S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, pp.40-79, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00407906

M. Baragatti and D. Pommeret, A study of variable selection using g-prior distribution with ridge parameter, Computational Statistics and Data Analysis, vol.56, issue.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01293963

P. J. Brown, T. Fearn, and M. Vannucci, Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem, Journal of the American Statistical Association, vol.96, issue.454, pp.398-408, 2001.

U. Büntgen, S. Egli, J. Camarero, E. Fischer, U. Stobbe et al., Drought-induced decline in Mediterranean truffle harvest, Nature Climate Change, vol.2, pp.827-829, 2012.

U. Büntgen, W. Tegel, S. Egli, U. Stobbe, L. Sproll et al., Truffles and climate change, Frontiers in Ecology and the Environment, vol.9, issue.3, pp.150-151, 2011.

H. Cardot, F. Ferraty, and P. Sarda, Functional linear model, Statistics & Probability Letters, vol.45, issue.1, pp.11-22, 1999.

H. Cardot, F. Ferraty, and P. Sarda, Spline estimators for the functional linear model, Statistica Sinica, vol.13, issue.3, pp.571-591, 2003.

C. Crainiceanu and A. Goldsmith, Bayesian Functional Data Analysis Using WinBUGS, Journal of Statistical Software, vol.32, issue.11, p.14, 2010.

C. Crainiceanu, D. Ruppert, and M. P. Wand, Bayesian Analysis for Penalized Spline Regression Using WinBUGS, Journal of Statistical Software, vol.14, issue.14, pp.1-24, 2005.

J. Demerson and M. Demerson, La truffe, la trufficulture, vues par les Demerson, Leséditions de la Fenestrelle, vol.19, p.20, 1989.

A. Gelman and X. Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Statistical Science, vol.13, issue.2, 1998.

J. Goldsmith, L. Huang, and C. Crainiceanu, Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection, Journal of Computational and Graphical Statistics, vol.23, issue.1, 2014.

J. Goldsmith, M. P. Wand, and C. Crainiceanu, Bayesian Functional Linear Regression with Sparse Step Functions, Electronic Journal of Statistics, vol.5, pp.572-602, 2011.

P. Grollemund, C. Abraham, M. Baragatti, and P. Pudlo, Supplementary Materials: Bayesian Functional Linear Regression with Sparse Step Functions, Bayesian Analysis, vol.14, issue.11, p.21, 2018.

R. Healy, M. Smith, G. Bonito, D. Pfister, Z. Ge et al., High diversity and widespread occurence of mitotic spore mats in ectomycorrhizal Pezizales, Molecular Ecology, vol.22, issue.6, pp.1717-1732, 2013.

G. James, J. Wang, and J. Zhu, Functional linear regression that's interpretable, The Annals of Statistics, vol.37, issue.5A, p.14, 2009.

J. Kang, B. J. Reich, and A. Staicu, Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process, 2016.

F. Le-tacon, B. Marçais, M. Courvoisier, C. Murat, P. Montpied et al., Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48 years, Mycorrhiza, vol.24, p.20, 2014.

F. Le-tacon, A. Rubini, C. Murat, C. Riccioni, C. Robin et al., Certainties and uncertainties about the life cycle of the Périgord black Truffle (Tuber melanosporum Vittad, Annals of Forest Science, vol.73, issue.1, p.20, 2016.

F. Li, T. Zhang, Q. Wang, M. Gonzalez, E. Maresh et al., Spatial Bayesian Variable Selection and Grouping for High-Dimensional Scalar-on-Image Regression, The Annals of Applied Statistics, vol.23, issue.2, pp.687-713, 2015.

J. Marin and C. Robert, Importance sampling methods for Bayesian discrimination between embedded models, pp.513-527, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00424475

C. Murat, A. Rubini, C. Riccioni, H. De-la-varga, E. Akroume et al., Fine-scale spatial genetic structure of the black truffle (Tuber Melanosporum) investigated with neutral microsatellites and functional mting type genes, The New Phytologist, vol.199, issue.1, pp.176-187, 2013.

V. Picheny, R. Servien, and N. Villa-vialaneix, Interpretable sparse SIR for functional data, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01325090

J. Ramsay and B. Silverman, Functional Data Analysis, 2005.

P. Reiss, J. Goldsmith, H. Shang, and T. R. Ogden, Methods for scalar-on-function regression, International Statistical Review . MR3686566, 2016.

C. P. Robert, The Bayesian choice: from decision-theoretic foundations to computational implementation, 2007.

R. Splivallo, R. Rittersma, N. Valdez, G. Chevalier, V. Molinier et al., Is climate change altering the geographic distribution of truffles?, Frontiers in Ecology and the Environment, vol.10, issue.9, pp.461-462, 2012.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society Series B, vol.67, issue.1, p.14, 2005.

M. Yuan and T. Cai, A reproducing kernel Hilbert space approach to functional linear regression, The Annals of Statistics, vol.38, issue.6, 2010.

Y. Zhao, T. Ogden, and P. Reiss, Wavelet-Based LASSO in Functional Linear Regression, Journal of Computational and Graphical Statistics, vol.21, issue.3, 2012.

J. Zhou, N. Wang, W. , and N. , Functional Linear Model with Zero-Value Coefficient Function at Sub-Regions, Statistica Sinica, vol.23, issue.1, pp.25-50, 2013.

H. Zhu, F. Yao, and H. Zhang, Structured functional additive regression in reproducing kernel Hilbert spaces, Journal of the Royal Statistical Society Series B, vol.76, issue.3, 2014.