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A B S T R A C T

The MARS-Crop Yield Forecasting System (M-CYFS) is used since 1993 to forecast the yields of all major crops in
the European Union (EU) based on gridded runs of the WOFOST crop model. Using 28 years of observation, from
1988 to 2015, we quantified the variability in crop yield reported by all 28 EU Member States (MS) that can be
explained by each individual WOFOST crop model based predictors and a few simple meteorological variables. A
linear regression is used as a screening tool to quantify the relationship between each predictor and the yield
residuals from the trend throughout the crop cycle for 168 country/crop combinations, assuming the yield
residuals from the trend depend on the inter-annual climate variability. The results are plotted and analyzed at
different level: every 10 days for each country crop/combination and each predictor; synthetized every 10 days
for each country/crop combination keeping the predictor showing the best relationship with the yield residuals;
finally, the best predictor found for each MS during the entire growing season is used to evaluate the ability of
the model to estimate yield variability of each crop at European scale.

While 61% of the grain maize (Zea mays L.) yield variability can be anticipated 80 days before harvest with
the simulated water limited biomass for countries where rainfed maize prevails, 41% of the soft wheat (Triticum
aestivum L.) yield variability can be reproduced a month before harvest, the best estimates being obtained where
wheat is predominantly exposed to water stress. For the other crops analyzed, the results are also found to be
reliable for crops predominantly exposed to water stress and becoming unreliable in agricultural systems ex-
posed to an oceanic climate with a high level of inputs. The agro-meteorological processes related to an excess of
water (nitrogen losses, diseases, anoxia, harvest conditions) would need to be disentangled and better integrated
into the crop modeling system to improve the predictors.

The monthly cumulated meteorological predictors are performing only slightly worse than the crop model
predictors and help to characterize the main processes responsible for the yield variability. Nevertheless, the
predictive capacity of the meteorological predictors is spatially and temporally incoherent and differs according
to the crop phenology. In comparison, the M-CYFS crop model predictors are more consistent since the predictors
summarize the succession of agro-meteorological conditions determining the yield throughout the entire
growing season.

1. Introduction

Crop yield forecasting has a growing importance in the public and
private sector, to anticipate crop production and market fluctuations,
ensure food security, optimize agro-management practices and resource
use (Macdonald and Hall, 1980; Meinke and Stone, 2005). From
farmers to national and international private and public institutions,
various individuals need to anticipate crop production and markets.
Initiatives like AMIS (Agricultural Market Information System) illus-
trate the usefulness of monitoring agricultural production at global
scale to stabilize agricultural markets (Islam and Grönlund, 2010). The

aim of the MARS Crop Yield Forecasting System (M-CYFS), developed
and maintained by the Joint Research Center (JRC), is to contribute to
the cereal supply balance sheets of the European Union published by
the European Commission, which can aid to stabilize prices of the main
commodities and prevent market fluctuations, impacting directly
farmers and Member States (MS). Such initiatives have a growing im-
portance since inter-annual yield variability depends largely on weather
conditions, which will be particularly altered by climate change. Ex-
pected changes in temperature trends, rainfall distribution, and extreme
climatic events are foreseen to impact the yields of major crops and
increase their variability (Asseng et al., 2011; Iizumi and Ramankutty,
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2016; Lesk et al., 2016; Lobell et al., 2011; Powell and Reinhard, 2016;
Ray et al., 2012).

Monitoring and forecasting crop yield is generally accomplished
using several sources of information, from field observations, meteor-
ological data, remote sensing images to crop growth simulation models
(Basso et al., 2013). The approach of the M-CYFS is rather unique as it is
one of the few forecasting systems relying on the use of gridded crop
simulations at large scale, over the European Union (Van Diepen et al.,
2004). Remote sensing time series are completing the information
available and also used operationally to forecast the yields (Kerdiles
et al., 2017; López-Lozano et al., 2015).

Gridded crop models are commonly used for applications such as
studying yield gaps or to simulate future crop yields under different
climate scenarios (Mueller et al., 2012; Müller and Robertson, 2014;
Rosenzweig et al., 2014; Van Ittersum et al., 2013). Only a few vali-
dations of these large scale gridded crop models have been done to
identify their ability to reproduce crop yield variability and char-
acterize their weaknesses and their strengths (Bassu et al., 2014; Müller
et al., 2017). Since the launch of the M-CYFS in 1993, the crop model
predictors of the Crop Growth Modeling System (CGMS) have been only
validated partly and the relative performance of crop model predictors
vs. meteorological predictors has not been evaluated (Reidsma et al.,
2009; Supit, 1997). This study intends to highlight the ability of the M-
CYFS to forecast the yields of the main arable crops, considering
28 years of meteorological data, yield statistics and crop model simu-
lations.

The M-CYFS approach to forecast yields is relying on the assumption
that the yield variability is composed of 1- a trend, depicting the
technological improvements (new varieties, the use of fertilizers, fun-
gicides, mechanization) and impacting the yields on the long term, and
2- the residual from the trend, depending on inter-annual climate
variability (Lobell, 2010). In this study, considering this last approach,
the gridded WOFOST crop model output predictors and a set of simple
cumulated meteorological predictors aggregated at national scale are
compared to the crop yield residuals, using a simple linear regression
analysis, to identify and quantify the impact of the main agro-meteor-
ological processes responsible for the crop yield variability. The use of
such a simple statistical method was motivated assuming that the
output of the crop model simulations, and more particularly the bio-
mass and storage organs weight, should be linearly related to the sta-
tistical yields residuals.

In an operational context, two statistical methods are commonly
used in the M-CYFS to establish the yield forecast using the crop model
output simulations: a Principal Component Analysis (PCA) used to
identify similar years and forecast the yield according to the similarities
found, and a simple or multiple regression analysis on the residuals
from the trend. A more complex statistical method could have been
used in this study to assess the reliability of the M-CYFS, however, the
goal is to evaluate the ability of the crop model predictors to reproduce
the yield variability and determine for which crop and which countries
the model is valid. Beyond the evaluation of the model, the aim is to
highlight which agro-meteorological processes are explaining the yield
variability of the main crops in Europe.

2. Material and methods

2.1. Input data

This study is focusing on the main cereals, oilseeds and root crops
produced by the MS of the European Union (EU-28): Soft wheat
(Triticum aestivum L.), spring and winter barley (Hordeum vulgare L.),
grain maize (Zea mays L.), durum wheat (Triticum turgidum L.), rye
(Secale cereale L.), triticale (×Triticosecale Wittm. ex A. Camus), rape-
seed (Brassica napus), sunflower (Helianthus annuus), sugar beet (Beta
vulgaris L.) and potato (Solanum tuberosum L.). The input data are ex-
tracted exclusively from the M-CYFS: the yield statistics at country

scale, the spatially aggregated crop model simulations and the daily
meteorological data aggregated at national scale on arable land.

2.1.1. Yield statistics
National yields statistics of all the MS of the EU-28 published by

Eurostat are used and were preferred to other data sources, such as the
FAO statistics, as the yields are detailed by cultivars, distinguishing soft
wheat from durum wheat, spring barley from winter barley (Eurostat,
2017). The analysis is conducted for each cultivar, considering their
spatial distribution varies and their sensitivity to meteorological con-
ditions can differ. For example, durum wheat is cultivated pre-
dominantly in southern Europe and does not have a vernalization re-
quirement while most of the soft wheat is cultivated in northern Europe
and does need a period of vernalization which might explain part of the
yield variability.

The availability of statistics depends on the accession of the MS to
the EU and the geopolitical context, with most of them being available
since 1988. A total of 256 crop/country combinations were considered
but, excluding de facto yield statistics time series with one or more
missing data and considering 1988 as the first year of analysis, 168
crop/country combinations are remaining. Thus, 28 years are con-
sidered, focusing on the period 1988–2015.

2.1.2. Crop model simulations
WOFOST is a mechanistic point-based crop model based on light use

efficiency, developed originally in 1965 and is used operationally in the
M-CYFS since 1993 (De Wit, 1965; Van Diepen et al., 1989). Light use
efficiency, which determines the amount of radiation absorbed, is used
to simulate the photosynthetic activity considering the characteristics
of leaves, and depends on the daily radiation and the current Leaf Area
Index (LAI). The photosynthetic activity is then used to simulate the
carbon assimilation rate. The maintenance respiration is subtracted
from the daily gross carbon assimilation rate and weighted by the
conversion efficiency of assimilates to simulate the net carbon assim-
ilation rate (i.e. the daily dry biomass formation). The assimilates are
partitioned between the roots, the leaves and the storage organs with a
partitioning coefficient varying depending on the development stage of
the plant, being determined in growing degree-days since sowing or
emergence. The soil water model implemented in WOFOST uses a
simplified representation of soils and considers a single layer, simpli-
fying the soil in a single reservoir. Conceptually, two levels of crop
production are distinguished in WOFOST: potential production (de-
termined variety properties, radiation and temperature), water limited
production (water availability limits potential production). More details
on the model structure and principles behind are described by Supit and
Goot (2003) and De Wit et al. (this Virtual Special Issue). In the CGMS,
crop model simulations are starting in 1976, corresponding to the first
year of acquisition of meteorological data, and are updated every
10 days in real time for the following crops: soft wheat, durum wheat,
grain maize, spring barley, winter barley, rapeseed, rye, triticale, sun-
flower, potato and sugar beet. In order to limit the amount of data
stored in the M-CYFS database, the simulations are saved at a 10-daily
time step, called a dekad, and the following output variables are stored:
the development stage (DVS), potential and water limited biomass
(respectively PB and WLB), potential and water limited storage organs
(PSO and WLO), potential and water limited LAI (PLAI and WLAI), the
relative soil moisture (SM), the total water consumption and require-
ments (TWC and TWR).

2.1.2.1. Crop model calibration. Considering the lack of eco-
physiological data available and the heterogeneity of cultivars that
can be found both temporally and spatially at national, regional or even
at the grid level, the generic calibration published in 1993 is used and
only the definitions of the specific LAI and temperature sums defining
the main development stages simulated by WOFOST have been
improved over years: sowing, emergence, flowering and maturity
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(Boons-Prins et al., 1993).
Winter crops simulations (soft wheat, durum wheat, winter barley,

triticale, rye, rapeseed) start on 1 January instead of sowing dates, this
choice having been done in the past to facilitate the management of the
database for winter crops, growing on two calendar years, and fol-
lowing the assumption that most of the yield variability is explained by
agro-meteorological conditions from tillering to harvest. Consequently,
the temperature sum between emergence and flowering (TSUM1) was
shortened to approximate the flowering stage of winter cereals. Soft
wheat simulations are used as a proxy to forecast winter barley and
triticale, despite their phenology being differing.

Considering there is no more technical limitations to simulate
winter crops during the whole crop cycle and starting the model at
sowing would improve the simulations of winter cereals, winter soft
wheat was recalibrated recently and simulations run at sowing instead
of 1 January (Ceglar et al., this Virtual Special Issue). The old simula-
tions starting on 1 January and the new one are used and compared in
this study, the new calibration of soft wheat appearing as “Soft wheat
N.”.

2.1.2.2. Meteorological data. The meteorological data of the CGMS are
retrieved daily in real time from a network of> 4000 stations. The
network density depends on the national meteorological services and
the priority has been given to the acquisition of meteorological data
close to or within agricultural areas. Considering that the global
radiation is not available for each station, it is estimated whether
using the sunshine duration, the cloud cover, or minimum and
maximum temperatures, depending on the data availability. After a
quality check, minimum temperatures, maximum temperatures,
precipitations and global radiation are interpolated at a resolution of
25 km. A complete description of the meteorological data acquisition
and processing can be found in the CGMS version 9.2 manual (Baruth
et al., 2007).

2.1.2.3. Soil data. Soil data are derived from the European soil
database (ESDB) (Panagos, 2006). The ESDB is structured in mapping
units defined as Soil Mapping Units (SMU), which corresponds to a
group of Soil Typological Units (STU) containing the soil characteristics
used to derive the soil hydraulic properties required by the model. The
location of the STUs within the SMUs is unknown, only the share of
each STU within a SMU is given. The parameters needed to run the
WOFOST crop model, the water content at wilting point, field capacity
and maximum rooting depth, have been derived in 2006 during the
SINFO project (Baruth et al., 2006). For each STU of the ESDB, the
water content at wilting point was estimated using the Wösten
pedotransfer functions (Wösten et al., 1999), while the available
water capacity, used to determine the water content at field capacity,
was estimated using the method described in Le Bas (1997). A set of
pedotransfer rules have been used to determine the maximum rooting

depth based on the agricultural limitations defined in the ESDB, the
depth of textural change and the presence of impermeable layers.
Considering not all STUs are cultivated, a few rules were applied to
identify the STUs suitable for the cultivation of arable crops, excluding
STUs based on their slope, drainage class, salinity, alkalinity, chemical
toxicity and rooting depth.

2.1.2.4. Simulation units and aggregation of output simulations. The
elementary simulation units are defined as the intersection of
meteorological gridded data, at 25 km resolution, and the soil data.
For a given meteorological grid at 25 km resolution, the simulations are
run on each STUs found within the SMUs intersecting a 25 km grid cell.
The output simulations, at STU level, are weighted according to their
share within a SMU and aggregated at grid level considering the area of
the SMUs intersecting the meteorological grid.

The aggregation of the gridded simulations to the national scale is
done in several steps. First, the gridded simulations are spatially ag-
gregated to NUTS-3 level considering the arable land area of each grid,
derived from GLOBCOVER and CORINE Land Cover (Bontemps et al.,
2011; Nunes de Lima, 2005). From NUTS-3 to NUTS-2 level and
country scale, the cultivated area of the crop considered for the current
year, retrieved from Eurostat, is used to weight and aggregate the si-
mulations to the next administrative level (Eurostat, 2017).

2.1.3. Cumulated meteorological predictors
The meteorological daily data of the CGMS, spatially aggregated a

national scale on arable land, are cumulated on a monthly basis and
yearly basis (from sowing to maturity). The monthly predictors are
cumulated for each dekad, corresponding to the crop model output, on
the 30 days preceding the end of a dekad. This leads to an overlap of
20 days of meteorological daily data between two consecutive dekads
but allows comparing the meteorological predictors to the crop model
predictors for the exact same dates during the crop cycle. The yearly
meteorological data are cumulated for each crop from sowing to har-
vest, using the sowing dates available in the CGMS database. Minimum
temperatures (Tmin), maximum temperatures (Tmax) and average
temperatures (Tavg) are cumulated excluding the negative tempera-
tures.

2.1.4. Predictors selection
For each set of predictors (i.e. crop model predictors, monthly me-

teorological predictors, yearly meteorological predictors), a correlation
matrix was calculated to identify the strongest collinearities and syn-
thetize the analysis by selecting the most pertinent predictors. The
correlation matrices are calculated considering the entire time series of
predictors for all crops aggregated together. The predictors showing a r
Pearson coefficient higher or equal to 0.95 are kept out of the analysis.

For the monthly and yearly meteorological variables, temperatures
(Tmin, Tmax, Tavg) are highly correlated (Tables 1 and 2), thus only

Table 1
Correlation matrix between monthly meteorological predictors.

Name Tmin Tmax Tavg P Et0 Rad VP CWB

Minimum
temperatures

Maximum
temperatures

Average
temperatures

Rainfall Potential evapotranspiration Global
radiation

Vapour
pressure

Water balance

Unit (°C) (°C) (°C) (mm) (mm) (kJ/m2) (mbar) (mm)

Tmin 1
Tmax 0.96 1
Tavg 0.98 0.99 1
P 0.25 0.14 0.19 1
Et0 0.88 0.93 0.91 0.05 1
Rad 0.81 0.89 0.87 0.02 0.98 1
VP 0.98 0.94 0.97 0.29 0.82 0.76 1
CWB −0.61 −0.72 −0.68 0.52 −0.83 −0.83 −0.54 1
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the average temperatures is kept. Potential evapotranspiration (Et0) is
highly correlated to global radiation (Rad), and considering that the
climatic water balance (CWB) is a more realistic variable to account for
water deficit, only Rad and CWB are used. Vapour pressure (VP) is
highly correlated to Tmin and Tavg and is thus excluded from the
analysis.

For the crop model predictors, Total Water Consumption (TWC) and
Total Water Requirements (TWR) are removed as their correlation with
Potential Biomass (PB) and Water Limited Biomass (WLB) is higher
than 0.95 (Table 3). PLAI shows to be highly correlated to WLAI, and
WLB to PB. Nevertheless, these collinearities are not observed for all the
crops when analyzed independently (Table S1). Thus, PLAI, WLAI, PB,
WLB were kept, considering some differences might be seen only for
some specific dekads where water stress is impacting crop growth.

2.2. Regression analysis

2.2.1. Determination of the trend and yield residuals
Yield statistics are first detrended before analyzing their relation-

ship with the predictors. In an operational context, an analyst is para-
meterizing the trend on an expert-knowledge basis for each country/
crop combination. Considering the high number of country/crop com-
binations and the heterogeneity of tendencies that could be observed, a
LOWESS function is used as a common method to detrend the yield time
series (Cleveland, 1981). In order to limit the influence of local varia-
tions, a large span is used corresponding to 2/3 of the yield time series,
the goal being to isolate the inter-annual variability. The entire statis-
tical yield time series were considered when available (from 1976 on-
ward) to limit any overfitting. The LOWESS function tends to be close to
a second and third order polynomial trend (Figs. S1 and S2).

2.2.2. Yield coefficient of variation
For each country/crop combination, the coefficient of variation

(CV) is calculated on the yield statistics considering the time series from
1988 to 2015, in order to highlight the dispersion of the yield dis-
tribution and explain if the relationships found between the yield re-
siduals and the predictors are depending on the amplitude of varia-
bility.

2.2.3. Linear regression analysis
For each country/crop combination, each dekad during the crop

cycle, a linear regression is calculated between the yield residuals and
each predictor. The statistical relationships are evaluated using the r
Pearson moment coefficient, p value, determination coefficient (R2),
calculated between yield residuals and the predictors, while Relative
Root Mean Square Error (RRMSE) is calculated between the observed
yields and the estimates, adding back the trend.

The results are plotted independently for each country/crop com-
bination from sowing to harvest, giving a picture of the dynamic of the
relationship between the predictors and the yield residuals (Fig. S3).

In a second step, the information is synthetized by dekad, keeping
the predictor showing the highest relationship with the yield residuals
for each country/crop combination:

=r rmax(| |)i dekad i var
i nvar var (1)

where ri_dekad is the maximum r of all predictors for a specific dekad,
n_var is the number of variables used, ri_var is the r correlation coefficient
of one predictor for a specific dekad.

The associated statistics of the best relationship found, R2, p values,
RRMSE and the yield estimates of the corresponding dekad and pre-
dictor are stored and used further in the analyis. This information is

Table 2
Correlation matrix between the yearly meteorological predictors.

Name Tmin Tmax Tavg P Et0 Rad VP CWB

Minimum
temperatures

Maximum
temperatures

Average
temperatures

Rainfall Potential evapotranspiration Global
radiation

Vapour
pressure

Water balance

Unit (°C) (°C) (°C) (mm) (mm) (kJ/m2) (mbar) (mm)

Tmin 1
Tmax 0.99 1
Tavg 1 1 1
P 0.86 0.84 0.85 1
Et0 0.97 0.99 0.98 0.8 1
Rad 0.96 0.98 0.98 0.83 0.99 1
VP 0.99 0.98 0.98 0.91 0.96 0.97 1
CWB −0.58 −0.64 −0.62 −0.14 −0.71 −0.67 −0.51 1

Table 3
Correlation matrix of the crop model predictors for all the crops simulated from sowing to maturity.

Name DVS PB WLB PSO WLO PLAI WLAI SM TWC TWR

Development
stage

Potential
biomass

Water
limited
biomass

Potential
storage organs

Water limited
Storage
organs

Potential leaf
area index

Water
limited LAI

Relative soil
moisture

Total water
consumption

Total water
requirements

Unit (−) (kg/ha) (kg/ha) (kg/ha) (kg/ha) (ha/ha) (ha/ha) (%) (mm) (mm)

DVS 1
PB 0.92 1
WLB 0.88 0.95 1
PSO 0.84 0.87 0.8 1
WLO 0.78 0.8 0.84 0.92 1
PLAI 0.51 0.53 0.57 0.22 0.24 1
WLAI 0.46 0.48 0.56 0.17 0.23 0.98 1
SM −0.74 −0.72 −0.62 −0.59 −0.44 −0.54 −0.45 1
TWC 0.91 0.96 0.97 0.83 0.83 0.52 0.49 −0.68 1
TWR 0.92 0.96 0.88 0.87 0.75 0.46 0.39 −0.76 0.95 1
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plotted for all countries in order to highlight the main predictors and
agro-meteorological processes explaining the yield variability during
the crop cycle (Figs. 4, 5, 7, 8).

Next, for each country/crop combination, the best predictor found
during the crop cycle and its associated statistics are used to assess the
crop model reliability per country/crop combination:

=r rmax(| |)country crop i dekad
i dekad n dekad

/ (2)

where rcountry/crop is the maximum r observed for one country/crop
combination during the entire crop cycle, n_dekad is the number of
dekads covering the crop cycle, ri_dekad is the maximum correlation
coefficient from the whole set of predictors of a specific dekad.

Finally, for each crop, the yield estimates obtained at national scale
using the best predictor found during the growing season are compared
altogether to the yield residuals of all countries and the R2, RRMSE is
calculated on the ensemble of estimates and observed yields to deliver a
picture of the amount of variability reproduced by the best predictors
found at European scale.

3. Results

3.1. Results per crop at European scale

Considering the estimates provided by the best predictor found in
each country, the crop model predictors are reproducing 61% of the
variability of grain maize, 42% for sugar beet, 41% for soft wheat
considering new soft wheat calibration, 41% for durum wheat, 39% for
potato, 36% for rye, 34% for triticale, 33% for rapeseed, 31% for winter
barley and becomes insignificant for sunflower with 26% of the varia-
bility explained (Fig. 1). The yearly meteorological predictors appear to
be insignificant for winter cereals and shows a weaker relationship with
the yield than the crop model and monthly meteorological predictors.
The monthly meteorological predictors are reproducing a smaller part
of the variability than the crop model predictors and using those pre-
dictors improves only the yield estimates for rapeseed and winter
barley. The use of soft wheat simulations as a proxy for winter barley
simulations is found to be a weakness and a proper calibration could
also improve the simulations of triticale. The recent calibration of soft
wheat improves substantially the relationship between the predictors
and the yield residuals, the R2 of the crop model predictors starting on 1
January reaching 0.35 against 0.41 for simulations starting at sowing.

The RRMSE of the trend depends on the dispersion of the residues
from the trend and shows the crops for which the variability is high at
European scale, a higher RRMSE being related to a higher CV. Using one
crop model predictor, the yield estimates of durum wheat, triticale and
grain maize - having a high variability - are improved, while the

improvement is not significant for sunflower and rapeseed. Oilseed
crops (sunflower and rapeseed) could be more sensitive to adverse
meteorological conditions during flowering and those specific processes
not being considered by the crop model could explain the low re-
lationship found. For the remaining crops analyzed - having a lower
variability - (sugar beet, potato, spring barley, soft wheat, winter barley
and rye), the relative improvement compared to the trend is weaker
than for the crops having a higher yield variability.

3.2. Spatial variability of the results

The reliability of the predictors used to estimate the yield variability
is largely depending on the MS considered as the best R2 obtained for
grain maize can range from 0.19 in Belgium to 0.81 in Bulgaria and, for
soft wheat, from 0.19 in Latvia to 0.8 in Spain (Fig. 2).

For soft wheat, the crop model predictors are found to correlate well
with the yield variability for the MS where the yield varies highly as in
Spain (R2=0.8), Romania (R2=0.65), Bulgaria (R2=0.57), Hungary
(R2=0.52), and to a lesser extent Slovakia (R2=0.44) and Ireland
(R2=0.43) (Fig. 3).

Less than 35% of the yield variability is explained for the United
Kingdom, Belgium, the Netherlands, France, Italy, Denmark, Czech
Republic and Austria, countries where the yield CV is lower than 0.15.
For Lithuania and Latvia, despite a relatively high yield variability, with
a CV > 0.2, the crop model predictors and meteorological predictors
are showing a weak relationship with the inter-annual yield variability.

For grain maize, results are shown to depend on agro-management

Fig. 1. (a) R2 between crop yield residuals and the best predictors found for each MS during the crop cycle, and (b) RRMSE between the observed and estimated
yields obtained using the best predictor for each crop, considering countries where yield statistics are available since 1988.

Fig. 2. Distribution of the R2 obtained of the best predictor found during the
growing season and the yield residuals for the EU-28 MS, using the crop model
predictors, monthly and yearly meteorological predictors.
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practices, particularly irrigation (Fig. 3). In Spain, the low yield
variability (CV=0.18) is not well reproduced (R2=0.31) and 99% of
the maize cultivated area is irrigated. In Bulgaria, where grain maize is
not irrigated and the yield variability is high (CV=0.38), the WLB
reproduces 81% of the yield variability. Except for Portugal, Spain,
Greece, Italy and Belgium, the crop model predictors are ex-
plaining>60% of the yield variability.

3.3. Timings of predictors and processes explaining yield variability

3.3.1. Grain maize
Except for countries where maize is predominantly irrigated as cited

previously, most of the yield variability is explained by the WLB, from
the dekad following anthesis until maturity, while during the early
vegetative growth, before anthesis, soil moisture already allows to an-
ticipate part of the yield variability (Fig. 4). WLAI around anthesis
shows also to be a consistent predictor for a large part of the countries
analyzed, before WLB becomes the best predictor. Two months before
harvest (8 dekads), around the 10 August, the model delivers already
some reliable estimates of the yield residuals. This result was under-
lined previously for Hungary and can here be extended to countries
where maize is predominantly not irrigated (Bussay et al., 2015).

The results obtained with the meteorological predictors are fol-
lowing the one obtained with the crop model predictors, with, despite a
lower correlation for all the countries analyzed, a large part of the yield
variability explained around 31 July (Fig. 5). CWB is found to be the
predictor providing the best estimates of the yield variability around
anthesis, while later in August, a negative correlation with Tavg is
observed. It is not clear if CWB is correlated to Tavg for these specific
dekads and those predictors are collinear and water stress is the main
limiting factor, or if temperature intervenes as another limiting factor of

grain maize yield. Heat stress has been identified as one of the main
drivers of grain maize yield variability in the United States (Lobell
et al., 2013; Singletary et al., 1994; Wilhelm et al., 1999).

Compared to the monthly meteorological predictors, the crop model
simulations have the advantage of preserving the relationships found
around anthesis up to the end of the growing season, while the me-
teorological predictor are explaining the yield variability only around
anthesis (Fig. 6). Considering the heterogenity of phenological stages
around Europe, the crop model simulations tend to homogeneize the
information used to forecast the yield.

3.3.2. Soft wheat
For soft wheat, the analysis is conducted considering the newest

calibration (Soft Wheat N.) with simulations starting at sowing, de-
scribed in Ceglar et al. (this Virtual Special Issue), as it explains a larger
part of the yield variability than the simulations starting on the 1st of
January.

The crop model predictors are slightly better related to the yield
statistics than the monthly meteorological predictors, and in most cases,
the reliability of the predictors improves toward the end of the growing
season (Fig. 7). The meteorological variables explaining the yield
variability are temporally scattered, depending on the phenology in
each country, and contrarily to grain maize, there is no general im-
provement of those predictors at a specific development stage.

For Spain, the yield variability can be anticipated, first with SM in
April, next in May with WLAI and finally with the WLB mid-June
(Fig. 8). Water stress appears clearly as the main process explaining the
yield variability considering the CWB is positively related to the yield
(Fig. 8). A highly significant relationship (***p value < 0.001) be-
tween yield residuals and WLB is also observed for Bulgaria, Romania,
Hungary, Poland, Greece and Estonia, from the first dekad of June

Fig. 3. Maps of the yield coefficient of variation of soft wheat and grain maize (a)(c) and R2 between the yield residuals and the best crop model predictor identified
during the growing season (b)(d).
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onward, 20 to 30 days before harvest (Fig. 8). For the aforementioned
countries, the improvement of the WLB is associated to a negative re-
lationship between Tavg and the yield residuals emphasizing the impact
of warm temperatures on the yield (Fig. 9). This result shows that the
reduction factor applied on the maximum leaf CO2 assimilation rate for
suboptimal temperatures in WOFOST reproduces the impact of heat
stress during the grain filling stage.

For the other countries, the crop model predictors are ex-
plaining<43% of the yield variability and some predictors other than
the biomass or storage organs stands out of the analysis. In north-
western Europe (Ireland, United Kingdom, the Netherlands), a sig-
nificant negative relationship with soil moisture is found, significant in
Ireland (***p≤0.001), where it explains 42% of the yield variability
the 20th of June, while in the United Kingdom and the Netherlands, this
relationship is observed around the 20th of July with a lower sig-
nificance (**p≤0.01). This negative relationship with soil moisture is
associated to positive anomalies of cumulated rainfall (Fig. 9). In a

study published by Landau et al. (1998), the storage organs simulated
by different crop models failed to reproduce soft wheat yield in the UK
while a relationship between the yield and cumulated rainfall was
found using long field experiments (Chmielewski and Potts, 1995). In
our analysis, soil moisture and cumulated rainfall are explaining the
same amount of yield variability in the UK (r=−0.55 for cumulated
rainfall and r=−0.58 for soil moisture).

For France, all the relationships are largely insignificant. As pointed
by Gouache et al. (2015) and Ceglar et al. (2016) the predictors and
processes responsible for the soft wheat yield variability are differing
in-between regions and a regional analysis would be more relevant. Soft
wheat in France is exposed to different climatic conditions and a large
inter-annual variability, thus the heterogeneity of agro-meteorological
processes explaining the yield variability cannot be synthetized in a
single predictor at national scale. Some of the relationships found are
not linear, such as the one found with the simulated soil moisture
around the 10th of May, where an extremely high or low soil moisture

Fig. 4. Evolution of the correlation between grain maize yield residuals and the best crop model predictor found per dekad, from sowing to maturity, for the MS of
the EU-28 providing yield statistics since 1988.

Fig. 5. Evolution of the correlation per dekad between grain maize yield residuals and the best monthly meteorological predictor found, from sowing to maturity, for
the MS of the EU-28 providing yield statistics since 1988.
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explains the yield losses (Fig. 10).
In Sweden, and less significantly Estonia and Lithuania, Tavgs in

February and March is correlated to the yield residuals while from the
crop model side, the DVS is positively correlated to the yield. In the
literature, the negative yield anomalies are associated to long winters
and short winters to positive anomalies (Enquist, 1929; Holmer, 2008).
In Denmark, the DVS in March is also related to the final yield as well as
SM in July and August, and despite the relationships being weak, those
drivers were highlighted at field scale in the literature (Olesen et al.,
2000). The impact of an earlier tillering stage on yield is emphasized by
the DVS, but the simulated biomass and LAI do not reflect these ben-
eficial conditions on crop growth.

4. Discussion

The WOFOST crop model simulations in the CGMS reproduce the
yield variability induced by water stress and suboptimal temperatures
using the simulated biomass and storage organs. Nevertheless, some
other processes explaining the crop yield variability in Europe are
clearly not simulated, more particularly those related to wet conditions
as those are only highlighted by the simulated soil moisture. For winter
cereals, the simulated biomass at anthesis, known to be related to the
yield of winter cereals, fails to explain the yield variability. The second
limitation of the crop model as implemented in the M-CYFS is the lack
of consideration of agro-management practices, including the fertili-
zation, irrigation and variety selection, which also importantly con-
tribute to the yield formation.

4.1. Agro-meteorological processes

Crop yield losses induced by wet conditions are not reflected by the
simulated biomass and soil moisture appears to be an appropriate proxy
to estimate the yield variability in northwestern Europe. Several pro-
cesses depending on water excess can explain the yield losses, which all
have different timings and impacts depending on the development stage
of the crop: Nitrogen losses through leaching and denitrification
(Jamieson et al., 1999), lodging during the grain filling period (Fischer
and Stapper, 1987), diseases such as yellow spot toward the end of the
season or fusarium head blight at anthesis (De Wolf et al., 2003; Rees
and Platz, 1983; Thomas et al., 1989), waterlogging diminishing the
plant density before tillering (Cannell et al., 1980).

The complexity of the aforementioned processes explaining crop
yield, with heterogeneous timings and impacts depending on the phe-
nological stages makes that an indicator focusing on the pre-anthesis
period will only partly explain yield variability (Siebert et al., 2017;
Zampieri et al., 2017). Some of these processes depend on the soil and
their capacity to drain the excess of water, thus soil data as well as the
soil water model would need to be improved. Diseases would need to be
considered, but their impacts depend on the varieties used, the fungi-
cides sprayed, the crop rotations and the management of residues,
making it a complex process to model, particularly at large scale given
the limited data available (Champeil et al., 2004; Maiorano et al.,
2008).

Another weakness of the crop model simulations is highlighted
when analyzing the predictors for soft wheat, where the simulated

Fig. 6. Evolution of the distribution of the best relationship (R2) found per dekad between the crop model predictors, the monthly meteorological variables and the
yield residuals of grain maize, for the MS of the EU-28 providing yield statistics since 1988.

Fig. 7. Evolution of the distribution of the best relationship (R2) found per dekad between the crop model predictors, the monthly meteorological variables and the
yield residuals of soft wheat, for the MS of the EU-28 providing yield statistics since 1988.
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storage organs weight, which theoretically should be highly correlated
to the yield, is rarely the best predictor explaining its variability,
leading us to question the simple partitioning approach of WOFOST.
The insignificant relationship observed between the simulated biomass
at anthesis and the yield would tend to demonstrate that the harvest
index of winter cereals depends predominantly on meteorological
conditions within a short number of days around anthesis (Unkovich
et al., 2010) and during the grain filling stage. It has been demonstrated

that simulating a few specific processes around the flowering stage,
such as the impact of heat stress, slightly improves the yield forecast
done using the CGMS simulations for soft wheat (Pagani et al., 2017).
Nevertheless, the biomass simulated at anthesis is used in several crop
models to estimate the kernel number of winter cereals like CERES-
Wheat (Ritchie and Otter, 1985), AFRCWHEAT2 (Porter, 1993), STICS
(Brisson et al., 1998). In the literature, wheat yield is found to be
strongly related to the kernel number rather than the weight of the

Fig. 8. Evolution of the correlation between soft wheat yield residuals and the best crop model predictor found per dekad, from sowing to maturity, for the MS of the
EU-28 providing yield statistics since 1988.

Fig. 9. Evolution of the correlation between soft wheat yield residuals and the best monthly meteorological predictor found per dekad, for the MS of the EU-28
providing yield statistics since 1988.
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grains, as reported by Frederick and Bauer (1999) who demonstrate
that soft red winter wheat yield is largely related to the kernel numbers
(R2=0.84) rather than individual kernel weight (R2=0.48). Agro-
meteorological conditions one month prior to anthesis, during the ve-
getative stage and the spike weight have been shown to be related to
the kernel number and yield (Abbate et al., 1997; Fischer, 1993;
Fischer, 1975; Frederick and Bauer, 1999; González et al., 2005;
Midmore et al., 1984; Savin and Slafer, 1991; Sayre et al., 1997; Sinclair
and Jamieson, 2006). A deeper analysis should be conducted to de-
termine why the biomass simulated at anthesis in the CGMS is not well
related to the yield of winter cereals and another approach, considering
the processes determining the kernel number, might improve the results
obtained.

4.2. Agro-management practices

The lack of consideration of agro-management practices is clearly
shown to be a limitation. Irrigation is driving yields of grain maize in
Mediterranean areas and including it in crop simulations, assuming
relevant data are available on a yearly basis, could improve the fore-
cast. Some improvements could also be foreseen by including fertilizers,
more particularly nitrogen as it impacts the inter-annual yield varia-
bility while phosphorus and potassium are more determinant on the
long term (Girma et al., 2007). Nitrogen has been shown to be related to
the kernel number of winter cereals, which could also improve the yield
simulated (Ratjen et al., 2012). Variability in sowing dates are also
explaining part of the crop yield variability, but are not included in the
CGMS while it exposes the crops to water stress or heat stress later
during the growing season (Bindi and Olesen, 2011). The evolution of
varieties and its diversification over years is not considered either,
while the new varieties tend to have a higher resistance to diseases,
different responses to nitrogen and different phenology.

The lack of input data at large scale, already limiting the calibration
of the crop model parameters, should be deplored and is challenging for
the future development of the M-CYFS.

4.3. Statistical approach

The statistical method used does not give a complete picture of the
M-CYFS ability to forecast yield and a multiple regression method with
a selection of the input variables would improve the yield estimates
(Sharif et al., 2017). Nevertheless, the strength of this simple analysis
using a linear regression is to highlight the weakness of the crop model.
Another way to tackle some of the deficiencies found in the crop model
would be to use an ensemble of crop models, as done within the Agmip

initiative, which may allow to explain a larger part of the yield varia-
bility (Palosuo et al., 2011; Rosenzweig et al., 2013; Rötter et al., 2012).
Downscaling the analysis at regional scale (see e.g.Ceglar et al., 2016;
Gouache et al., 2015) and extending the period of analysis could also
improve the characterization of the yield variability, more particularly
for large heterogeneous countries such as France and Germany, where
the current predictors are not allowing to reproduce the yield varia-
bility at national scale.

5. Conclusion

The WOFOST crop model, as implemented in the M-CYFS, re-
produces relatively well the yield of crops exposed to drought or po-
sitive thermal anomalies during the grain filling stage. Compared to the
meteorological predictors, the crop model predictors tend to better
reproduce crop yield variability and harmonize spatially and tempo-
rally the information, the meteorological predictors being dependent on
the country analyzes and the phenological stages. The crop model si-
mulations suffer from the lack of consideration of agro-management
practices and impacts of processes induced by humid weather condi-
tions. Despite the simplicity of the statistical method used, the main
agro-meteorological conditions responsible of crop yield variability in
Europe can be identified as well as the main weaknesses of the crop
model.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.agsy.2018.03.002.
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