, as invasive species are one of the top
threats to global biodiversity (Parker et al. 1999,
Mack et al. 2000, Pimentel et al. 2005, McCleery
et al. 2015). Management of an invasive species
is a complicated task for several reasons. First, if
the species is newly introduced, it is generally
difficult to characterize its population dynamics
in its new habitat. Consequently, it is difficult to
predict the possible impact on native species or
to predict its current and future spatial distribu-
tion. Second, management practices may not be
efficient due to factors such as low detectability
or underdeveloped removal methods, both
caused by a lack of training and experience fac-
ing the new invasion. This uncertainty ultimately
creates challenging decisions for natural resource
managers: Given actual funding and other con-
straints, how should resources be invested with-
out knowing the potential ecological impact,
future spatial distribution of the species, or effi-
cacy of that management?

Researchers have provided several insights for
invasive species management, and not surpris-
ingly it appears that the rule is the earlier the bet-
ter. Indeed, studies have shown that investment
in prevention is more efficient than investment in
post-detection control (Leung et al. 2002, 2005).
If an invasive species is newly detected, it is then
important to invest in search effort to control the
population as soon as possible. Mehta et al.
(2007) proposed computing the optimal search
effort as a function of the species’ characteristics
and the cost of proposed management. An effec-
tive search effort can enable detection of the
species sufficiently early, and therefore, the pop-
ulation might be small enough that eradication
might still be a viable option (Sharov and Lieb-
hold 1998, Olson and Roy 2002). However, in
most cases the management of an invasive spe-
cies starts only because the damages caused by
the species are visible. To determine whether
containment, eradication, or non-action is the
best management action, one can use a decision
analysis framework as Moore et al. (2011) did for
Acacia paradoxa in South Africa.

The optimal management decision can also be
constrained by other factors. For example, some
political jurisdictions require that action be taken

to mitigate the impacts of an invader (Simberloff
et al. 1997, Carlton 2003) and non-action is not
an option: The invasive population has to be
reduced as much as possible with the available
resources. In this case, reducing the invader’s
population within the management unit is an
obligation, and resources must be deployed over
several years, even in the face of uncertainty con-
cerning, for example, the population growth rate,
dispersal behavior, range, diet, predators, and
current spatial distribution of the species.
As with most environmental management pro-

blems, the problem of Dynamic (i.e., over several
years) Spatial Allocation of Resources (DSAR)
should be approached using an adaptive manage-
ment framework (Chad�es et al. 2015). In this case,
the optimal strategy is expected to perform well
on average over all possible invasion scenarios,
and the species’ population is monitored every
year in order to reduce the uncertainty in key
parameters. But in the early stage of an invasion,
the available resources, the coordination between
management agencies, and the research capacity
might not be sufficient to implement this appro-
ach. From a modeling point of view, adaptive
management generally relies on the framework of
stochastic optimal control or Markov decision
processes (Marescot et al. 2013), two mathemati-
cal frameworks allowing to compute an optimal
strategy. Unfortunately, these frameworks gener-
ally limit the size of the decision problem, that is,
the number of management units, actions, and
the time frame. For large problems, a different
framework must be used to determine the best
management option.
Hauser and McCarthy (2009) developed a frame-

work to compute the optimal spatial allocation of
effort as a function of the searching efficacy and the
species’ probability of presence. In their work, the
spatial dynamics of the species is not explicit but is
included in the cost of having the species unde-
tected at a site. In Blackwood et al. (2010), the spa-
tial dynamics of the species and its density are
made explicit. Their formulation is particularly con-
venient because it allows explicit computation of
the optimal spatial resource allocation over time
without requiring intensive computational reso-
urces. More recently, Baker (2016) proposed an ana-
lytic formulation of the optimal control effort over
time, which exhibits an important principle: It is
optimal to focus the control effort on the source of
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the infestation, where the invader is generally most
abundant. This work is particularly interesting in
its generality; the spatial dynamics of the species is
described using a reaction-diffusion (RD) model,
with density-dependent growth rate and advec-
tion, which allows consideration of different disper-
sal speeds depending on the dispersal directions.

All of these approaches attempt to minimize an
objective function based on the sum of the ecolog-
ical and economic costs resulting from the inva-
sive species. In other words, the optimal
management option minimizes the management
cost, as well as the ecological and societal dam-
age, over the long term. Using such objective
functions allows the identification of the optimal
strategy that represents a trade-off between man-
agement cost and species damage. Without con-
sidering ecological and societal costs, the optimal
strategy is simple to compute: Do nothing. With-
out considering management cost, it is again sim-
ple to compute: Remove all the individuals from
the landscape. Both strategies are generally
unrealistic, which underlines the importance of
defining each cost properly. However, although
management costs remain relatively easy to esti-
mate from data, it is particularly difficult to quan-
tify the ecological and societal damages (but see
Kaiser and Burnett 2010 for an example). A com-
mon practice to address this difficulty is to instead
define management constraints, for example,
defining a maximum management budget or
defining a maximum invasive species population
level. Adding these further constraints in a conve-
nient way also requires another framework.

Epanchin-Niell and Wilen (2012) proposed a
practical solution, in which the management
objective and constraints are defined with linear
equations. Then, the DSAR problem can be
defined as a linear programming optimization
problem (Hof and Bevers 2002), which allows
time-efficient computation of the optimal control
strategy for large problems. The work of Epan-
chin-Niell and Wilen (2012) allows us to draw
general conclusions about optimal spatial alloca-
tion of effort in stylized cases, but they only con-
sidered the presence/absence of the species and a
simple dispersal model where adjacent cells get
infected in the next time period. Here, we pro-
pose a broader look at the possibilities that the
linear programming framework offers, and illus-
trate its use on the management of the invasive

Argentine black and white tegus (Salvator meri-
anae, hereafter “tegus”) in southern Florida. We
considered the problem of spatial allocation of
resources over time, when the invasive popula-
tion has to be minimized under several con-
straints and uncertainty.
We first paired linear programming with a dis-

crete RD model (Levin 1974). Discrete RD models
are relatively general (Holmes et al. 1994), and
we proposed a simulation approach to parame-
terize the dispersal coefficients, based on any dis-
persal kernel. The pattern of invasion proposed
by RD models is simple: In an infinite and suit-
able landscape, invasion is described by a grow-
ing circle centered on the point of first
introduction. Discrete RD models are particu-
larly useful as they define the DSAR with a very
general framework (Hof and Bevers 2002), and
the optimal spatial strategies can be computed
time-efficiently with common linear program-
ming solvers. We use this framework to study
several questions: Where to allocate traps in order to
minimize the invader’s population? What are the
minimal required resources to implement contain-
ment? How much and where to allocate resources to
protect a specific area from invasion? Because there
is uncertainty about the tegus’ population
dynamics, we considered 25 different spatial
dynamic models. These three questions were
then studied for each of the 25 models, and the
results were generalized depending on the risk
attitude of the decision-maker.

MATERIALS AND METHODS

Problem definition
Tegus are large lizards native to southeastern

Brazil, Paraguay, Uruguay, and northern Argen-
tina. Individuals were likely introduced via the
pet trade around 2002 in Florida City, FL (Enge-
man et al. 2011). Managers are concerned that
these habitat and dietary generalists will affect
native species, particularly those of conservation
concern such as the American crocodile (Crocody-
lus acutus, Mazzotti et al. 2015), federally recog-
nized as threatened. The Everglades National
Park (ENP) and the Turkey Point Power Plant
(TPPP; see Fig. 1 for the locations) are of primary
concern as far as they host the American croco-
dile and several other native species. In South
Florida, tegus are typically found in disturbed
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habitats, including urban areas, agricultural
fields, and roads and levees, that extend into nat-
ural areas. They are active during the warmest
period of the year and overwinter the coldest
months (i.e., October to February/March) by bru-
mating in burrows. More details on the invasion
of tegus in Florida can be found in Klug et al.
(2015) and Johnson et al. (2017).

Discrete reaction-diffusion model
We propose to model tegu population dynamics

using a difference equation model, which allows a
description of the population over discrete space
and time (Levin 1974, Holmes et al. 1994). More
precisely, we propose to use the following model,

obtained by using a finite difference scheme of the
classic RD model (Allen 1987):

nði; tÞ ¼
Xs
j¼1

1þ f n j; t� 1ð Þð Þð Þn j; t� 1ð Þ½ �gji (1)

where n(i, t) is the population density at site
i 2 1; . . . ; sf g at time t and n(j, t � 1) is the density
at site j 2 1; . . . ; sf g and time t � 1. s is the total
number of sites in the landscape, f nðj; t� 1Þð Þ is
the per-capita rate of recruitment, and gji is called
the dispersal coefficient, the proportion of the
population in site j moving to site i. We first
propose to use a density-dependent per-capita
rate of growth, for any site j 2 1; . . . ; sf g:

Fig. 1. (a) The studied areas are colored in green and beige. Green areas are the roads and levees with a 1-km
buffer on each side. Beige areas are the agricultural and urban areas. We assumed that these areas represent the
only suitable habitats for tegus (Salvator merianae) such that they are not present anywhere else. On the contrary,
control is available only in the green areas and the Turkey Point Power Plant (TPPP). The initial point of introduc-
tion is represented with a star. Red lines show the boundaries of the Everglades National Park as well as those of
the TPPP. Finally, the black circles are the 25, 50, 75, and 99% envelope, centered on the first point of introduction.
For example, the 25% envelope is represented with the smallest disk and contained at least 25% of the population
for each of the model. (b) Spatial distribution of the EDDMaps data (https://www.eddmaps.org/) used to estimate
the dispersal coefficient of the reaction-diffusion model.

 ❖ www.esajournals.org 4 October 2017 ❖ Volume 8(10) ❖ Article e01979

BONNEAU ET AL.

https://www.eddmaps.org/


f nðj; t� 1Þð Þ ¼ e 1� nðj; t� 1Þ
Kj

� �
; (2)

where e is the population’s intrinsic rate of
growth and Kj is the carrying capacity of site j.
The term 1 þ f nðj; t� 1Þð Þð Þnðj; t� 1Þ thus
describes the natural birth and death phe-
nomenon in site j and it can be viewed as the
population in site j, just after the birth and death
pulse, but just before any dispersion occurs.
Then, 1 þ f nðj; t� 1Þð Þð Þnðj; t� 1Þ½ �gji is the post
birth and death population that leaves site j to
reach site i. Eq. 1 simply indicates that the popu-
lation at any site i is the sum of all individuals
that are immigrating (i.e., all the terms in the
sum for j ¼ 1; . . .; s; j 6¼ i), plus the individuals
staying in the site (i.e., only the term j = i). Other
formulations of discrete RD model can be found
in Hof and Bevers (2002).

Finally, we denote the population vector of
length s, Nt ¼ n i; tð Þð Þi¼1; ...; s, where each compo-
nent is computed according to Eq. 1 and repre-
sent site’s density at time t.

Tegu spatial distribution
Modeling tegu spatial distribution using a dis-

crete RD model requires an estimate of the intrin-
sic rate of growth e, the initial population value
N0, the carrying capacity Kið Þi¼1; ...; s, and the dis-
persal coefficient gji

� �
j;i¼1;...; s.

Intrinsic rate of growth.—For the rate of growth,
we rely on Johnson et al. (2017), where a proba-
bility distribution of e was estimated from expert
elicitation. Johnson et al. (2017) estimated that
there is a probability of 0.3 that the population’s
growth rate e is negative. In this case, the popula-
tion is decreasing by itself and will go extinct
after several years even if the population is not
controlled. For negative values of the growth
rate, other questions might be investigated, such
as minimizing the time to extinction, but we
choose to focus only on the case where the
growth rate is positive. Details on the estimation
of the growth rate for a RD model can be found
in Bonneau et al. (2016).

Initial population.—We also relied on Johnson
et al. (2017) for the initial state of the population.
We used the mean of the estimated size of the
population in 2009, initializing the population
with 770 individuals. We also relied on experts to
determine the location of the first point of

introduction (25°25044.2884″ N, 80°28051.64″ W,
see Fig. 1). The 770 initial individuals were
spread around the first point of introduction
such that the carrying capacity is respected.
Carrying capacity.—For carrying capacity, little

information is available but it has been observed
that tegus are mostly found in disturbed habitats,
such as roads and levees on public land. We used
a carrying capacity of 0 in marsh and mangrove,
which represents undisturbed wetland habitat.
We used the best estimate of the experts, that is,
K = 240 per km2, for all the disturbed/suitable
habitats, including marsh habitats within a 1-km
buffer from each side of roads and levees. We con-
sidered s = 3465 sites with suitable habitat for
tegus and each site is a square of 500 m length.
See Fig. 1 for the location of the suitable habitats.
Dispersal coefficient.—The dispersal coefficient gji

represents the proportion of the population in site
j that emigrates to site i. We assume that the dis-
persal kernel follows a normal distribution with
mean zero and variance r2. Little is known about
the dispersal of tegus, so we used a common sym-
metric distribution, although we are lacking data
to support this choice. However, this choice is par-
ticularly convenient, as it allows using EDDMaps
presence-only observations available at https://
www.eddmaps.org/ to estimate the variance r. As
for the growth rate e, we propose to fit a probabil-
ity distribution (a normal distribution here) on r
in order to account for uncertainty. We then used
a simulation approach to estimate the dispersal
coefficients ðgjiÞj;i¼1; ...; s. The basic idea of our
approach consists of first using the dispersal ker-
nel to simulate dispersion of a large toy population
and then to estimate the proportion of individuals
that emigrates in each site of this large toy land-
scape. These proportions are finally used to com-
pute gji, depending on the distance between site j
and site i. This approach is general and can be
used with any dispersal kernel. For clarity, details
are proposed in Appendix S1.
In theory, it is possible to simulate long-distance

dispersal, but one possible consequence is all
gji > 0, even for very distant pair of sites (j, i). If
long-distance dispersal needs to be included, we
recommend considering instead some scenarios
(see the following section) where long-distance
dispersal events have happened. Finally, models
with a different dispersal kernel can also be
considered to reflect structural uncertainty on
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dispersal. For example, an asymmetric dispersal
kernel can also be considered in the set of possible
models.

Parameter uncertainty
The growth rate e and the standard deviation

r of the dispersal kernel are described by contin-
uous distributions. In order to propose a finite set
of possible values for these parameters, we used
a Gaussian quadrature (Miller and Rice 1983).
Gaussian quadrature can be used to represent a
continuous probability distribution on finite sup-
port points, while preserving the moments of the
distribution. We approximated each continuous
distribution of e and r using a discrete probabil-
ity distribution with five support points. We thus
considered five possible values of the growth rate
and, for each of them, we computed five possible
values for r. In total, we considered 25 different
pairs of growth rate and standard deviation of
the normal distribution kernel. The models are
denoted M1, . . ., M25, associated with the coupled
parameters e1;r1ð Þ, . . . , e25;r25ð Þ and model
probabilities p1, . . . , p25. The possible values of
the growth rate and the variance of the Gaussian
dispersal kernel are provided in Fig. 2. We sorted
the models by ascending probability such that:

p1\p2\. . .\p25

Note that it is possible to add other types of
uncertainty by adding more models. For exam-
ple, one may wish to analyze the effect of a
secondary point of introduction. In this case,
models incorporating this event can be added to
the set of possible models, and the optimal spa-
tial control can be computed to be robust to this
extra source of uncertainty.

In the following, we show how this spatial
model can be used to answer practical questions.

Tegus spatial distribution
In order to minimize the tegu population with-

out budget constraints, it is optimal to control
the area of highest density (Baker 2016). How-
ever, in our case the spatial distribution of tegus
is unknown and we can only compute a predic-
tion of the spatial distribution for each model.
We propose to summarize the prediction of all
models by computing the minimal disk or envel-
ope, centered on the first point of introduction
which contains at least 25%, 50%, 75%, and 99%

of the tegu population. For example, the 25%
envelope contains 25% of the tegus population
with probability 1. It is difficult to assess the
quality of these predictions as little is currently
known on the spatial distribution of tegus. How-
ever, we propose to compare these envelopes
to the presence-only observations available at
https://www.eddmaps.org/.

Optimal spatial control
Let us define the control vector Yt, where each

component Yt(i) represents the amount of control
effort used in site i. And let us denote ai the catch
per unit effort (CPUE) of the control method
in site i. When control is implemented, Eq. 1
becomes:

nði; tÞ ¼
Xs
j¼1

½ð1 þ f ðnðj; t� 1ÞÞÞ

� nðj; t� 1Þ�gji � ai � YtðiÞ:
(3)

where ai 9 Yt(i) represents the number of indi-
viduals that have been removed from site i.

Fig. 2. Possible values of the growth rate e (a) and of
the standard deviation r of the Gaussian dispersal
kernel (b). Five possible values of the growth rate e

and their probabilities were first determined. Then for
each growth rate, five possible values of r and their
probabilities were computed.
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For tegus, control is implemented using traps
and Yt(i) is then the number of days a trap has
been placed in site i. The CPUE was estimated
from the current control program as ai = a =
0.035, for all i = 1, . . . , s. Trapping is only relevant
when tegus are active and thus, the amount of
control Yt has to be bounded. The active period of
tegus is approximately 238 d in South Florida,
and we assume here that a maximum of five traps
can be used in each site, which represents traps
every 100 m on a linear feature. Thus, we have a
maximum of 0 ≤ Yt(i) ≤ 5 9 238 = 1,190 trapping
days per site i. It is also necessary to determine
the per-unit effort management cost. The active
season trapping cost is estimated to be US$1,000,
and the per-unit management cost is then
cu ¼ ðUS$1; 000=238Þ. It is likely that a non-
homogeneous management cost would be more
realistic. For example, the distance between the
trap position and the management office, as well
as the type of roads between these two positions,
can significantly impact the cost. Theoretically,
non-homogeneous cost can be modeled by defin-
ing cu as a vector of size s, where each component
is the per-unit management cost for a given site.
Unfortunately, we lacked relevant data to parame-
terize such a model. Finally, we assumed that
traps can be used on roads and levees on public
lands, but not on private land. We defined C as
the set of sites where control can be implemented.
It is composed of roads and levees, with a 1-km
buffer on each side of them. See Fig. 1 for the area
available for control in green.

Minimize tegu abundance with a fixed
number of traps

General method.—We first start with the practi-
cal situation where a fixed number of traps are
available and one wants to compute their opti-
mal locations in order to minimize the number of
tegus after control. Note that this also corre-
sponds to the problem of maximizing the num-
ber of trapped animals. In the following, we
show how this problem can be defined as a linear
integer programming (LIP) problem.

We first suppose that traps are not moved dur-
ing the season, and we let p be the vector of the
number of traps that are used in the sites. Our
problem consists in finding the optimal trapping
strategy, p*, or in other words, the optimal alloca-
tion of trapping effort minimizing the remaining

number of tegus. The number of removed tegus
depends on the strategy, but also the number of
individuals that are present in the site, and thus
on the population model. Let us define Rt

Mm
pð Þ as

the vector of the number of removed tegus in the
sites at time twhen modelMm is true and strategy
p is used. The number of remaining tegus after
control at time t when model Mm is true, denoted
VMm Rt

Mm
pð Þ

� �
, is then computed as follows:

VMm Rt
Mm

pð Þ
� �

¼
Xs
i¼1

nMm i; tð Þ; (4)

where nMm i; tð Þ is obtained by using Eq. 3 with
a� YtðiÞ ¼ Rt

Mm
pið Þ. Formally, the objective of

our problem is to find:

p� ¼ argmin
p

VMm Rt
Mm

pð Þ
� �

: (5)

To define a realistic problem, all the variables
should be bounded and we now define the con-
straints of the LIP problem.
It is easy to show that the number of removed

tegus should not exceed pi � a� 238ð Þ, which is
the maximum number of removed tegus in any
site i when pi traps are used in this site during the
entire active period. On the other hand, it should
as well not exceed nMmði; tÞ, that is, the number of
tegus that are present in the site at time t when
model Mm is true. The number of removed tegus
in site i, Rt

Mm
pið Þ, should then verify:

Rt
Mm

pið Þ ¼ min nMmði; tÞ; pi � a� 238ð Þ;
for all i 2 f1; . . . ; sg: (6)

The number of traps should also be bounded
and we defined nTrapMax as the maximal number of
traps that are used such that:

Xs
i¼1

pi

 !
� nTrapMax : (7)

Currently, nearly nTrapMax ¼ 100 traps are used,
but we considered two other scenarios where
nTrapMax ¼ 200 or nTrapMax ¼ 300 traps are available.
As explained previously, no more than five

traps should be used in a site, such that we have:

for all i 2 f1; . . . ; sg; 0� pi � 5: (8)

Finally, traps can be used only on sites where
control is allowed:
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for all i 62 C; pi ¼ 0: (9)

Eq. 6 through Eq. 9 represents the constraints
of the LIP problem and together with Eq. 5, they
make sure that the optimal trapping strategy will
respect the characteristic of our problem. Our
LIP problem can be summarized as follows:

p�¼minp VMm Rt
Mm

pð Þ
� �

:

suchthat Rt
Mm

pið Þ¼min nMmði;tÞ;pi�a�238ð Þ;Ps
i¼1pi�nTrapMax ;

8i2f1;���;sg; 0�pi�5;

8i 62C; pi¼0:

8>>>>>>>>><
>>>>>>>>>: ð10Þ

Note that for this problem, tegu population
size has to be minimized for only one time step,
and thus, t = t1.

Coping with uncertainty.—Problem (10) can be
solved for each possible model M1, . . . , M25, pro-
viding 25 different strategies p�M1

; . . .p�M25
. When

choosing among them, we must consider the
efficiency of the strategy under every model, all
representing a possible invasion scenario. For
example, strategy p�M2

is optimal when Mm2 is the
underlying model, but it can exhibit weak perfor-
mance if the underlying model is not model Mm2 .
Then, a decision-maker has several choices based
on their risk attitude: (1) A risk-averse attitude
would choose the strategy that performs best in
the worst-case scenario, (2) a risk-neutral attitude
would choose the strategy that performs best, on
average, over all models, or (3) a risk-seeking
attitude would choose a strategy that performs
best in the best-case scenario.

Among p�M1
; . . .; p�M25

, the MiniMax strategy
pMiniMax is a robust strategy that minimizes the
maximal possible remaining number of tegus, over
all possible models:

pMiniMax ¼ argmin
p�Mm

max
Mm0

VMm0 Rt
Mm0 p�Mm

� �� �h i� 	
:

(11)

In other words, the value of each strategy p�Mm

is computed in case any of the possible models

Mm0 is the true model. For example, VMm0 p�Mm

� �
is the remaining number of tegus when strategy
p�Mm

is used but model Mm0 is the true model.

Then, maxMm0 VMm0 p�Mm

� �h i
is the worst possible

performance of the strategy p�Mm
over all possible

models. As a consequence, pMiniMax is the strategy
that minimizes the remaining number of tegus in
the worst-case scenario. This is the strategy that
should be selected by a risk-averse decision-maker.
Second, the MiniMean strategy, pMiniMean, is

the strategy that achieves the minimal expected
number of remaining tegus:

pMiniMean ¼ argmin
p�Mm

X
Mm0

pMm0 � VMm0 p�Mm

� �( )
:

(12)

In other words, pMiniMean is the strategy that
minimizes the remaining number of tegus, on
average, over all possible models. This is the
strategy that should be selected by a risk-neutral
decision-maker.
Third, the MiniMin strategy, pMiniMin, is the strat-

egy that minimizes the minimal possible remain-
ing number of tegus over all possible models:

pMiniMin ¼ argmin
p�Mm

max
Mm0

VMm0 Rt
Mm0 p�Mm

� �� �h i� 	
:

(13)

In other words, pMiniMin is the strategy that mini-
mizes the remaining number of tegus in the best-
case scenario. This is the opposite of pMiniMax and
it should be selected by a risk-seeking decision-
maker. Finally, we also computed the optimal con-
trol effort using an average model, Mav. In this
case, the growth rate and standard deviation of the
dispersal kernel were fixed to their average value.
For the average model, the standard deviation of
the dispersal kernel is r = 3 and the growth rate
e = 0.28. Note that to compute the average growth
rate, we used both negative and positive values
from Johnson et al. (2017) in order to use an aver-
age model that includes all possibilities.

Robust containment strategy
The term containment is used to describe a

strategy that aims to confine the population to a
small part of the landscape. In practice, it is diffi-
cult to determine the size of the containment area
that is achievable and the budget that it might
require. Containment is generally only achievable
in the early stage of the infestation and when
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abundance is relatively low. We assume that con-
tainment is still achievable for tegus and that con-
tainment will help protect incursion by tegus into
the Everglades National Park (ENP) and the Tur-
key Point Power Plant (TPPP).

General problem.—We seek to implement a disk-
shaped containment area of radius d, centered on
the point of first introduction. The objective is to
minimize the control cost to attain a containment
area over a time frame of four years. We keep
this time frame relatively short for computational
reasons but also because budgets are generally
planned for a short time horizon and the credibil-
ity of different tegu population models is likely
to be updated in subsequent years.

Solving such a dynamic optimization problem
requires us to reject logistic growth of the popu-
lation and consider exponential growth instead:

f n j; t� 1ð Þð Þ ¼ en j; t� 1ð Þ: (14)

Using exponential growth allows us to
express the density in one site as a linear combi-
nation of the density in other sites, which is
required to use the LIP framework. On the con-
trary, quadratic terms appear when logistic
growth is used and the population dynamic is
computed over a time frame >1. On the previous
example, using logistic growth was possible
because the population dynamics were not
explicitly accounted for, but only the population
at a given time step t. One consequence of the
exponential growth is that the tegu population
size and the control cost will be overestimated.
For models where the predicted density remains
low, the difference with a logistic growth will be
minimal. In our case study, it may not be the
case that tegu population density is low every-
where. Interpretation of results from the follow-
ing sections for such high densities must be
done with caution, until such time as exponen-
tial growth is verifiable or methods allowing
logistic population growth are developed.

The linear programming problem is as follows.
If model Mm is assumed to be true, minimizing
the control effort to design a containment area of
radius d remains finding the control vector
pc

t

Mm
; . . . ; pc

tþ4

Mm
that minimize the control costPtþ4

t0¼t
Pn

i¼1 cu � pc
t0

Mm

� �
. Once again, for the prob-

lem to be fully described, several constraints have

to be defined: (1) The density of tegus is com-
puted according to Eq. 3 with exponential
growth, (2) nMm i; t� 1ð Þ is initialized according
to model Mm (3) the density of tegus is 0
anywhere outside the containment area during
the four years, (4) the number of trapping days
per site does not exceed the maximal number
of trapping day using five traps, that is,
pc

t0

Mm
� 238� 5 for all time t0, and (5) the number

of removed tegus does not exceed the number of
tegus in the site, that is, a� pc

t0

Mm
� nMmðt0; iÞ for

all time t0. We suppose that control starts in 2016
and thus t = 2016. Note that in this case, we
supposed that traps can be moved during the
season, and thus, pc

t0

Mm
can be lower than 238 d.

We also assumed that trapping is available
everywhere in the landscape; otherwise contain-
ment is impossible. Note that constraint (3) is
drastic, and one can be more flexible in authoriz-
ing the tegu’s density to be below a given thresh-
old outside of the containment area instead of
fixed to zeros.
Coping with uncertainty.—In this case, it is hard

to follow the same method as in the previous
example with a fixed budget. Indeed, an optimal
strategy pc�Mm

is designed to guarantee that no
tegus will be outside of the containment area for
a minimal cost, only if model Mm is true. But for
other models, some tegus might be present out-
side of containment. It is then hazardous to com-
pare two strategies only in terms of cost, as far as
one strategy can be cheap, but only allows con-
tainment for few models. Instead, we compared
the strategies in terms of the number of tegus
that are still present outside of the containment
area when all the models are accounted for. We
denote Vc

Mm1
pc�Mm2

� �
the number of remaining

tegus outside of the containment area when
using strategy pc�m2

but model Mm1 is the true

model. Note that we have Vc
Mm1

pc�Mm1

� �
¼ 0 when

five traps per site allow removal of all individu-
als. Indeed, we recall that a maximum of five
traps can be used in any site and when the den-
sity is too high, more than five traps would be
needed to remove all the individuals.
Similar to the problem with a fixed budget, we

considered a MiniMax strategy, pcMiniMax, which
minimizes the number of tegus outside of the
containment area in the worst-case scenario:
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pcMiniMax ¼ arg min
pc�Mm

max
Mm0

Vc
Mm0 pc�Mm

� �h i� 	
: (15)

The MiniMean strategy pcMiniMean, which mini-
mizes the expected number of tegus outside of
the containment area:

pcMinMean ¼ arg min
pc�Mm

X
Mm0

pMm0 � Vc
Mm0 pc�Mm

� �( )
:

(16)

We also considered the MiniMin strategy,
pcMiniMin, which minimizes the minimal possible
remaining number of tegus over all possible
models:

pcMiniMin ¼ arg min
pc�Mm

min
Mm0

Vc
Mm0 pc�Mm

� �h i� 	
: (17)

In addition to these three strategies, we consid-
ered a Max strategy pcMax, which on any time step
and any site, use the largest control effort among
all the possible strategies:

8t0 ¼ t . . . tþ 4; i ¼ 1; . . .; s

pc
t0

MaxðiÞ ¼ max
m¼1...25

pc�
t0

Mm
ðiÞ; (18)

where pc�
t0

Mm
ðiÞ is the amount of effort in site i dur-

ing year t0 when strategy pc�Mm
is used. Finally, we

also computed the optimal control effort for the
containment of tegus using the average model
Mav, as described before.

Note that to compute the remaining number of
tegus outside of the containment area, Vc

Mm
:ð Þ, we

computed the population dynamics using Eq. 3
with exponential growth; thus, the carrying den-
sity K = 240 is not necessarily guaranteed. But to
compute the associate cost of the different strat-
egy, we only consider a maximal density of
K = 240, preventing comparison of strategies with
an irrelevantly high number of tegus and cost.

Protection of Everglades National Park and the
Turkey Point Power Plant

We consider a final case, where the problem is
to compute the minimal effort that is needed to
protect specific parts of the landscape (the ENP
and the TPPP in our case), for all scenarios.
Unlike the previous case study, containment is
not applied on all the landscape but just for speci-
fic parts. In addition, we consider that having

tegus is these zones is not an option, in any of the
possible scenarios. Then, we ask what is the mini-
mal CPUE value, and where do we apply control
in order to protect these two areas in the worst-
case scenario? We define the worst-case scenario
as the model that predicts the highest density of
tegus in the study area in 2015; it is model M2 in
our case and we letMWorst = M2.
The linear programming problem consists of

minimizing the management cost, such that there
are no tegus in the ENP and the TPPP for the
next four years. The constraints on the tegu pop-
ulation dynamics and on the maximal number of
tegus are unchanged.

RESULTS

Where are the tegus?
The boundary of each envelope is provided in

Fig. 1. The radius of each envelope is 6.8, 9.7, 12.1,
and 17.4 km. In other words, 25% of the tegus
population are predicted to be found within a dis-
tance of 6.8 km of (x0, y0) with probability 1. The
average density in each envelope is 136, 121, 105,
and 76 tegus per km2. As expected under the
assumptions of a RD model, the density of tegus
decreases with increasing distance from the point
of first introduction. Note that a simple “rule of
thumb” control strategy could be used by ran-
domly selecting cells within the 25% envelope, a
core area where the tegus density is highest.
The predicted density for the least likely model

M1, the average model Mav, and the most likely
model M25 are available in Fig. 3. The predicted
density for all models are available in Appen-
dix S1: Fig. S2. The highest infestation levels are
predicted by the model with the lowest likeli-
hood, and the density of tegus is a decreasing
function of the distance from the point of first
introduction. Nearly 86% of the observations from
EDDMaps are located in the 25% envelope, 95%
of the observations in the 50% envelope, 97% of
the observations in the 75% envelope, and 99.9%
of the observations in the 99% envelope.

Where to control with a fixed number of traps?
The MiniMax, MiniMean, MiniMin strategies,

and the optimal strategy for the average model
are displayed in Appendix S1: Fig. S3. For all
strategies, all of the traps are located within the
25% envelope. Note that all the 25 strategies
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minimized the maximal values over all models;
that is, there are 25 other possible rMiniMax

strategies. As explained earlier, the rMiniMax

strategy is designed to minimize the worst-case
scenario and it occurs for the first possible
model, with the lowest likelihood. In this case,
the CPUE and/or the number of traps are too
low to really impact the tegu population. Any
strategy that randomly selects locations in the
50% envelope is expected to perform the same
(only in the worst-case scenarios). Indeed, a max-
imum of a 9 5 9 238 ≃ 42 tegus can be trapped
using five traps during 238 d in the same cell.
And in the worst-case scenario, every cell in the
50% envelope has a minimum of 56 individuals.

For a maximum of 200 traps, the risk-neutral
and risk-seeking strategies rMiniMean and rMiniMin

consist of spreading the traps in the 25% envel-
ope, as close as possible to the point of first intro-
duction. With 300 traps, the risk-averse (rMiniMax)
and risk-neutral (rMiniMean) strategies use up to
two traps around the point of first introduction.
This is because the density of tegus is predicted to
be high in this area for most of the models. In con-
trast, the risk-seeking strategy (rMiniMin) focuses

on situations where it is possible to completely
eradicate tegus from the controlled cells with only
one trap. As a consequence, this strategy consists
of spreading the traps inside the 25% envelope as
much as possible, which helps reduce the risk of
using more traps than needed in any given cell.
When using an average model, there is no

uncertainty around the tegu density, and it is
therefore easier to determine if using more traps
in a given cell is wasteful or not. Then, two traps
are used in six (or 16) cells around the point of
first introduction when 200 (or 300) traps are
available. The remaining traps are then spread in
the 25% envelope.

Is containment a feasible option?
We estimated that the probability that a con-

tainment area can be established is equal to 0.66
when the width of the containment area is ≤4 km
and is equal to 0.93 for a containment width from
5 to 8 km. For the larger containment width
≥9 km, containment is achievable with a probabil-
ity of 0.99. Fig. 4a shows the distribution of the
expected number of tegus outside of the contain-
ment area. The optimal containment strategy for a

Fig. 3. Predicted density of tegus (Salvator merianae) in 2016 in the study area. The prediction of tegus density
is provided in km2 for three different models. The first prediction (a) is obtained by using the least likely combi-
nation of the growth rate e and the standard deviation r of the Gaussian dispersal kernel, while the third predic-
tion (c) is obtained by using the most likely combination. The second prediction (b) is obtained by using the
average value of the growth rate e and the estimated value of the standard deviation r using the EDDMaps data
(https://www.eddmaps.org/).
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given model is not supposed to achieve contain-
ment for any other models, and thus, the number
of individuals outside of the containment area
might not be zero for every model in the model
set. It is apparent from Fig. 4a that more tegus are
expected to be outside the containment area for
the smallest containment widths, as it requires
removal of tegus from sites with high predicted
density (close to the point of first introduction).
Fig. 4b shows the distribution of the cumulative
containment cost, for all the containment strate-
gies rc�

Mm
, for models Mm where containment is

feasible. A wider radius d allows containment for
more models, which causes the jump in contain-
ment costs (e.g., between 4 and 5 km and between
8 and 9 km). The new models for which contain-
ment is feasible describe scenarios with high den-
sity of tegus and thus need a higher containment
cost. Thus, even if in general containment cost
decreases with an increase of containment radius,
in our case there is situation where containment
for d2 is more costly than for d1, even if d1 < d2,
simply because the estimated cost includes more
models for d2. But when containment is possible
for the same set of models, cost for d1 is higher
than for d2. Indeed as it is noted previously, den-
sity decreases with distance to the point of first
introduction; thus, more tegus will have to be
removed for small radius.

Establishment of a containment area
The expected number of remaining tegus out-

side of the containment area associated with each

robust strategy is presented in Fig. 5a. Not sur-
prisingly, the risk-seeking strategy (rc

MiniMin) left
the highest expected number of tegus outside of
the containment area, while the risk-averse strat-
egy rc

Max is the one that minimizes the number of
tegus outside of the containment area. Using the
strategy r�

av computed with the average model
provided a near optimal result for a containment
radius lower than 4 km. For the largest radius,
the amount of control is not sufficient and the
strategy performs poorly, similar to the risk-seek-
ing strategy rc

MiniMin. Indeed, the average model
only predicts low tegu density outside of the
50% envelope (see Fig. 3), which means that a
low level of removal is used to remove the popu-
lation within the higher containment radius. One
downside of using the average strategy is that it
ignores the possibility that tegus can be found
outside the 50% envelope, and this strategy is
thus not appropriate for the possible models that
predict a high density of tegus outside the 50%
envelope. In addition, with a containment radius
of 1 km, the containment area cannot be imple-
mented given the prediction of the average
model. Finally, the risk-averse strategy (rc

MiniMax)
and risk-neutral strategy (rc

MiniMean) show similar
results, with a slightly better performance for
the risk-seeking strategy (rc

MiniMean). These
two strategies exhibit similar performance com-
pared to rc

Max and are indistinguishable in
Fig. 5a.
The performances have to be considered in the

context of the associated control cost because the

Fig. 4. (a) Distribution of the expected number of tegus outside of the containment area after 4 yr as a function of
the containment width. All of the 25 models are considered. (b) Distribution of the cumulative control cost in order
to establish a containment area of different width (containment radius). The distribution of the cumulative of all
strategies rc�

Mm
is reported only for the model where containment is possible. The cost is summed over four years.
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strategies that minimize tegu density outside of
the containment area are also the most expensive
strategies (see Fig. 5b). Note that the costs of
rc
MiniMax, r

c
MiniMean, and rc

Max greatly increase for
the containment radius ≥5 km.

This increase is explained by the fact that con-
tainment becomes achievable for more models,
with high predicted density as described earlier.
rc
MiniMin and r�

av do not take into account these
models, and thus, they are not affected and their
cost smoothly decreases with the containment
radius.

Protection of Everglades National Park and
the Turkey Point Power Plant

The minimal CPUE values to protect the ENP
and TPPP from tegus over four years is dis-
played in Appendix S1: Fig. S4. A smaller CPUE
seems to be needed to protect ENP. In this region,
the CPUE should not have to exceed 8.2 9 10�4,
1.48 9 10�3, 6.46 9 10�3, and 3.06 9 10�2 dur-
ing the first, second, third, and fourth years.
Given that the current CPUE is estimated to be
0.035, this objective is achievable at least for the
next four years with only one trap per cell. For
the TPPP, a maximal CPUE of 9.76 9 10�2,
4.32 9 10�2, 0.15 and 0.608 is needed at time
t = 1, . . . , 4. This is achievable for the first three
years with the current constraints. But then for
the next year, more than five traps per cell is
needed. We note that trapping is not only
required inside the TPPP, but also around, espe-
cially during the first two years, such that the

number of animals that will disperse in this area
will remain small.

DISCUSSION

This article presents a framework for studying
the optimal allocation of control effort with a
constrained budget and/or constrained location
of controlled cells. This framework is based on
linear programming, used to minimize a linear
objective function while accounting for linear
constraints. Linear programming is particularly
useful as it allows us to solve problem that
accounts for practical constraints. First, linear
programming allows to solve problem of reason-
ably large size (11,000 square cells of 500 m by
500 m in our case), which is interesting as the
area to be managed can be large, such that an
entire national park. Second, it allows accounting
for constraints and objectives that can be met in
practical situations, such that a fixed budget per
year, maintaining the population below a given
threshold or considering a discrete control vari-
able such that a number of traps. Third, it also
allows considering several models of population
dynamics, which reflects the uncertainty on the
species’ biological parameters. Nonetheless, for
dynamic problems our framework cannot be
used with a logistic growth function, which can
be an important limitation. This work builds
upon Hof and Bevers (2002) and Epanchin-Niell
and Wilen (2012), using a more general popula-
tion dynamics model and taking advantage of

Fig. 5. (a) Expected number of tegus (Salvator merianae) outside of the containment area, that is,P25
m¼1 pm � Vc

Mm
rcð Þ, for the different control strategies rc and different containment radius after 4 yr of manage-

ment. The Max, MiniMax, and MiniMean strategies exhibit similar performances and are indistinguishable from
the figure. (b) Cumulative cost over four years, in US dollars, of implementing each of the containment strategy.
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the constraints to model realistic problems. This
framework is sufficiently general and flexible to
be used in other applications involving control of
an invasive fauna or flora.

The use of linear programming to optimize
spatial control is made possible by the discrete
RD model, allowing us to describe the spatial
dynamic of the invasive using linear equations.
Reaction-diffusion models rely on simple and
general assumptions of the species’ population
dynamics, which seems to be suitable to our situ-
ation, where only little information is available
on the species. Of course, if the problem of mod-
eling the spatial distribution of the species was
considered alone, there might be no advantage to
select RD models instead of, for example, occu-
pancy modeling tools (Bailey et al. 2014) or
enhanced spatial distribution models (Sullivan
et al. 2012). But here we focus on a coupled prob-
lem of spatial control and high uncertainty on
the species characteristics, which is why a com-
promise has to be found. In our case, control has
to be implemented, with or without sufficient
information on the species, and our framework
allows us to use available information in order to
estimate the best allocation of control effort. We
view the RD model as a null hypothesis, which
supposes that the invasion front is a moving cir-
cle, centered on the point of first introduction,
inside which the density is decreasing with the
distance from the center. Unfortunately, it is hard
to formulate more hypotheses or to validate
them with data, which suggests that our results
should be interpreted with caution. For example,
Klug et al. (2015) showed that the activity of
tegus is different depending on the habitat and
the relative position in the invasion area (core vs.
periphery). Activity can change the potential of
being trapped and our analysis can be improved
by defining the CPUE as a function of distance
from the point of introduction and habitat. Their
study also showed that male dispersal behavior
is different in the periphery compared to the core
of the population, which might be hard to incor-
porate in a RD model as it will require a density-
dependent dispersal coefficient. On the other
hand, one can imagine using a different dispersal
coefficient, growth rate, and carrying capacity in
the different habitat types. Although Klug et al.
(2015) described habitat preferences, there is high
uncertainty about current spatial distribution and

the only available data are from EDDMaps. When
comparing the EDDMaps data to the model pre-
dictions (see Fig. 1), there are two major discrepan-
cies: (1) Few observations were recorded east of
the ENP, while no observations were recorded in
the TPPP, and (2) observations were mostly spread
south of the point of first introduction. The EDD-
Maps data are issued from a non-regular sampling
scheme and some places in the study area are not
frequently visited, which might explain the
absence of observations in some regions. In addi-
tion, mostly private lands can be found north of
the presumed point of introduction, which might
explain the small number of observations in this
zone. Gathering more information on the species
could certainly allow us to consider more realistic
models and prescribe a better use of the available
resources. This highlights an important question,
how much should we learn about a species to con-
trol it? This is a complicated question because
gathering information about the species uses
resources, which will not be used to control the
population. On the other hand, learning more
about the species, for example, the spatial distribu-
tion, diet, reproductive and dispersal behavior,
could help produce a more efficient control strat-
egy in the future. When the uncertainty can be
structured, the Value of Information (Canessa et al.
2015, Williams and Johnson 2015) can be used to
quantify the benefit of decreasing the uncertainty
on the species’ characteristics. Also, control and
information gathering are not necessarily contra-
dictory. There is certainly information to be
extracted from the control action. For example, if
no individuals are captured in the trap, this might
change the likelihood of the species being present
at this location. In principle, this can be accounted
for by including directly some uncertainty mea-
sure in the objective function. In this work, we pro-
pose considering a large range of population
dynamics (i.e., 25 different invasion scenarios) that
are likely to include the true dynamics, and then
design the control strategy accordingly.
A potentially major limitation of our frame-

work is the hypothesis of an exponential growth
when considering population dynamics in the
optimization problem. Using an exponential
growth when logistic growth is a better assump-
tion tends to overestimate the population. One
consequence is that control effort can be wasted
in some places where the population is predicted
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to be higher than what it is in reality. Thus, the
optimal strategy for a population that grows
exponentially might not be optimal when used
for a population with logistic growth. Another
consequence is that control cost will be overesti-
mated. However, the framework that we propose
to design a robust containment strategy or to
protect of particular areas of interest could be
used in an iterative way. In other words, one can
use the framework with a time horizon of 1 to
compute the optimal strategy for the current
year, predict the population density after control
using logistic growth, compute the optimal strat-
egy for the next year with the new predicted den-
sity as a starting point, and so on. For example,
the robust containment strategy can be com-
puted first for 2016 only. The predicted density
for 2017 can be computed using Eq. 3, with logis-
tic growth for f and the robust containment strat-
egy for Y. The robust containment strategy for
2017 can then be computed using the predicted
density as an input and so on. Finally, the
hypothesis of exponential growth is disputable
for our case study. We considered 25 different
prediction models and for those where the popu-
lation is predicted to be low, the exponential
growth hypothesis might not be a problem. On
the contrary, when the population is predicted to
be high in 2016, the optimal strategies that we
computed might overestimate the control effort
and be inefficient in reality. As a consequence,
the MiniMax strategy is particularly affected by
the exponential growth hypothesis while the
impact on the MiniMin strategy is certainly
lower. More generally, results of the two last sec-
tions (Robust containment strategy and Protection of
ENP and the TPPP) should be interpreted with
caution.

When applying this framework to Argentine
black and white tegus in South Florida, we first
showed that at least 25% of the population can be
found within approximately a distance of 7 km
from the point of first introduction. When at most
300 traps can be used, we showed that they are
better to be used within the 25% envelope in order
to maximize the number of captures. These results
compare favorably with the recent work of Baker
(2016), which shows that control should be imple-
mented near the source of the infestation. How
traps are allocated in the 25% envelope then
depends on the risk attitude: (1) Gather traps

close to the point of first introduction (risk-averse
and risk-neutral) or (2) distribute traps evenly
around the first point of introduction (risk-seek-
ing). Second, it appears that containment might
not be possible for some scenarios, but generally
the containment success probability increases
with the containment radius d. On the contrary,
containment cost decreases with an increase of
containment radius d. Finally, we discuss the min-
imal required CPUE that is necessary in the TPPP
and in the ENP in order to protect these areas
from the invasion of tegus. The situation for ENP
is unique, as far as there are few tegus that are
currently predicted by some models. In those
cases, only a small and achievable CPUE is
required for the next four years. For the TPPP, the
situation is more critical because some models
predict that this area is already invaded by tegus.
To be robust to all of the model predictions, the
current CPUE is predicted to be sufficient at least
for the next three years. For the two following
years, more than five traps would need to be
placed in the cells inside this area, violating one of
our assumptions. Models predict more tegus in
the TPPP compared to the ENP because it is acces-
sible via a larger number of cells. Indeed, because
we restricted the suitable habitat for tegus, the
ENP is only accessible via one path of suitable
habitat when the TPPP shared a long boundary
with suitable habitat. We also discussed using an
average model to inform the management deci-
sion. A major downfall of this approach is that it
does not allow us to consider extreme, but still
possible, cases. For the tegu example, the extreme
cases are the models that predict a very high or
very low tegu density. As we have shown for the
largest width of the containment area, using an
average model can result in a decision of poor
quality if a pessimistic model is true. Actually, the
performance of the strategy computed with the
average model is similar to the risk-seeking strat-
egy (see Fig. 5).
It is interesting to note that current control

design, resulting from the cooperative trapping
of multiple agencies, represents a mix of the dif-
ferent strategies presented in this article: (1) Most
of the traps are located in the 25% envelope,
which could satisfy the objective of maximizing
the number of trapped animals; (2) some traps
are located around the TPPP and the ENP, which
could satisfy the objective of protecting these
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zones from invasion; and (3) some traps are
located near the edge of the 50% envelope, which
could satisfy the objective of containment. These
results can help managers in deciding the best
trap density in the landscape, depending on their
prioritization of these objectives and given that
our framework is adapted to their situation.
More generally, this work allows managers to
understand how trap locations and control objec-
tives are linked. To design a control strategy, it is
important to first define the objectives (e.g., to
maximize capture [M], to contain the species [C],
or to protect a delimited zone from invasion [P]).
Second, trap locations can be determined. For
objective (M), traps should be located in the area
of highest density and the number of traps per
cell should be decided in order to be able to
remove all tegus from the cell. For objective (C),
trap should be located inside and near the edge
of the containment area, with a decreasing trap
intensity from the first point of introduction. The
choice of an adapted containment radius should
realize a compromise between likelihood of suc-
cess, cost, and size of the area that should be pro-
tected. For objective (P), traps should be located
inside the protected zones, but also around when
the density of invaders is already high, thus pre-
venting future invasion. In any case, a better pre-
diction of the invader’s spatial distribution can
highly increase control efficiency and minimize
waste of control effort.
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