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Abstract 21 

1. Habitat filtering and limiting similarity are well-documented ecological assembly processes 22 

that hierarchically filter species across spatial scales, from a regional pool to local 23 

assemblages. However, information on the effects of fine-scale spatial partitioning of 24 

species, working as an additional mechanism of coexistence, on community patterns is much 25 

scarcer. 26 

2. In this study, we quantified the importance of fine-scale spatial partitioning, relative to 27 

habitat filtering and limiting similarity in structuring grassland communities in the western 28 

Swiss Alps. To do so, 298 vegetation plots (2 m × 2 m) each with five nested subplots (20 cm 29 

× 20 cm) were used for trait-based assembly tests (i.e., comparisons with several alternative 30 

null expectations), examining the observed plot and subplot level α-diversity (indicating 31 

habitat filtering and limiting similarity) and the among-subplot β-diversity of traits (indicating 32 

fine-scale spatial partitioning). We further assessed variations in the detected signatures of 33 

these assembly processes along a set of environmental gradients.  34 

3. We found habitat filtering was the dominating assembly process at the plot level with 35 

diminished effect at the subplot level, whereas limiting similarity prevailed at the subplot 36 

level with weaker average effect at the plot level. Plot-level limiting similarity was positively 37 

correlated with fine-scale partitioning, suggesting that the trait divergence resulted from a 38 

combination of competitive exclusion between functionally similar species and 39 

environmental micro-heterogeneities. Overall, signatures of assembly processes only 40 

marginally changed along environmental gradients, but the observed trends were more 41 

prominent at the plot than at the subplot scale.  42 

Synthesis: Our study emphasises the importance of considering multiple assembly processes 43 

and traits simultaneously across spatial scales and environmental gradients to understand 44 

the complex drivers of plant community composition. 45 
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Introduction 48 

Community assembly is assumed to work as a hierarchy of constraints with potentially varying 49 

strengths at different scales (Keddy, 1992; Zobel, 1997; Belyea & Lancaster, 1999; Lortie et al., 2004; 50 

McGill, 2010). Community dynamics and structure are therefore the outcome of a succession of 51 

filters that limit the set of potentially coexisting species from larger pools. This concept integrates 52 

many mechanisms of species coexistence (Chesson, 2000; Barot & Gignoux, 2004; Wilson, 2011). 53 

However, empirical investigations addressing actual coexistence in nature have shown little 54 

consensus over the years (Miles, Schmidt & Van der Maarel, 1988; Diaz, Cabido & Casanoves, 1998; 55 

Firth & Crowe, 2010; Mason, de Bello, Doležal & Lepš, 2011; Götzenberger et al., 2012; Concepción et 56 

al., 2017; Conti, de Bello, Lepš, Acosta & Carboni, 2017; Price et al., 2017), despite the prime 57 

importance for realistic forecasts of current and future communities (Guisan & Rahbek, 2011; 58 

D'Amen, Rahbek, Zimmermann & Guisan, 2017). More research is required to detect and disentangle 59 

the signatures of assembly processes based on assemblages observed at different scales.  60 

 61 

When focusing on local plant communities at fine spatial scales (i.e., excluding the roles of 62 

phylogeographic and dispersal assembly filters), many studies provide evidence of habitat filtering, 63 

an assembly process that allows only the species exhibiting suitable convergent traits to coexist in 64 

particular environmental conditions (Watkins & Wilson, 2003; Firth & Crowe, 2010; Chalmandrier et 65 

al., 2017; Conti et al., 2017). Although habitat filtering is often implicitly linked to the physical 66 

constraints of the environment, the habitat is also defined by its biotic components, including 67 

competitors. Therefore, the convergence of traits at the community level may also be driven by the 68 

exclusion of weaker competitors by the stronger ones (Bengtsson, Fagerstrom & Rydin, 1994; 69 

Chesson, 2000; Mayfield & Levine, 2010; Kunstler et al., 2012). However, when plant competition is 70 

at work, the coexistence of species can be empowered by mechanisms that counteract competitive 71 

exclusion (Chesson, 2000; Barot & Gignoux, 2004; Wilson, 2011): Opposite to the trait convergence 72 
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caused by habitat filtering, trait divergence results from the fact that species must differentiate to 73 

compete for different resources (corresponding to different α-niche attributes; Stubbs & Wilson, 74 

2004; Wilson & Stubbs, 2012), usually resulting in a range of distinct traits in the community 75 

(MacArthur & Levins, 1967; Johansson & Keddy, 1991; Wilson, 2011; D'Andrea & Ostling, 2016). Such 76 

trait divergence is therefore expected to limit the trait similarity of coexisting species through α-77 

niche differentiation (Wilson, 2011; Götzenberger et al., 2012). Simultaneous functioning of these 78 

counteracting processes (i.e., habitat filtering and limiting similarity) is assumed to be enabled by 79 

hierarchical organisation (Weiher & Keddy, 1995; Holdaway & Sparrow, 2006; Bernard-Verdier et al., 80 

2012): abiotic constraints are expected to be more effective at coarser scales than plant interactions, 81 

whereas resource competition should mostly work at finer “neighbourhood” scales (Huston, 1999).  82 

 83 

In addition to habitat filtering and limiting similarity, both assuming that communities are spatially 84 

homogeneous, assemblages of plant species may be driven by within community spatial partitioning 85 

(Amarasekare, 2003). Such processes account for the heterogeneous nature of communities and may 86 

be endogenous (e.g., generated by ecology of the plants themselves; Tilman, 1994; Pacala & Levin, 87 

1997) or exogenous (e.g., generated by environmental micro-heterogeneities or disturbances; Conti 88 

et al., 2017; Price et al., 2017). Spatial partitioning is at the core of several mechanisms promoting 89 

species coexistence (Bolker, 2003; Barot & Gignoux, 2004; Adler, Fajardo, Kleinhesselink & Kraft, 90 

2013). An example of coexistence mechanisms promoted by endogenous heterogeneity is the 91 

competition/colonisation trade-off (Levins & Culver, 1971) in which better colonisers escape 92 

competitive exclusion because they can occupy patches that are not yet occupied by the better 93 

competitors (e.g., Wildová, Wild & Herben, 2007; Moora, Opik, Zobel & Zobel, 2009). Additionally, 94 

environmental heterogeneities are well recognised to develop at a wide range of scales (Levin, 1992), 95 

including the very fine ones of the rhizosphere (Raynaud & Leadley, 2004; Scherrer, Schmid & Körner, 96 

2011). Although they cannot be considered as a mechanism of coexistence sensu stricto (Wilson, 97 

2011), such environmental heterogeneities still increase opportunities for species to co-occur. 98 
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Combined endogenous and exogenous fine-scale spatial heterogeneities are expected to segregate 99 

plant functional syndromes leading to fine-scale spatial niche partitioning (Amarasekare, 2003; Conti 100 

et al., 2017; Price et al., 2017). 101 

 102 

Whereas the roles of different assembly processes are expected to vary in relation to spatial scale, 103 

they may also vary along environmental gradients (Mason et al., 2011; Carboni et al., 2014; Mudrák 104 

et al., 2016; Chalmandrier et al., 2017; Bowman & Swatling-Holcomb, 2018). Based on the 105 

hypotheses related to stress gradients, abiotic constraints would be expected to be decisive for co-106 

occurrences under harsh environmental conditions, such as in cold and dry areas, whereas 107 

competition would define species assemblages in more productive habitats (Louthan, Doak & Angert, 108 

2015). Conversely, the role of spatial partitioning should be emphasised in environments prone to 109 

patchiness in vegetation and spatial heterogeneity (Amarasekare, 2003; Stark, Lehman, Crawford, 110 

Enquist & Blonder, 2017). Variations in importance of different assembly processes along 111 

environmental gradients demonstrate that interpretations derived from one habitat cannot 112 

necessarily be generalised to communities elsewhere. Thus, quantifying the role of different 113 

assembly processes across different spatial scales and along environmental gradients is essential for 114 

better understanding community assembly (Weiher et al., 2011; Conti et al., 2017). 115 

 116 

In this study, we aimed to disentangle the signatures of different processes defining local plant 117 

assemblies (summarised in Table 1) across spatial scales (plots of 2 m × 2 m and subplots of 20 cm × 118 

20 cm) and environmental gradients. Our analyses were based on a nested sampling design to record 119 

the within-community heterogeneity of vegetation (Fig. 1), including information on plant functional 120 

traits combined with environmental data in abiotic habitats. We applied different null models for 121 

trait reshuffling to assess the importance of habitat filtering (interpreted from trait convergence) and 122 

limiting similarity (interpreted from trait divergence) at two different spatial scales (i.e., plot and 123 
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subplot level) and spatial partitioning among subplots (i.e., interpreted from β-diversity of traits 124 

within each plot). We further assessed the variations in the investigated assembly processes along 125 

environmental gradients.   126 
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Materials and Methods 127 

Data collection 128 

The study area covers approximately 700 km2 of a mountain region located in the western Swiss Alps 129 

(46°23’ N, 7°05’ E). This region is characterised by a large elevation gradient with strong variation in 130 

climatic, edaphic and land use factors. A set of 298 plots of 2 m × 2 m, each with five nested subplots 131 

of 20 cm × 20 cm, were distributed across non-forested areas within the study area from 820 to 3045 132 

m a.s.l. according to a stratified-random sampling (using elevation, slope and aspect as strata) 133 

designed to evenly cover the range of grassland habitat conditions (Fig. 1). At the 2 m plot scale, the 134 

cover of different plant species was estimated as modified ordinal classes (Braun-Blanquet, 1964), 135 

which were then subsequently converted to percentage cover values: 0 = absent; r = 0.01 %; + = 0.2 136 

%; 1 = 3 %; 2 = 15 %; 3 = 37.5 %; 4 = 62.5 %, 5 = 87.5 % (Pottier et al., 2013). At the 20 cm subplot 137 

level, the percentage cover of species was visually estimated in the field. All the field data were 138 

collected during the peak vegetation period between June and August 2009, starting from lower 139 

elevation sites and moving to higher elevation sites. 140 

 141 

Plant trait information was collected from a previous study (Dubuis et al. 2013) for the 244 most 142 

frequent and locally abundant species (of 722 vascular plant species recorded in total). Four traits 143 

associated with the performance of plant species during the persistence phase of their life cycle 144 

(Westoby, Falster, Moles, Vesk & Wright, 2002; Wright et al., 2004) were measured (hereafter, 145 

growth traits): average vegetation height (VH in cm), which is associated with the ability of a plant to 146 

compete for light, and specific leaf area (SLA in mm2 mg-1), leaf dry matter content (LDMC in mg mg-1) 147 

and leaf nitrogen content (LNC in % of dry leaf mass), which indicate the resource-use strategy of a 148 

species (Wilson, Thompson & Hodgson, 1999; Reich, 2014). These traits were measured for 4 to 20 149 

individuals (generally 10) per species within the study area, evenly distributed within the bioclimatic 150 
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ranges of the species as defined in Pottier et al. (2013). Trait measurements followed the basic 151 

recommendations of Cornelissen et al. (2003) and are detailed in Dubuis et al. (2013). For the details 152 

on trait data, see Supplementary material Appendix 1 Fig. A1. 153 

 154 

For the trait-based detection of assembly processes, we discarded the plots in which trait-assigned 155 

species accounted for less than 80 % of the relative vegetation cover resulting in 269 plots for the 156 

final analyses. With the threshold of 80 %, most of the plots were retained for the analyses (e.g., a 95 157 

% threshold would have retained only 147 plots).  158 

 159 

The spatial variation of different assembly processes was examined against the environmental 160 

conditions of each plot. Based on preliminary analyses, elevation (m a.s.l.), growing degree-days 161 

(GDD; average of 1961-1990 with a 0 °C threshold), moisture index over the growing season (average 162 

values of 1961-1990 from June to August) and topographic position (positive values express convex 163 

topographies such as ridges, peaks, and exposed sites, whereas negative values indicate concave 164 

surfaces such as valley bottoms or lower ends of slopes) were chosen as the most influential 165 

predictors (see Supplementary material Appendix 1 Fig. A2). These variables were extracted from 166 

digital maps at a 25 m × 25 m resolution following Zimmermann and Roberts (2001). 167 

 168 

Detecting the signatures of assembly processes 169 

The detection of assembly processes was based on a trait-based approach and the comparison of 170 

observed patterns against patterns derived from null models. All analyses were conducted in R 3.4.1 171 

(R Core Team, 2017; see Appendix 4 for details of the packages and functions used). 172 

 173 
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Habitat filtering and limiting similarity were tracked at both plot and subplot levels to examine scale 174 

dependency of these processes. Habitat filtering was inferred in the case of convergence of growth 175 

traits in which observed within-plot (or within-subplot) functional diversity was lower than that 176 

expected under null assembly. Correspondingly, limiting similarity was inferred in the case of 177 

divergence of growth traits in which observed within-plot (or within-subplot) functional diversity was 178 

greater than that expected under null assembly. Fine-scale spatial partitioning was inferred from 179 

spatial segregation of growth traits among subplots within each plot in which the β-component of 180 

functional diversity was greater than that under a null assembly. We measured plot and subplot 181 

functional diversity using a modified version of the α-Rao quadratic entropy index following de Bello, 182 

Lavergne, Meynard, Lepš and Thuiller (2010). This metric is based on the functional dissimilarity 183 

among species weighted by their abundance. The β-component of functional diversity within each 184 

plot was measured with the β-Rao quadratic entropy index (de Bello et al., 2010). 185 

 186 

We considered five different representations of trait diversity: one multidimensional space 187 

considering the four growth traits simultaneously (multidimensional space combining all growth 188 

traits, CGT), and four one-dimensional spaces each consisting of one separate growth trait. All traits 189 

were log transformed and standardised (for details, see Supplementary material Appendix 1 Fig. A1).  190 

 191 

A critical aspect of testing for assembly processes is the use of an appropriate null model that focuses 192 

only on the ecological mechanisms under study (Harvey, Colwell, Silvertown & May, 1983; Gotelli & 193 

Ulrich, 2012; Götzenberger et al., 2016). Detecting habitat filtering or limiting similarity requires 194 

testing whether the trait values of species make a difference in terms of community structuring. In 195 

this respect, we built null models in which trait values of a species were reshuffled as a unit (i.e., all 196 

traits of one species, hereafter called trait unit) among species to prevent unrealistic/unobserved 197 

combinations of traits and to preserve fundamental trade-offs between traits (Mouillot, Mason & 198 
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Wilson, 2007; Hardy, 2008). With this approach, the species abundance patterns and species richness 199 

of plots and subplots were fixed, as were the species frequencies among the plots and subplots. 200 

Therefore, this reshuffling procedure also fixed the frequency of the functional syndromes over the 201 

study area. The range of trait units considered for this reshuffling procedure differed when seeking 202 

the signature of habitat filtering or limiting similarity. Whereas the tests of habitat filtering 203 

considered the total range of trait units (i.e., based on all species recorded in the study area) at the 204 

plot level and the local range of trait units (i.e., based on all species recorded in a plot) at the subplot 205 

level, the tests of limiting similarity were based on a restricted range of trait unit values. For limiting 206 

similarity, only trait units falling into the observed range of trait values were considered, which 207 

allowed detection of limiting similarity independent of habitat filtering (Bernard-Verdier et al., 2012). 208 

For example, if the observed range of vegetation height in a plot or a subplot was 10-50 cm, only trait 209 

values of the total (for plot level analysis) or local plot range (for subplot analysis) between 10 and 50 210 

cm were considered. Using different species pool sources for trait units, habitat filtering and limiting 211 

similarity could be detected for a given plot/subplot simultaneously.  212 

 213 

An additional question is whether the reshuffling of trait units among species should be free or 214 

constrained allowing only the trait units of species with similar abundances (i.e., vegetation cover) to 215 

be reshuffled. To test whether reshuffling had any effect on our results, we ran three different null-216 

models for habitat filtering, limiting similarity and fine-scale spatial partitioning: (1) model allowing 217 

trait units to be reshuffled freely independent of abundances; (2) model only allowing trait units to 218 

be reshuffled within predefined abundance classes (see Appendix 2 for more details; Hardy, 2008; 219 

Wilson & Stubbs, 2012); and (3) model constraining the reshuffling by weights according to the 220 

differences in abundance between species (i.e., reshuffling between two species with similar 221 

abundances is much more likely than between species with highly different abundances; see 222 

Appendix 3 for more details). Because the results of these three null models were similar, we only 223 
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report the results for the first one here. Detailed descriptions and all results of the other two null 224 

models can be found in Appendices 2 and 3.  225 

 226 

The null models were run 10,000 times for each test. Based on our null models, we then calculated 227 

the standard effect size (SES) of α-Rao or β-Rao for each plot and subplot as 228 

𝑆𝐸𝑆𝑅𝑎𝑜 = (𝑅𝑎𝑜𝑝𝑙𝑜𝑡 − 𝜇𝑅𝑎𝑜𝑛𝑚
)/𝜎𝑅𝑎𝑜𝑛𝑚

 229 

where 𝑅𝑎𝑜𝑝𝑙𝑜𝑡 is the observed α-/β-Rao and 𝜇𝑅𝑎𝑜𝑛𝑚
is the mean and 𝜎𝑅𝑎𝑜𝑛𝑚

is the standard deviation 230 

of α-/β-Rao of the null model simulations. With negative SES of α-Rao for the habitat filtering test, 231 

the functional diversity was lower than that expected under the null assembly (i.e., signal of habitat 232 

filtering). Conversely, positive SES of α-Rao for the limiting similarity test indicated that the functional 233 

diversity was higher than that expected under the null assembly (i.e., signal of limiting similarity). 234 

Positive SES of β-Rao for the spatial partitioning test indicated that plant traits were spatially 235 

segregated among subplots within a plot. 236 

 237 

To test whether an overall effect of habitat filtering or limiting similarity occurred at the plot and 238 

subplot levels, and whether the effect was significantly different between these spatial scales, we 239 

used a Wilcoxon test comparing α-Rao at the plot level and the mean α-Rao at the subplot level (i.e., 240 

the mean of the five subplots nested within a plot). To test for an overall effect of fine-scale 241 

partitioning, we used a Wilcoxon test of the β-Rao among subplots. 242 

 243 

Analysing changes in assembly processes along environmental gradients 244 

To explore potential changes in the strength of habitat filtering and limiting similarity (at the plot and 245 

subplot levels) and spatial partitioning processes (among subplots) along environmental gradients 246 

(elevation, GDD, moisture index, topographic position), generalised linear models (GLM) for the SES 247 



13 

 

 

(plot/subplot α-Rao, subplot β-Rao) of growth traits were fitted. Because we were not interested in 248 

building a single meaningful and accurate statistical model per assembly process but in interpreting 249 

the variation along environmental gradients, we fitted one model for each assembly process and 250 

environmental factor. Environmental factors were provided to the models as second order 251 

polynomials, and the optimal model was selected based on stepwise AIC. Because all of the strong 252 

environmental gradients in the study area were highly correlated with elevation (Pearson 253 

correlations: GDD = -0.99, moisture index = 0.88 and topographic position = 0.59; see Supplementary 254 

material Appendix 1 Fig. A2 for details), only the results for elevation as the principal stress gradient 255 

are reported in the main manuscript.  256 



14 

 

 

Results 257 

The relative importance of assembly processes 258 

The mean SES of α-Rao with total trait range reshuffling was significantly lower than zero at the plot 259 

level (p < 0.01, Wilcoxon test) for all growth traits except LDMC, but not at the subplot level (Fig. 2). 260 

This result indicated the predominance of habitat filtering at the coarse spatial scale of 4 m². The 261 

mean SES of α-Rao with restricted trait range reshuffling was significantly greater than zero for all 262 

growth traits (except VH at the plot level) at both spatial scales (p < 0.01, Wilcoxon test) but was 263 

significantly higher at the subplot level (p < 0.01, Wilcoxon test), indicating the predominance of 264 

limiting similarity at the fine spatial scale of 0.04 m² (Fig. 2). Trait convergence from the total range 265 

of trait values was strongest for VH and LNC, whereas trait divergence with trait reshuffling restricted 266 

to the observed range of the local plot/subplot was strongest for SLA and LDMC. Based on 267 

comparison of SES of α-Rao values with total and restricted trait range reshuffling, habitat filtering 268 

and limiting similarity at the plot level were negatively linked, indicating that these two processes 269 

acted as opposing forces (i.e., plots with strong habitat filtering showed weak limiting similarity, and 270 

plots with weak habitat filtering showed strong limiting similarity; R2 ≈ 0.8; Fig. 3), despite the 271 

independent null-tests. These functional patterns were not related to plot species richness (Fig. 3). 272 

 273 

Overall, SES of β-Rao among subplots did not deviate from zero (Fig. 2). However, 3.3 to 10.3 % 274 

(depending on the studied trait) of the plots showed much greater β-Rao than that expected under 275 

null assembly, indicating that fine-scale spatial partitioning was a relevant process in our study area. 276 

Most importantly, SES β-Rao among subplots was significantly positively correlated with plot level 277 

SES α-Rao with restricted trait range reshuffling (Fig. 4), indicating strong connection of limiting 278 

similarity at the plot level with within plot (i.e., among subplots) spatial partitioning. Neither process 279 

was linked to species richness of a plot (Fig. 4). 280 

 281 
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Assembly processes along environmental gradients 282 

Of the four growth traits (i.e., community weighted mean of the plots), only vegetative height (R2 = 283 

0.6) and SLA (R2 = 0.42) varied with elevation, whereas LNC and LDMC were largely independent of 284 

elevation (R2 < 0.15; Fig. 5). Overall, the explanatory power of environmental gradients (i.e., 285 

elevation) for SES α-Rao with total trait range reshuffling (i.e., habitat filtering; R2 = 0.05-0.26) and 286 

with restricted trait range reshuffling (i.e., limiting similarity; R2 = 0.02-0.17) at the plot level was 287 

weak and negligible at the subplot level (R2<0.04; Fig. 5; for more detailed results on the other 288 

environmental gradients, see Supplementary material Appendix 1 Fig. A3). Our results for the CGT 289 

(combined growth traits) showed that habitat filtering was strongest in productive low elevation 290 

habitats; whereas limiting similarity was strongest in cold climates at high elevations. These signals 291 

were mostly driven by only two traits, with habitat filtering by SLA (R2 = 0.26) and limiting similarity 292 

by VH (R2 = 0.17). Nevertheless, habitat filtering for VH remained the strongest assembly process 293 

observed, although the importance was relatively constant with elevation (Fig. 5). Fine-scale spatial 294 

partitioning did not show any significant signal along environmental gradients (R2 < 0.02; Fig. 5 and 295 

Supplementary material Appendix 1 Fig. A3).  296 
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Discussion 297 

Variations of assembly processes with scale and traits 298 

Our study revealed the signatures of several assembly processes across different spatial scales, with 299 

habitat filtering (interpreted from trait convergence) the dominant effect at the large scale (i.e., 300 

among plots) and limiting similarity (interpreted from trait divergence) the dominant effect at the 301 

fine scale (i.e., within a plot). Consistent with the literature (Weiher & Keddy, 1995; Holdaway & 302 

Sparrow, 2006, Götzenberger et al., 2012), we found a strong overall signal of habitat filtering for 303 

three of four growth traits (not LDMC) at the plot level and no or only a weak signal at the subplot 304 

level. In contrast to habitat filtering, limiting similarity was detected at both spatial scales with 305 

stronger effects for all growth traits at the subplot level.  306 

 307 

At the subplot scale (0.04 m2), limiting similarity acting at the neighbourhood scale within 308 

herbaceous plant communities was the dominant assembly process indicating species competition at 309 

fine scales (van der Maarel & Sykes, 1993; Purves & Law, 2002; Reitalu et al., 2008). However, we 310 

also detected trait divergence at the plot scale indicating that competition effects might act not only 311 

at centimetre but also at metre scales in grassland communities. Additionally, the plot level trait 312 

divergence could result from spatial partitioning processes. This interpretation was indeed supported 313 

by the positive correlation between plot level limiting similarity and spatial partitioning, which is a 314 

pattern that was also found in a recent study conducted by Conti et al. (2017). Consequently, similar 315 

to Mayfield and Levine (2010), who demonstrated that trait convergence could be due to different 316 

mechanisms, our results indicated that trait divergence could also be due to different mechanisms 317 

operating at different scales.  318 

 319 

Despite the positive relationship between plot level trait divergence and SES of β-Rao, we detected 320 

fine-scale spatial partitioning of plant functional traits less frequently than habitat filtering and 321 
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limiting similarity. Nevertheless, even if the size of our plots (4 m²) was sufficiently small to assume 322 

spatial homogeneity of the investigated environmental factors, we might still encounter either 323 

biologically generated micro-heterogeneities (e.g., very short-distance dispersal and vegetative 324 

reproduction) or fine-scale patchiness in other environmental factors (e.g., edaphic factors, spatially 325 

restricted disturbances). The observed spatial partitioning further suggests that the metacommunity 326 

concept should be accounted for at very fine scales in future studies (e.g., Kneitel & Chase, 2004; 327 

Leibold et al., 2004; Alexander et al., 2012; Laliberté, Norton, Scott & Mason, 2013). This could be 328 

accomplished, for example, by combining our approach based on β-diversity patterns and fine-scale 329 

measurements of the physical environment (Conti et al., 2017; Stark et al., 2017) with spatially 330 

explicit tests (Siefert 2012).  331 

 332 

Additionally, our results revealed that assembly processes worked on different traits with habitat 333 

filtering mostly observed for VH and LNC and limiting similarity for SLA and LDMC. These results 334 

corroborated the observation of a strong decrease in VH with elevation: apart from the length of the 335 

growing season, fertilised lowland grasslands select tall species able to compete for light, whereas 336 

alpine/nival landscapes select strongly for small stature plants with thermic decoupling from 337 

atmospheric conditions (Körner, 2003). LNC varied across habitats depending on environmental 338 

conditions, with plants with high LNC selected for at high elevations in natural environments (Han, 339 

Fang, Reich, Ian Woodward & Wang, 2011). We also found high LNC values at low elevations, 340 

presumably related to farming-based fertilisation. By contrast, SLA and LDMC are mostly associated 341 

with the ability to compete for nutrients (Wilson et al., 1999) and therefore are expected to show 342 

trait divergence (i.e., limiting similarity). 343 

 344 

Here, we only used four growth traits, but other traits are also expected to show strong patterns of 345 

habitat filtering (e.g., leaf form or anatomy, flower pollination, diaspore morphology; Pellissier, 346 
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Fournier, Guisan & Vittoz, 2010) or limiting similarity (e.g., root depth; Cornwell & Ackerly, 2009). 347 

Indeed, recent studies concentrating on functional diversity reveal a tendency to combine traits into 348 

one functional space (e.g., in multi-traits; Cornwell, Schwilk & Ackerly, 2006; Laughlin, 2014; 349 

Carmona, de Bello, Mason & Leps, 2016). However, with this approach, or by concentrating only on 350 

one or few traits, important mechanisms depicting trait patterns to underlying assembly processes 351 

can be hidden (Mason et al., 2011; Conti et al., 2017). To discriminate between different sources of 352 

fine-scale spatial partitioning, one should consider more traits related to plant regenerative 353 

strategies and ability to pre-empt or explore space. In perennial grasslands in which regeneration is 354 

mostly vegetative, a signature of fine-scale spatial partitioning could therefore be detected by trait 355 

divergence of clonal traits/syndromes (Moora et al., 2009; Pottier & Evette, 2011; Klimešová & 356 

Herben, 2015). 357 

 358 

Although null model approaches are widely used and tested in studies of community assembly, their 359 

outcomes, similar to any other observational method, do not imply causation. The ecological 360 

interpretation that trait convergence is driven by habitat filtering and that divergence results from 361 

competition is certainly an over-simplification (HilleRisLambers, Adler, Harpole, Levine & Mayfield, 362 

2012). For example, competitive exclusion can also result in trait convergence, by clustering species 363 

of similar competitive ability (similar height, shade tolerance, or other competition related traits; 364 

Chesson, 2000; Mayfield & Levine, 2010; Herben & Goldberg, 2014). Although we attributed some of 365 

the changes in functional diversity to such processes, overall, the exclusion of weaker competitors 366 

was unlikely: SES values for all traits were higher at the subplot level than those at the plot level. If 367 

competitor exclusion was effective at the subplot scale, the opposite should be observed.  368 

 369 

For community assembly studies that compare observed trait diversity patterns with randomised 370 

ones, another concern is that simultaneously acting processes may lead to random patterns, which 371 
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could mask the processes that create opposing patterns (e.g., trait convergence vs. divergence) 372 

(HilleRisLambers et al., 2012; Götzenberger et al., 2016). Nonetheless, the deviation of SES value 373 

distributions from 0 to either positive or negative values can at least indicate the prevailing process 374 

acting for a given trait at a given scale. Moreover, in this study, we particularly addressed the 375 

simultaneously acting processes of habitat filtering and limiting similarity using different species 376 

pools over which trait data were randomised (Figures 3 and 4, see also de Bello et al., 2012). 377 

Although such an approach still relies on the assumption that habitat filtering and limiting similarity 378 

can be interpreted from convergence and divergence, an indication of those sites in which 379 

simultaneous processes are potentially at play is nevertheless provided. 380 

 381 

Despite the limitations of the null model and more generally of the empirical-approach, our study 382 

supports the conclusion of Münkemuller et al. (2012) that the inference of assembly processes from 383 

diversity patterns is more relevant when based on a set of criteria rather than on a unique one. 384 

Münkemuller et al. (2012) combined α- and β-indices for taxonomic, functional and phylogenetic 385 

diversity metrics. Here, we further highlighted the importance of combining several species pool 386 

definitions and tests of assembly rules at nested scales. 387 

 388 

Variations of assembly processes along environmental gradients 389 

Although we found a strong influence of elevation on the mean trait values themselves (i.e., VH and 390 

SLA), the strength of the processes creating different trait dispersion patterns only varied marginally 391 

with elevation. VH showed the strongest overall signal of habitat filtering but was relatively constant 392 

across elevation (R2 = 0.07). This result indicated that a strong selection for VH (trait convergence) 393 

occurred at both high and low elevations, but for opposite sizes (i.e., small at high elevation, tall at 394 

low elevation). Dominance of the best competitors for light in productive habitats is often reported 395 

(Perronne, Munoz, Borgy, Reboud & Gaba, 2017), and the advantage of short stature in the 396 
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alpine/nival belt (high elevation) to allow thermic decoupling from atmospheric conditions is well 397 

documented (Körner, 2003). For SLA, the primary influence of elevation on habitat filtering was for 398 

selecting high SLA species towards lower elevations and low SLA species towards higher elevations. 399 

At low elevation, the detected pattern was most likely not a direct effect of the physical environment 400 

but an indirect effect of favourable conditions in productive habitats favouring species with quick 401 

growth and high SLAs (e.g., Crepis biennis, Holcus lanatus; de Bello et al., 2013). This trait 402 

convergence due to biotic interactions (i.e., competitive exclusion of weaker traits; Chesson, 2000; 403 

Mayfield & Levine, 2010) might also explain why we observed less habitat filtering at higher than at 404 

lower elevations (see also Mudrák et al., 2016). This finding further highlights the difficulty of null 405 

model approaches to distinguish trait convergence resulting from abiotic (i.e., physiological limits) 406 

and biotic (i.e., competitive exclusion) habitat filtering, because both processes might work 407 

simultaneously and on the same traits (HilleRisLambers et al., 2012).  408 

 409 

The signal of limiting similarity was only weakly linked to elevation with the strongest effect visible 410 

on SLA and VH for which limiting similarity increased with elevation. This result is apparently 411 

contradictory to the stress-gradient hypothesis, which predicts an increase in limiting similarity in 412 

productive lowlands in which plant competition is expected to be more intense (Bertness & Callaway, 413 

1994; He, Bertness & Altieri, 2013; Chamberlain, Bronstein & Rudgers, 2014; Chalmandrier et al., 414 

2017). An alternative interpretation, as presented above, is that the observed patterns of trait 415 

divergence at the plot level were linked to habitat heterogeneity within plots rather than the direct 416 

effects of competition-driven limiting similarity. With increasing elevation, the plots (4 m2) were 417 

likely to become environmentally more heterogeneous (soil depth, percentage of rock cover) leading 418 

to the coexistence of species with varying SLA and VH, such as cushion plants, succulents (on rocks) 419 

and grasses. Nevertheless, spatial partitioning did not vary significantly with any of the 420 

environmental factors tested. This suggested that fine-scale partitioning might result from a variety 421 

of mechanisms (endogenous/exogenous heterogeneity) that did not necessarily respond similarly to 422 
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environmental variations, or that the analyses and underlying data could not capture the true drivers 423 

of spatial partitioning within the communities.  424 

 425 

Our findings support the general view that topo-climatic conditions act as strong drivers of 426 

community assemblages in a mountain range, such as the one studied here, with implications for 427 

spatial modelling of plant species assemblages (Guisan & Rahbek, 2011; D'Amen et al., 2015; D'Amen 428 

et al., 2017; D'Amen et al., 2018). However, mountain grasslands are often used as grazing grounds 429 

for livestock, with intensity varying in relation to elevation. In previous studies, added fertilisation 430 

and mowing has led to observed trait convergence and divergence depending on the attribute 431 

examined and the type/intensity of treatment (Mason et al., 2011; Bloor & Pottier, 2014; Louault et 432 

al., 2017). Therefore, further investigations of assembly processes in mountain grasslands should also 433 

integrate descriptors of land management.  434 
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Conclusions 435 

The dominating assembly process at the coarse scale across elevation was habitat filtering, 436 

particularly for VH, selecting for small plants at high and tall plants at low elevation sites. Limiting 437 

similarity was detected at plot and subplot levels, particularly for resource-acquisition traits (SLA and 438 

LDMC), but was stronger and dominating at the subplot level. Plot level trait divergence occurred 439 

particularly at high elevations, presumably indicating spatial partitioning rather than limiting 440 

similarity as the underlying mechanism. Our findings suggest that approaches studying and modelling 441 

assembly processes, such as stacked species distribution models (S-SDMs; Dubuis et al. 2011) or 442 

mechanistic models of community assembly (Shipley, Vile & Garnier 2006, Demalach, Zaady, Weiner 443 

& Kadmon 2016, Lohier, Jabot, Weigelt, Schmid, B. & Deffuant 2016), should consider the interaction 444 

of biotic and abiotic factors along environmental gradients, particularly when examining 445 

communities at fine spatial scales. Further, the detection of spatial partitioning in this study calls for 446 

high-resolution abiotic data to allow understanding and forecasting of community and biodiversity 447 

patterns at fine scales. Overall, our study highlights the importance of analysing the roles of several 448 

assembly processes simultaneously across different spatial scales and in combination with abiotic 449 

gradients to allow a deeper understanding of the complex interaction of abiotic and biotic drivers 450 

shaping natural grassland communities. 451 

  452 
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Table 1. List of the plant assembly processes that are hypothesised to drive community patterns. In 744 

this study, the coarse scale level refers to plots of 4 m2 and the fine scale level to “subplots” each of 745 

0.04 m2 nested within the 4 m2 plots (see Fig. 1). VH = vegetation height, SLA =specific leaf area, 746 

LDMC = leaf dry matter content, LNC = leaf nitrogen content, CGT = multidimensional space 747 

combining all growth traits. 748 

Assembly 
hypothesis 

Short explanation of 
the underlying 
mechanisms 

Expected 
pattern 

Metric Scale Trait space(s) considered 

 

Habitat filtering 

 

Only species sharing 
similar adaptation to 
cope with prevailing 
environmental 
conditions can co-
occur.  

 

Trait 
convergence 

 

SES of 
α-Rao 

Within plot and 
within subplot 

 

No restriction of the total 
trait space of the study area 
is used. 

 

VH, SLA, LDMC, LNC and CGT 

 Limiting similarity  

 

Species show limiting 
similarity (i.e., α-niche 
differentiation = 
differences in the traits 
related to the ways the 
species compete for a 
common resource) to 
coexist. 

Trait 
divergence 

 

SES of 
α-Rao 

Within plot and 
within subplot 

 

Restricted to the trait range 
of the plot/subplot 

 

VH, SLA, LDMC, LNC and CGT 

Fine-scale spatial 
partitioning 

Species coexist at the 
plot level because they 
segregate in space due 
to endogenous or 
exogenous spatial 
heterogeneity 

Segregation 
of traits 
among 
subplots 
within a plot  

SES of 
β-Rao 

Among subplots 
of each plot 

 

Restricted to the trait values 
measured for the species 
recorded in each plot 

 

VH, SLA, LDMC, LNC and CGT 

 749 

  750 
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 751 

Figure 1. The general framework of the study was based on a nested sampling design to test for the 752 

signatures of different assembly processes. Habitat filtering and limiting similarity were analysed at 753 

two scales (2×2 m plots and 20×20 cm subplots) using null model approaches to compare observed 754 

trait structure with null expectations. The among subplots spatial partitioning process was analysed 755 

in each plot using a null model designed to test for spatial segregation of plant functional traits or 756 

syndromes. 757 
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 758 

Figure 2. Distribution of SES of α-Rao at the plot level and average (of the five subplots) α-Rao at the 759 

subplot level for (a) total trait range (indicating habitat filtering) and (b) restricted trait range 760 

(indicating limiting similarity). (c) Distribution of SES of β-Rao among subplots (indicating fine-scale 761 

spatial partitioning). Black asterisks above a boxplot mark significant (p < 0.01) differences from zero, 762 

and red asterisks mark significant differences (p < 0.01) between plot and subplot level α-Rao. The 763 

boxes span from the 25th to the 75th percentile, and the whiskers indicate ± 2 SD. CGT= 764 

multidimensional space combining all growth traits, VH = Vegetation height, SLA = Specific leaf area, 765 

LDMC = Leaf dry matter content, LNC = Leaf nitrogen content, ns = Non significant. 766 
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 767 

Figure 3. Correlation of strength of limiting similarity and habitat filtering measured by SES of α-Rao 768 

at the plot level. Different coloured areas indicate the dominant assembly process, and the colour 769 

gradient (red to blue) indicates the species richness of the plots. Please note that the x-axis (habitat 770 

filtering) is inversed, i.e., increasing effect to the right. See Fig. 2 for abbreviations. 771 
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 772 

Figure 4. Correlation of strength of limiting similarity and spatial partitioning measured by SES of α-773 

Rao at the plot level and SES of β-Rao among subplots. Different coloured areas indicate the 774 

dominant assembly process, and the colour gradient (red to blue) indicates the species richness of 775 

the plots. See Fig. 2 for abbreviations. 776 
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 777 

Figure 5. Generalised linear models fitted for different traits, habitat filtering, limiting similarity and 778 

spatial partitioning along the elevation gradient. Models were fitted as second-degree polynomials 779 

with stepwise AIC to select the best model. Please note that the y-axis for habitat filtering is inversed. 780 

See Fig. 2 for abbreviations. 781 


