P. Schindele, F. Wolter, and H. Puchta, Transforming plant biology and breeding with crispr/cas9, cas12 and cas13, FEBS Lett, vol.592, pp.1954-1967, 2018.

J. Kumlehn, J. Pietralla, G. Hensel, M. Pacher, and H. Puchta, The crispr/cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology, J. Integr. Plant Biol, vol.60, pp.1127-1153, 2018.

Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen et al., Precise base editing in rice, wheat and maize with a cas9-cytidine deaminase fusion, Nat. Biotechnol, vol.35, pp.438-440, 2017.

Y. Zong, Q. Song, C. Li, S. Jin, D. Zhang et al., Efficient c-to-t base editing in plants using a fusion of ncas9 and human apobec3a, Nat. Biotechnol, vol.36, pp.950-953, 2018.

Z. Shimatani, S. Kashojiya, M. Takayama, R. Terada, T. Arazoe et al., Targeted base editing in rice and tomato using a crispr-cas9 cytidine deaminase fusion, Nat. Biotechnol, vol.35, pp.441-443, 2017.

C. Li, Y. Zong, Y. Wang, S. Jin, D. Zhang et al., Expanded base editing in rice and wheat using a cas9-adenosine deaminase fusion, Genome Biol, vol.19, 2018.

S. Tian, L. Jiang, X. Cui, J. Zhang, S. Guo et al., Engineering herbicide-resistant watermelon variety through crispr/cas9-mediated base-editing, Plant Cell Rep, vol.37, pp.1353-1356, 2018.

B. C. Kang, J. Y. Yun, S. T. Kim, Y. Shin, J. Ryu et al., Precision genome engineering through adenine base editing in plants, Nat, vol.4, pp.427-431, 2018.

K. Hua, X. Tao, F. Yuan, D. Wang, and J. K. Zhu, Precise a.T to g.C base editing in the rice genome, Mol. Plant, vol.11, pp.627-630, 2018.

F. Yan, Y. Kuang, B. Ren, J. Wang, D. Zhang et al., Highly efficient a.T to g.C base editing by cas9n-guided trna adenosine deaminase in rice, Mol. Plant, vol.11, pp.631-634, 2018.

M. Endo, M. Mikami, A. Endo, H. Kaya, T. Itoh et al., Genome editing in plants by engineered crispr-cas9 recognizing ng pam, Nat. Plants, vol.5, pp.14-17, 2018.

L. Chen, W. Li, L. Katin-grazzini, J. Ding, X. Gu et al., A method for the production and expedient screening of crispr/cas9-mediated non-transgenic mutant plants, Hortic. Res, vol.5, 2018.

M. Fossi and L. Comai, Widespread genome instability in solanum tuberosum plants regenerated from protoplasts, p.382861, 2018.

M. Andersson, H. Turesson, N. Olsson, A. S. Falt, P. Ohlsson et al., Genome editing in potato via crispr-cas9 ribonucleoprotein delivery, Physiol. Plant, 2018.

B. M. Clasen, T. J. Stoddard, S. Luo, Z. L. Demorest, J. Li et al., Improving cold storage and processing traits in potato through targeted gene knockout, Plant Biotechnol. J, vol.14, pp.169-176, 2016.

Z. Liang, K. Chen, T. Li, Y. Zhang, Y. Wang et al., Efficient DNA-free genome editing of bread wheat using crispr/cas9 ribonucleoprotein complexes, Nat. Commun, 2017.

H. Kim, S. T. Kim, J. Ryu, B. C. Kang, J. S. Kim et al., Crispr/cpf1-mediated DNA-free plant genome editing, Nat. Commun, vol.8, 2017.

Q. Yu, H. Han, M. M. Vila-aiub, and S. B. Powles, Ahas herbicide resistance endowing mutations: Effect on ahas functionality and plant growth, J. Exp. Bot, vol.61, pp.3925-3934, 2010.

H. Wu, K. Liu, Y. Wang, J. Wu, W. Chiu et al., Agrobest: An efficient agrobacterium-mediated transient expression method for versatile gene function analyses in arabidopsis seedlings, Plant Methods, vol.10, 2014.

A. Kochevenko and L. Willmitzer, Chimeric rna/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene, Plant Physiol, vol.132, pp.174-184, 2003.

K. Y. Lee, J. Townsend, J. Tepperman, M. Black, C. F. Chui et al., The molecular basis of sulfonylurea herbicide resistance in tobacco, EMBO J, vol.7, pp.1241-1248, 1988.

N. M. Butler, P. A. Atkins, D. F. Voytas, and D. S. Douches, Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the crispr/cas system, PLoS ONE, vol.10, 2015.

F. Hahn and V. Nekrasov, Crispr/cas precision: Do we need to worry about off-targeting in plants?, Plant Cell Rep, 2018.

K. Nishida, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, vol.353, p.8729, 2016.

M. Mazier, F. Flamain, M. Nicolai, V. Sarnette, and C. Caranta, Knock-down of both eif4e1 and eif4e2 genes confers broad-spectrum resistance against potyviruses in tomato, PLoS ONE, vol.6, 2011.

F. Veillet, C. Gaillard, and P. Coutos-thevenot, La Camera, S. Targeting the atcwin1 gene to explore the role of invertases in sucrose transport in roots and during botrytis cinerea infection. Front, Plant Sci, 1899.

W. P. Bewg, D. Ci, and C. J. Tsai, Genome editing in trees: From multiple repair pathways to long-term stability. Front, Plant Sci, vol.9, p.1732, 2018.

Z. Shimatani, U. Fujikura, H. Ishii, Y. Matsui, M. Suzuki et al., Inheritance of co-edited genes by crispr-based targeted nucleotide substitutions in rice, Plant Physiol. Biochem, vol.131, pp.78-83, 2018.