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Abstract: The spatial distribution of Leaf Area Density (LAD) in a tree canopy has fundamental
functions in ecosystems. It can be measured through a variety of methods, including voxel-based
methods applied to LiDAR point clouds. A theoretical study recently compared the numerical
errors of these methods and showed that the bias-corrected Maximum Likelihood Estimator was
the most efficient. However, it ignored (i) wood volumes, (ii) vegetation sub-grid clumping, (iii)
the instrument effective footprint, and (iv) was limited to a single viewpoint. In practice, retrieving
LAD is not straightforward, because vegetation is not randomly distributed in sub-grids, beams are
divergent, and forestry plots are sampled from more than one viewpoint to mitigate occlusion. In the
present article, we extend the previous formulation to (i) account for both wood volumes and hits, (ii)
rigorously include correction terms for vegetation and instrument characteristics, and (iii) integrate
multiview data. Two numerical experiments showed that the new approach entailed reduction of
bias and errors, especially in the presence of wood volumes or when multiview data are available
for poorly-explored volumes. In addition to its conciseness, completeness, and efficiency, this new
formulation can be applied to multiview TLS—and also potentially to UAV LiDAR scanning—to
reduce errors in LAD estimation.

Keywords: LAD; LAI; effective footprint; LiDAR; Maximum Likelihood Estimation; MLE; multiple
view points; TLS; voxel; wood

1. Introduction

The amount and spatial distribution of foliage in a tree canopy have fundamental functions
in ecosystems as they affect energy and mass fluxes through photosynthesis and transpiration [1].
Terrestrial Light Detection and Ranging (LiDAR), hereinafter referred to as Terrestrial Laser Scanning
(TLS) recently emerged as a promising tool to estimate leaf or plant area density (LAD and PAD, in
m−1) distribution for individual plants and forest plots [2]. The approach can be applied to a variety
of volumes of interest, assuming random distribution of vegetation inside. These volumes can be
either horizontal layers to estimate LAD profiles [3–7], individual tree crowns [8], or voxels to estimate
the tridimensional distribution of LAD [9–15]. In these different approaches, a traversal algorithm is
applied to each volume of interest to compute gap fractions, hits, and for some approaches, “free paths”
(i.e., distances travelled without interception, in m), in order to derive different metrics to estimate the
quantity of interest [3–15].

Among the different metrics suggested in the past, a recent comprehensive theoretical study [15]
has shown that the Modified Contact Frequency, first introduced in a previous study [9], corresponds
to the Maximum Likelihood Estimator (MLE) [16] of the attenuation coefficient. This attenuation
coefficient is the rate at which the point cloud density decays with vegetation interception, which is
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related to the LAD and PAD linearly. This attenuation coefficient, however, is more often estimated
by inverting the equation of the transmittance, which decays exponentially with the attenuation
coefficient. This approach is referred to as the Beer’s law-based (or gap fraction) method. To date,
Beer’s law-based methods are still more popular than the MLE [2], although they do not take full
advantage of the tridimensional information available in the point cloud, by ignoring free paths, which
leads to additional complexity in the inversion when the path length is not constant (simple cosine term
in gap fraction methods, but complex corrections in crown volumes [8] and voxels [15,17]). This trend
can probably be explained by the strong legacy of gap fraction approaches in this research field, which
has been focused on 2D sensors, such as hemispherical photographs or Licor LAI-2000 (a popular Plant
Canopy Analyzer based on multiple light intensity measurements at different zenith angles), prior to
the emergence of more expensive and more complex 3D sensors. The benefits of the MLE are that the
formulation is more straightforward and efficient, without making any assumption on the geometry of
the volume of interest [15]. The method provides the most likely estimate of the attenuation coefficient
given the observation of free paths and hits, simply assuming that explored and unexplored regions
exhibit similar random distributions of vegetation elements. The MLE approach, which relies on free
paths, should not be confused with the PATH method [6,8], which uses the path-length distribution to
identify crown volumes in order to mitigate the impact of clumping in crown volumes, and which has
to date only been applied to Beer’s law-based methods. One could notice that the PATH method could
be combined with MLE instead. One limitation of the MLE (but also of Beer’s law-based methods) is
their bias when the number of beams exploring a given voxel is limited (typically smaller than 30), or
when vegetation elements are not small with respect to voxel size. Such biases can be theoretically
corrected, leading to a bias-corrected MLE that is “efficient” in the sense that it is unbiased and it
exhibits the smallest variability theoretically reached by any unbiased estimator [15].

The estimator presented in a previous study [15], however, is based on simplifying theoretical
assumptions—vegetation elements are assumed to be randomly distributed within volumes and TLS
beams are infinitely thin. Hence, it typically requires additional corrections when applied to actual
point clouds to account for LiDAR effective footprint in clumped vegetation elements [14], similar to
other methods applied to voxels or tree crowns [8–14]. Also, the theoretical formulation presented in a
previous study [15] neglects the presence of woody elements in the estimation of LAD, which should
be accounted for separately, either using a separation between leaf and wood returns [9,18] or “leaf-off”
scans [8,14]. To date, a theoretical framework for such inclusion is still missing. Another limitation of
the theoretical formulation is that it was applied to an individual scan, whereas field applications often
require the use of multiple viewpoints to mitigate the impact of vegetation occlusion. Several methods
have been suggested to combine the information arising from the different scans, such as relying on
the best viewpoint on a given voxel (i.e., the one with maximal beam number [19]), combining all
beams as if they belonged to the same scan [9], or weighting estimates from each scan according to the
number of beams of each viewpoint [8,11]. To date, the consequences of such combinations on LAD
estimation have never been studied.

In the article, we present a bias-corrected Maximum Likelihood Estimator for the LAD with
multiview-LiDAR data in volumes of interest, which naturally extends the formulation presented in a
previous study [15] to actual field data, with the presence of wood volumes, wood hits, correction
terms to account for beam divergence, and vegetation clumping, as well as to multiview data. The new
method is then briefly compared with former approaches in two simple numerical experiments.
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2. Background and Limitations of Existing Methods

2.1. The Theoretically Bias-Corrected Estimator (TBC-MLE)

Here, we briefly summarize the PAD estimation in the mathematical framework proposed in a
previous study [8]. This approach is based on the following equation:

P̃AD =
H
G

Λ̃, (1)

where Λ̃ (in m−1) is an estimator of the attenuation coefficient, G is the dimensionless leaf projection
factor, and H is a dimensionless correction factor that accounts for the laser effective footprint in
clumped vegetation [14]. Observations suggest that H decreases with the distance to the scanner to
compensate for the increase in effective footprint caused by beam divergence and variation in return
detection, which induces an increase of the apparent area of vegetation elements [14,18]. Also, H
increases with the voxel size to compensate for the effect of vegetation clumping inside voxels, which
causes discrepancies to the theoretically random distribution of vegetation elements, as a consequence
of Jensen’s convexity inequality [12,14,18,20]. It also depends on the scanner, and to a lesser extent,
on foliage morphological differences between species [14], although the element size and shape can
at least partially be accounted for through the notion of “effective” free path ze (in m, see a previous
study [15] or Equation (3) below and Appendix A). The dimensionless projection function G can be
separately estimated [9,21].

For a given viewpoint, the attenuation coefficient can be estimated from the Maximum Likelihood
estimator (MLE). It is equal to the number of hits Ni divided by the sum of free paths Σz, in m (Figure 1),
which are computed with a traversal algorithm:

λ̃ =
Ni
Σz

(2)
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Scan

Figure 1. Scheme of the information provided by the traversal algorithm which is used to compute the
MLE of the attenuation coefficient: number of hits Ni (blue dots) and free paths (distances z travelled
by the beams; blue lines) in each voxel. The dotted lines represent pulse trajectory.

The free path sum is the total distance actually travelled by beams inside a voxel before
their eventual interceptions by a vegetation element, which can be either leaf or wood (Figure 1).
This approach differs from the Beer’s law-based method, which does not use the information provided
by free path lengths. Indeed, it estimates the empirical transmittance (as 1− Ni

N , where N is the number
of beams entering the voxel) before inverting the transmittance equation, which can be complex when
the path length (intersection between beam trajectory and voxel) is variable [15].
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This MLE estimator (Equation (2)) is similar to the Modified Contact Frequency introduced in
a previous study [9]. This estimator is biased when the beam number N is low or when vegetation
elements are not infinitely small, and it can be corrected with a more sophisticated estimator Λ̃, referred
to as the theoretically bias-corrected MLE (TBC-MLE [14,15]). In this estimator, each free path z is
replaced by the effective free path ze (in m):

ze = −
log(1− λ1z)

λ1
, (3)

where λ1 is the attenuation coefficient, in m−1, of a single element of vegetation (see Appendix A for
an estimation of λ1 for cylindrical needles or elliptical flat leaves). Obviously, ze ≈ z when λ1 is very
small (i.e., the turbid medium assumption).

For the purpose of the present study, the TBC-MLE of the PAD [14] is slightly rearranged to ease
generalization of multiple viewpoints, which is proposed in the next section:

P̃AD =
H
G

Λ̃ =
H

G
∑

ze

(
Ni−

∑
hits ze∑

ze

)
(4)

In Equation (4), Ni is the number of hits in the voxel, whereas Σze is the effective free path sum,
and Σhitsze is the effective free path sum for beams with hits inside the voxel (hence

∑
hits ze
Σze

ranges
between 0 and 1). The second term in brackets corresponds to the bias-correction term suggested in
a previous study [15], which can be neglected when the beam number is high (i.e., larger than 30).
This estimator is unbiased in a wide range of vegetation element size and density when N > 5 and
reaches the Cramer-Rao bound, meaning it is the most efficient unbiased estimator given the available
information [15].

In this formulation, HNi is close to the number of hits centered on a leaf, first introduced in a
previous study [9], to account for beam divergence in the modified contact frequency formulation.
Our formulation, however, is slightly different from [9], since ignored beams with partial hits in their
“volume fraction” are summed (see Equation (12) in the previous study [9]), which would be equivalent
to ignoring beams with partial hits in the free path sum

∑
ze present at the denominator of Equation

(4) above.
In Section 3, we rigorously account for H and G in mathematical derivations.

2.2. Theoretical Variance and 68% Confidence Interval of the TBC-MLE

Mathematical derivations presented in a previous study [15] led to an estimator of the variance of
P̃AD:

σ2
P̃AD

=
(H

G

)2
σ2

Λ̃
=

1
Ni

 1
G
H Σze

(
Ni−

∑
hits ze∑

ze

)2

(5)

Such a variance estimator is useful to quantify the accuracy of a given LAD estimate, since the
variance measures the magnitude of estimation errors. In Equation (5), we only accounted for the
random variations associated with LiDAR sampling in the voxel, which mostly depend on the total
number of beams entering the voxel [15]. For simplicity, we neglected a second term, which arises
from the variability of element positions in the vegetation sample present in the voxel. According to
the previous study [15], this quantity significantly contributes to the overall error when vegetation
elements are not numerous and when beam number is low. For the interested reader, an empirical
model for this quantity was presented in the previous study [15], in the case of “square flat” leaves. A
related metric of interest is the radius of the 68% confidence interval of the LAD estimate, which is
given by [15]:

∆P̃AD =
H
G

∆Λ̃ =
1

G/H

Ni + 1
2 −

∑
hits ze
Σze√

Ni + 1
2 Σze

(
1 + 1

N

) , (6)
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where N is the total number of beams entering the voxel.
The rationale for the 1

2 terms is to avoid the confidence interval radius from equaling 0 when Ni
= 0, which would clearly be incorrect. Indeed, zero hit in a voxel does not necessarily mean that no
vegetation elements are present, but only indicates that current sampling beams have not detected any
vegetation element. In other words, there is a non-zero chance that vegetation elements are present.
This confidence interval is referred to as “Agresti-Coull” in the previous study [15] and leads to a lower
bound of 1

√
2Σze(1+ 1

N )
when Ni = 0. It expresses that the estimation is more accurate as Σze increases,

but never reaches 0, even for a high number of beams N.

2.3. Accounting for Wood Returns

As most applications focus on LAD and not PAD, several methods have been developed to
account for wood elements. From a separation of leaf and wood returns based on return intensity, the
authors of a previous study [9] suggested that beams corresponding to wood hits be ignored in their
formulation of the modified contact frequency, leading to the following (simplified) estimator:

L̃AD =
Nil

G
∑
,wood hits z

, (7)

where Nil is the number of leaf hits and
∑
,wood hits z = Σz−

∑
wood hits z corresponds to the sum of free

paths for beams that do not correspond to a wood hit.
A similar idea was also applied to Beer’s law-based method [17], leading to

L̃AD = −
log

(
1− Nil

N,w

)
δ

, (8)

where N,w = N −Niwood hits is the total number of beams in the volume of interest that do not
correspond to wood hits, and δ is the path length (in m, assumed constant for simplicity).

Another approach was to determine the LAD as a difference between “leaf on” and “leaf off”
conditions [8,14]. This approach relies on the implicit assumption that the total attenuation coefficient
of vegetation elements is the sum of the attenuation coefficients of leaf and wood elements, respectively,
which requires an assumption of random distribution for both leaf and wood elements, which is
obviously incorrect in the case of logs or large branches. This is equivalent to the introduction of a
multiplicative factor equal to the leaf hit fraction F:

L̃AD = FP̃AD, with F =
Nil

Ni
(9)

This approach can be applied to either the Beer’s law-based method or the MLE method, but
the resulting estimators differ from Equations (7) and (8) above, in which beams with wood hits are
ignored. To date, these methods have never been compared. Finally, in these three approaches, the
volume occupied by logs and branches inside the voxel was neglected. In Section 3, we rigorously
include wood volumes and leaf hits in the mathematical derivations.

2.4. Multiview Estimators

When several points clouds are available (each with an index j ∈ [1; J]), the most basic method to
deal with multiview data is to select the “best viewpoint” (i.e., the scan j, which sampled a given voxel
with the highest number of beams N j), as in a previous study [19]. This estimator, shown here for an
LAD estimator, referred to as “Nmax”, is defined as:

L̃AD
Nmax

= L̃AD jmax, with jmax so that N jmax = max
j≤J

N j (10)



Remote Sens. 2019, 11, 1580 6 of 23

This approach is unbiased, provided that each individual estimator is unbiased (e.g., when N > 5
with the TBC-MLE [15]). However, information from other scans is ignored, which is not optimal,
especially when several viewpoints explore a given voxel with similar numbers of beams.

A more sophisticated method, referred to as “N-weighted” (NW), is based on a weighted average
of each estimate L̃AD j (from the different viewpoints), with the weights being equal to N j, as suggested
in previous studies [8,11]:

L̃AD
NW

=
1∑

j≤J N j

∑
j≤J

N j L̃AD j (11)

No information is ignored with this second approach, since all viewpoints contribute to the
final estimation.

3. Generalized Maximum-Likelihood Estimation for LAD from Multiview-LiDAR Data

This section details our new formulation of the estimation of Leaf Area Density from multiview
LiDAR data within a volume of interest, which can be either a voxel or a crown volume, but it is simply
referred to as “the voxel” for simplicity. It relies on similar assumptions as above, with three noticeable
differences. First, we explicitly consider the sub-volume Vw (in m3) of the voxel V (in m3) occupied by
wood elements (Figure 2). Within a voxel volume V, we assume that small leaf elements are randomly
distributed in the sub-volume V −Vw of V, which is not occupied by the wood. This sub-volume
containing the leaf elements has a (dimensionless) volume fraction α equal to:

α = 1−
Vw

V
(12)
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Figure 2. Scheme of the representation of wood volumes Vw (in dashed blue) in the voxel of volume
V. We assume that leaf elements are randomly distributed in volume V −Vw, which exhibits a very
complex and unknown topology.

In general, α is very close to 1, except when large branches or logs intersect the voxel. Here, no
specific assumption is made on the topology of the wood volume Vw, neither on how it is distributed
with respect to the volume V −Vw, in which leaves were present. In practice, α can be estimated from
the intersection between the voxel and tree models, which can be derived from LiDAR data [22].

Second, we assume that the effective attenuation coefficient in V −Vw, which corresponds to what

is actually viewed by the scanner from viewpoint j, verifies λ j =
G jLAD

H j
and that the factors for effective
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footprint on clumped vegetation H j and for leaf projection G j are known (using methods described
in previous studies [14,21,23], for example). In this framework, the λ j value defines the probability
distribution function of any laser beam entering the voxel of interest (see Appendix B, Equation B1, for
details) and no multiple echoes exist. Third, we assume that J point clouds are available (each with an
index j ∈ [1; J]). It is important to acknowledge that correction factors can exhibit large variations with
scanner position j for a given voxel, as distances to scanner or view angle differ. In Appendix B, we
apply similar mathematics as in the previous study [15] to leaf elements distributed inside V −Vw. For
consistency with usual definitions, the LAD is still defined as the surface area of leaf elements divided
by the voxel volume V, even though the leaves are not distributed in the whole volume V. This explains
the presence of volume fraction α in the following equations. From the distribution of “multiview” leaf
hits, free paths, projection factors, and correction factors, the objective here is to determine the most
likely value of LAD (MLE, given the observations. The mathematical derivations slightly differ from
the previous study [8], since there is not a single attenuation coefficient λ for which the MLE can be
computed, but there are as many attenuation coefficients λ j as viewpoints j. Thus, we directly compute
the Maximum Likelihood Estimator “MLE” of the LAD in m−1 (i.e., not of the attenuation coefficient
λ), which cancels the first derivative of log-likelihood [16] of the LAD and find (Equation (B6)):

MLEM
LAD = α

Nil∑ G
H ze

, (13)

where Nil =
∑

j Nilj is the total number of leaf hits (for all scans) and
∑ G

H ze =
∑J

j=1
∑N j

i=1
G j
H j

ze
i
j is the

sum of the products
G j
H j

zi
j for beams exploring V −Vw (Figure 3). The “M” superscript corresponds to

“Multiview”. Here, it is important to note that according to the mathematics, wood hits are ignored
in the count of hits, but not in the free-path sum, contrary to what was suggested in a previous
study [9]. Also, the correction factor G

H , which accounts for differences between viewpoints, appears as
a multiplicative factor in the free path sum. Hence, all hits should be considered equally in the hit
sum, no matter the distance to the scanner or the view angle, but the free paths should be modified
to account for these differences. As for the wood hits, this slightly differs from the “center leaf hit”
method presented in previous studies [9,18].
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Figure 3. Scheme of the information provided by the traversal algorithm, which is used to compute
the Maximum Likelihood Estimator (MLE) of the Leaf Area Density (LAD) from multiview data from
Scan A (in red) and Scan B (in blue): leaf hits (blue and red dots) and free paths (distances z travelled
by the beams; blue and red lines) in the voxel. The dotted lines represent pulse trajectories; cA = GA

HA

and cB = GB
HB

represent the correcting factors for viewpoints A and B, respectively, which differs with
distance to scanner and view angle. For simplicity, correction for effective free path (ze; Equation (3)) is
ignored. Note that in this framework, no leaf can be distributed within the volume VW occupied by
wood elements (in brown). Also, and contrary to Figure 1, the hits corresponding to woody elements
(e.g., 5th beam of scan 1) are ignored in the hit sum, but the corresponding free paths are accounted for
in the free-path sum, in which cA and cB are used as multiplicative factors.
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As for a single viewpoint, this “MLE” is biased when the number of beams is low and a correction
can be computed [15]. Generalizing this correction to the multiview LAD estimator (“M”) led to
(Appendix B):

L̃AD
M

=
α∑ G
H ze

Nil −

∑
l

G
H ze∑ G
H ze

, (14)

with
∑

l
G
H ze corresponding to the sum of

G j
H j

zi
j for beams corresponding to leaf hits only. This formulation

obviously generalized the single-scan estimator L̃AD j, as re-wrote in Equation (4).
In practice, however, the formulation of Equation (14) requires discrimination of each hit depending

on whether it is foliage or wood in order to compute the bias correction term. A slightly more practical
formulation can be achieved assuming that

∑
l

G
H ze ≈ F

∑
hits

G
H ze, with the hit leaf fraction F = Nil

Ni :

L̃AD
M

=
αF∑ G

H ze

Ni−

∑
hits

G
H ze∑ G

H ze

 (15)

Similarly, generalizing Equations (5) and (6), the variance of L̃AD
M

is:

σ2
M =

α2

Nil
(∑ G

H ze
)2

Nil −

∑
l

G
H ze∑ G
H ze

2

≈
α2F

Ni
(∑ G

H ze
)2

Ni−

∑
hits

G
H ze∑ G

H ze

2

(16)

and the radius of the 68%-level confidence interval of LAD estimate is:

∆L̃AD
M

= α
Nil + 1

2 −

∑
l

G
H ze∑ G
H ze√

Nil + 1
2
∑ G

H ze
(
1 + 1

N

) ≈ α F
(
Ni−

∑
hits

G
H ze∑ G

H ze

)
+ 1

2√
FNi + 1

2
∑ G

H ze
(
1 + 1

N

) (17)

The value of F can be determined from one of the algorithms and methods developed to
discriminate leaf and wood returns [18,24–29].

4. Numerical Experiments

Several aspects of the formulation presented in Section 3 have already been evaluated in a
previous study [15]. We can cite the bias corrections for finite elements with the notion of effective
free path ze (Equation (3)) and for small beam numbers (Equation (4)), as well as the efficiency of
the MLE approach for random error minimization and the estimation of variance and confidence
intervals. Here, we present two numerical experiments that aim at demonstrating the added value
of the generalized formulation presented in Section 3, of which the results are compared to results
from earlier formulations (i) to account for wood volumes and returns (Section 4.1), and (ii) to include
multiview point clouds in (Section 4.2). In order to focus each experiment on the aspect of interest, we
assumed for simplicity that vegetation elements are infinitely small, which simplifies the representation
of vegetation and point cloud simulations, as described in a previous study [15].

4.1. Comparison between Formulations to Account for Wood Returns and Volumes

Experiment description

The experiment was carried out at the voxel scale, as in a previous study [15]. A cubic voxel
of 0.2 m width was crossed by a vertical cylindrical branch of 0.05 cm radius, centered in the voxel.
The cylinder is surrounded by randomly distributed and oriented infinitely small vegetation elements
of constant LAD and the voxel is scanned by 500 horizontal LiDAR beams, which can be simulated
using Equation C6, which was implemented in MATLAB scripts [15,23]. Here, beam interceptions by
the branch were considered so that wood hits occurred. We assumed that LiDAR beams were infinitely
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small so that the H correction factor was equal to 1. We repeated the experiment with 200 LAD values,
randomly chosen between 0 and 4 m−1. In this simple context, the volume fraction α:

α = 1−
π0.0520.2

0.23 ' 0.804, (18)

which means that 20% of the voxel was occupied by woody elements.
The leaf fraction F corresponding to the different simulations were plotted as a function of reference

LAD values in Figure A4. This ranged between 0 for very low LAD values to 0.4. This means that
wood returns represent the majority of hits in all this experiments. This specific design (majority of
wood hits, 20% of the volume occupied by wood) is not representative of most canopy volumes, but
was chosen to emphasize differences between formulations.

We then computed the estimations for six different leaf and wood formulations (Table 1). The
first three formulations neglected the wood volume. The first one corresponds to the formulation of
the modified contact frequency with wood hits (Equation (7)), as suggested in a previous study [9].
The second corresponds to the Beer’s law-based formulation (Equation (8)), as suggested in another
study [17]. The third formulation corresponds to Equation (15), but the equation was simplified. First,
we used free path z (instead of effective free paths ze, since element size is negligible); second, we could
neglect the bias correction term due to low beam numbers (since Nil>>1); third, for a fair comparison
with Equations (7) and (8), we temporary neglected the role of the wood volume, simply assuming
that α = 1. The other three estimators were the same, but the true value of α was incorporated as a
multiplicative factor. Hence, the last estimator corresponds to Equation (15) (beyond the simplifications
detailed below).

Table 1. Different estimators used to for numerical experiment described in Section 4.1.

Equation Simplified for Mulation Reference

Equation (7) (a) Nil

G
∑
,wood hits z [9]

Equation (8)
(b) −

log
(
1− Nil

N,w

)
δ

[17]

Equation (15)
(with α = 1, Nil>>1 and λ1 � 1) (c) Nil

GΣz
This publication

Equation (7), with α multiplicative factor (d) αNil

G
∑
,wood hits z [9] and this publication

Equation (8), with α multiplicative factor
(e) −

α log
(
1− Nil

N,w

)
δ

[17] and this publication

Equation (15) (Nil >> 1 and λ1 � 1) ( f ) αNil

GΣz
This publication

Results

Figure 4 shows the comparison between predicted and reference LAD values for 200 simulations.
All formulations led to an overestimation, with mean biases ranging between 24% and 64%, with the
exception of Equation (15), which was unbiased (Figure 4f). The spread of the simulations around the
fitted linear trend (dashed blue line) occurred because of the number of beams used in the present
simulation (500) and would be much smaller with a higher number of beams, with lower RMSE
(expressed in % of the mean reference LAD). The difference between the dotted line and the 1-1 line (in
black) shows the potential biases of the different estimators, which were quantified by the mean bias
(expressed in % of the mean reference LAD).
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Figure 4. Comparison between predicted and reference LAD for a variety of formulations to account
for wood in estimators (see Table 1 for details): (a) Equation (7); (b) Equation (8); (c) Equation (15),
(with α = 1, Nil>>1, and λ1 � 1); (d) Equation (7), with αmultiplicative factor; (e) Equation (8), with α
multiplicative factor; (f) Equation (15) (Nil>>1 and λ1 � 1). Formulations presented in subplots (a–c)
ignored wood volumes, contrary to subplots (d–f).
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Comparing subplots (a), (b), and (c) with (d), (e), and (f), respectively, demonstrated the important
improvement associated with the volume fraction factor α, which was especially important in the
context where wood volume occupied around 20% of the volume of interest. The bias would obviously
decrease if the wood volume was smaller, but this example shows that this factor should not be
neglected in some cases (near logs and trunks in particular). Subplots (d) and (e) show that ignoring
beams with wood hits in estimators was incorrect. Another limitation of these last two estimators is
that their biases vary with the location of wood volumes inside the voxel, contrary to Equation (15),
which is insensitive to wood volume distributions (provided that leaves are randomly distributed
outside these volumes, as in our simulation). For example, the mean bias presented in Figure 4d
reached 53% when the branch was located near the trailing face of the voxel (where beams leave the
voxel), whereas it was limited to 8% when the branch was located near the leading face of the voxel
(where beams enter the voxel), instead of 32% when the branch was centered (as in Figure 4d).

4.2. Comparison between Multiview Formulations

Experiment description

This second numerical experiment was carried out at the scale of a small forestry plot. The L̃AD
M

differed from the “Nmax” multiview combination of L̃AD j (Equation (10)), but also from the
“N-weighted”, which can be shown with a numerical expansion of Equation (11). Beyond the conciseness
and the mathematical support for Equation (15), it was important to quantify the error reduction
resulting from the new formulation in “field-like” conditions. Thus, we conducted a numerical
experiment corresponding to plausible field features, aiming at (i) providing a brief validation of the
“M” multiview estimator of LAD presented above (Equation (15)), and (ii) comparing its performance
with the two usual formulations to combine single-view estimates.

All of the details regarding this numerical experiment were provided in Appendix C for conciseness.
In brief, we generated a “reference” LADref in a 10-m tri-dimensional mesh grid corresponding to
plausible features in terms of LAI, clump size and vertical distribution [23]. Voxel size was equal
to 0.1 m, and the cubic vegetation scene had a 10-m lateral extension (and a 10-m height). LADref
corresponded to a clumped spatial distribution simulated from RandomFields R package, which was
parameterized to correspond to realistic features of natural vegetation (cover fraction of 70% and LAI
of about 3.8). The mean clump size, which was representative of the tree crown diameter, was 4 m.
Additional clumping (~1 m) occurred to represent branch scale heterogeneity. The LAD vertical profile
exhibited a peak around 7 m in height (Figure A1a).

We simulated five point clouds from different viewpoints. We then estimated the LAD using the
three multiview formulations after applying a traversal algorithm to each point cloud to compute the
different statistics. In this experiment, we assumed infinitely small vegetation elements, randomly
distributed inside 10 cm voxels, so that no clumping occurred below 10 cm. We also neglected
the wood volume (already investigated in Section 4.1) in order to focus on differences arising from
multi-scan formulations.

Results

The mean biases observed in voxels, computed for three classes of beam number N, are shown

in Table 2. With the new multiview estimator (L̃AD
M
), biases were smaller than 1% for N ≥ 10 and

were only equal to 2.2% when N < 10. The two other estimators exhibited biases of larger magnitudes,
especially the “N-weighted” estimates (NW), which reached −15% when N < 10. Such a result was quite
surprising; as a weighted average of unbiased estimators (computed for each scan), one would have
expected the NW estimator to be unbiased too. There was a simple explanation to this apparent paradox.
When N was smaller than 10, it often corresponded to cases where the beam number exploring a voxel
from one or several viewpoints was smaller than 5, and in particular equal to 1 or 2. In these cases, the
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single-view estimator was negatively biased [15]. For example, this bias was especially obvious when

Nj=1 (in this case, it is equal to 0 when Nilj = 0, but also when Nilj = 1, since
∑

l ze, j∑
ze, j

= 1; see Equation (4)).

Table 2. Mean biases (in % of the mean LADref) of the three estimators for three different classes of total
beam number N.

Range of Beam Number L̃ADNmax L̃ADNW L̃ADM

N ≥ 2 and N < 10 −6.0% −15% +2.2%

N ≥ 10 and N < 15 +0.8% −2.8% +0.4%

N ≥ 15 +0.0% −0.4% +0.0%

Hence, the new multiview estimator (L̃AD
M
) was only marginally biased in all conditions,

contrary to the other formulations. This situation was, in practice, quite frequent for voxels in which
the total beam number was smaller than 10, as show in Figure 5, which represents the profiles of
frequencies of four beam number classes in the virtual forest plot.
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Figure 5. Vertical profiles of percentages of voxels with number of beams smaller than 2, 10, 30, and
100, in the numerical experiment described in Appendix C (five different viewpoints located at 1 m
above the ground).

The RMSE observed in voxels, computed for six classes of beam number N, are shown in Table 3.

With the multiview estimator (L̃AD
M
), RMSE were smaller than those of the two other estimates. In

particular, differences between L̃AD
M

and L̃AD
Nmax

were observed for all classes of beam numbers
and were explained by the fact that the information from secondary viewpoints was ignored with

“Nmax”, leading to larger RMSE. Differences between L̃AD
M

and L̃AD
NW

mostly occurred for N

ranging between 10 and 30, but RMSE for L̃AD
NW

could be more than twice as big as for L̃AD
M

. More
detailed analyses (not shown) showed that these strong differences in performances were caused by a

very limited number of voxels, in which errors of L̃AD
NW

were very high when compared to those of

L̃AD
M

. This occurred when one of the L̃AD j estimates with a very low number of beams (Nj lower
than 5) was very far beyond the reference value (for example, when the mean free path from viewpoint
j was unluckily very small for the Nj beams). In this configuration, very large overestimations could
occur for the “N-weighted” estimator, despite the weighting procedure, which was not able to dampen
such outliers. As a result, the “NW” estimator led to higher RMSE than the “Nmax”, despite more
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information being used. Such differences were caused by infrequent but very large overestimations

observed with L̃AD
NW

.

Table 3. Root Mean Square Error (in % of the mean LAD) of the three multiview estimators for six
different classes of total beam numbers.

Range of Beam Number L̃ADNmax L̃ADNW L̃ADM

N ≥ 2 and N < 10 450% 410% 416%

N ≥ 10 and N < 15 137% 234% 114%

N ≥ 15 and N < 30 99% 183% 83%

N ≥ 30 and N < 100 61% 52% 51%

N ≥ 100 and N < 1000 37% 31% 30%

5. Discussion

The present work extends the method of the theoretically bias-corrected Maximum Likelihood
Estimator, initially introduced for the attenuation coefficient [15], to the LAD. The new estimator
accounts for vegetation element size, wood volume and hits, correction factors for effective footprint,
vegetation clumping and orientation, and multiview data. It can be applied to any volume of interest,
for example either a voxel, a crown volume, or even horizontal canopy layers. Our approach can be
used as an alternative to Beer’s law-based methods in all cases. For example, in a horizontal layer with

heights between h and h + dh, the gap fraction approach LAD(h) ≈ −d log(Pgap) cos(θ)
Gdh [3] can be replaced

by the MLE:

LAD(h) ≈
Ni cos(θ)

GΣh
, (19)

where cos(θ) is the zenith angle, Ni is the number of hits in the, and Σh is the sum of free path heights
(which are equal to dh when beams have no interception in the layer, and equals to the difference
between the height of hits and h for beams with returns).

As the MLE naturally incorporates variations in view angle and distance to scanner, it should be
applicable to UAV LiDAR data, in which beams are emitted from a moving scanner. The application to
UAV would require that the traversal algorithm accounts for the UAV travel path and that corresponding
correction factors are known. The method also requires estimation of the trajectory of beams with no
return, which might be impossible with some lasers. The efficient multiview formulation, as well as
bias correction for low beam number, could be especially relevant in the context of UAV.

The novelty of the approach presented here lies in the fact that the Maximum Likelihood Estimation
is applied directly to the LAD rather than to the attenuation coefficient, as in the previous study [15],
and that wood elements are explicitly considered as a volume in which no leaf can be present.
This significant advance was permitted by the fact that the MLE does not assume a particular topology
for the volume of interest [15], so that it can be applied to a very complex and unknown volume (here,
the volume of the voxel which is not occupied by woody elements). On the contrary, Beer’s law-based
methods cannot be easily applied to an unknown geometry, as shown in Section 4.1, and does not
take full advantage of all the information available in free paths [15]. In the present formulation, no
assumption is made on the relative distribution of leaf and wood, the only assumption being that
leaves are randomly distributed in the volume of the voxel that is not occupied by wood. The random
distribution assumption of leaves is not fully realistic, but discrepancies can be corrected through
factors to account for leaf orientation, sub-volume clumping [14], and LiDAR effective footprint [14],
which were rigorously included in the new approach in a straightforward manner. Although presenting
strong similarities with the modified contact frequency first implemented in a previous study [9], the
mathematical derivations suggest that beams corresponding to wood hits and those corresponding to
non-central leaf hits should be accounted for in the free path sum, contrary to what was suggested
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in the previous study [9]. Another difference is the improvement of the manner of accounting for
vegetation element size correction suggested in another study [18], which is also different, as already
pointed out in another study [15], with the notion of effective free path (Equation (3)). More significant
differences should be expected, however, from the difference in free path sum computations than from
the difference in element size corrections.

In our formulation, one of the critical aspects is to be able to estimate a fraction of leaf hits F,
as well as the leaf volume fraction α (Equation (13)). The development of algorithms and methods
for leaf and wood separation is a subject of active research [24–29], which is a prerequisite of most
methods aiming at retrieving wood volume [22]. One could notice that determining the leaf fraction
F is less challenging than the classification of each individual hit as “leaf” and “wood”, in the sense
that leaf fraction can be correctly estimated from a classification method with significant omission and
commission errors inside the voxel. In particular, the leaf fraction can be estimated on a subset of
the point cloud, which could help to save computational resources. The correction factor α for wood
volumes can probably be neglected in most situations corresponding to foliage, since bulk density of
thin twigs are to the order of 0.1 kgm−3, which corresponds to volume fraction to the order of 0.02 [30].
However, such a correction is likely to be necessary when trunks or large branches intersect the voxel,
otherwise leading to LAD overestimation, even if the leaf fraction F is correctly estimated. In this
context, tree models derived from LiDAR data [22] can provide the appropriate information.

Our numerical experiments enabled a theoretical validation of the new estimator in two simplified
but plausible contexts, as well as a comparison with other former formulations to account for wood
returns and to combine multiview data, thanks to well-defined references [2]. These numerical
experiments extended the ones of the previous study [15], since the ray tracing and the traversal
algorithms were applied within voxels with wood volumes and within a virtual, but more realistic
forestry plot, as in previous studies [20,23], rather than within individual voxels. We found that
the present formulation was correct in the presence of wood volumes and a large number of wood
returns, contrary to previous formulations [9,17]. Also, the multiview estimator performed better than
the “Nmax” [19] and “N-weighted” [8,11] formulations when multiple scans were available, without
requiring any additional complexity. Such a result was expected in terms of errors for the “Nmax”,
since this basic approach ignored the information provided by secondary viewpoints. On the contrary,
the counter performance of the “N-weighted” formulation was relatively unexpected, leading to much
higher errors because of infrequent but very large overestimations when one of the poor viewpoints
led to an outlier.

This later point highlights the importance of the use of unbiased estimators; more generally, the
unbiasedness and efficiency of estimators in the inner-canopy where point density is low is critical [2].
Indeed, our second numerical experiment confirms that the distributions of beam numbers in voxels at
various heights is very heterogeneous (Figure 5). Above 6 meters, and up to the top of the canopy, the
percentages of unexplored or poorly-explored voxels were very high. Of course, such statistics are
highly dependent on the number of scans (here, 5), the scanner angular resolution (here, 0.036◦), and
the grid size (here, 0.1 m). Such sensitivities, as well as their consequences on estimation accuracy,
are analyzed in detail in a previous study [23] and are beyond the scope of the present article, which
aimed at presenting the new estimator and some brief validations. It was relevant, however, to recall
the frequent occurrence of poorly-explored voxels to highlight the importance of the results of the
numerical experiment presented here.

The present study was carried out with MATLAB scripts developed by the authors, as in previous
studies [11,14,15,23]. However, the single-view estimator can already be computed in the gridded
scene using a plug-in of the COMPUTREE platform (http://computree.onf.fr/?page_id=42) called LVOX
(http://computree.onf.fr/?page_id=422) that implements a traversal algorithm, whereas the multiview
estimators are currently implemented in LVOX.

http://computree.onf.fr/?page_id=42
http://computree.onf.fr/?page_id=422
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6. Conclusions

The study confirms the potential of the Maximum Likelihood Estimation method for LAD from
single-echo LiDAR data, as already demonstrated in a previous study [15]. The method provides the
economy of transmittance computation and inversion that are required in Beer’s law-based methods,
and is hence more efficient. Our estimator for LAD can be used in any volume of interest (voxels,
crown volumes, or even thin horizontal layers, as in gap fraction approaches; Equation (19)). A fraction
of these volumes can be occupied by wood sub-volumes, and the estimator includes correction factors
for vegetation element size, LiDAR effective footprint, leaf orientation, and multiple viewpoints. The
only fundamental assumption is that vegetation elements are randomly distributed in sub-volumes
that are not occupied by the wood. However, a clumping factor can be used to handle discrepancies
due to vegetation morphology and vegetation element clumping in the sub-grid.

The new framework can be applied to any multiview dataset in a straightforward manner, such
as multiview TLS. It can probably be extended to UAV LiDAR scanning, provided that a traversal
algorithm is available to compute hits and free path distributions, that shooting trajectories are
known, and that the different correction factors (vegetation element size, leaf orientation, leaf hit
fraction, calibration factors, and wood volume fraction) are available. Beyond its conciseness and
mathematical support, our two numerical experiments demonstrated the good performance of the new
estimator, which compared favorably to other existing methods. In particular, we showed that several
formulations suggested in earlier studies were either incorrect or less efficient. Because it rigorously
accounts for all factors that are suspected to affect LAD estimation (with the exception of multi-echoes),
we think it should be more widely used and tested in the field against actual references. Ongoing
development in the COMPUTREE platform, which is dedicated to LiDAR point cloud processing,
should ease the process, whereas the evaluation in field condition is still in progress [23].
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Appendix A. Estimation of λ1 for Simple Vegetation Element Shapes

According to a previous study [15], the attenuation coefficient of a single vegetation element in a
cubic voxel of size δ is:

λ1 ≈
S1

δ3 , (A1)

where S1 is the cross-sectional area of a single vegetation element.
For a needle of radius r and length l, this leads to:

λ1 ≈
2πrl
4δ3 (A2)

For a (small) needle of diameter 2r = 0.5 mm and length l = 5 cm, we have:

λ1 ≈ 2 10−5δ−3 (A3)

For a flat leaf of radius r, this leads to:

λ1 ≈
2πr2

4δ3 (A4)
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For a (large) leaf of diameter 2r = 10 cm, we have:

λ1 ≈ 5 10−3δ−3 (A5)

Appendix B. Optimized Multiview Estimator in a Voxel of Interest

The following derivation generalized the approach suggested in Section 3 and Appendix C in the
previous study [15]. More details on the rationale of the method are provided there.

Here, we assume that we have M scans. We want to compute the Maximum Likelihood Estimator
of LAD, from

{
N j

}
j=1,M

beams of different scans. For each scan j, the attenuation coefficient λ j in volume

of interest V −Vw corresponds to a projected area of leaf elements equal to λ j(V −Vw) = c jLAD V,

with c j =
G j
H j

. Hence, λ j =
c jLAD
α .

The probability distribution of free path z in the voxel in the context of randomly-distributed
elements is:

f j(z; δ) =

 λ j(1− λ1z)
λ j
λ1
−1

(lea f hit)

(1− λ1δ)
λ j
λ1 (no lea f hit)

, (B1)

where S1 is the cross-sectional area of a single vegetation element.

Using the effective path ze = −
log(1−λ1z)

λ1
, (B1) can be rewritten:

f j(z; δ) =
{
λ je−(λ j−λ1)ze (lea f hit)
e−λ jze (no lea f hit)

(B2)

Let us denote
{
ze

i
j

}
i=1,N j

the N j “effective” free paths of scan j. From Equation B1, the likelihood

of Z is:

L

(
LAD;

{
zi

j

}
i=1,N j and j=1,M

)
=

∏M
j=1

∏N j

i=1 f j

(
zi

j; δ
i
j

)
=∏M

j=1
∏

lea f hits λ je
−(λ j−λ1)ze

i
j
∏

no lea f hit e−λ jze
i
j =∏M

j=1

(
λ j

Nilj ∏N j

i=1 e−λ jze
i
j
∏

lea f hits eλ1ze
i
j

)
=∏M

j=1

(LADc j
α

)Nilj ∏N j

i=1 e−
LAD
α c jze

i
j
∏

lea f hits eλ1ze
i
j

 =(
LAD
α

)Nil ∏M
j=1

c j
Ni j

(∏N j

i=1 e−c jze
i
j

) LAD
α ∏

lea f hits eλ1ze
i
j

,

(B3)

where Nilj is the number of leaf hit for scan j and Nil =
∑

j Nilj is the total number of hits.
The ML estimator is the value LAD that cancels the first derivative of L [16]. The logarithm of the

likelihood is:

logL
(
LAD;

{
zi

j

}
i=1,N j and j=1,M

)
= Nil log

(
LAD
α

)
+

M∑
j=1

Nilj log(c j) −
LAD
α

M∑
j=1

N j∑
j=1

c jze
i
j +

∑
lea f hits

λ1ze
i
j

(B4)

Derivation with respect to LAD and equating to zero provides:

dlogL
dLAD

=
1
α

Nil
LAD
α

−
1
α

M∑
j=1

N j∑
j=1

c jze
i
j = 0 (B5)
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Hence,

MLELAD = α
Nil∑

cze
, (B6)

with Nil =
∑

j Nilj the total number of leaf hits et
∑

cze =
∑M

j=1
∑N j

j=1 c jze
i
j the sum of product c jze

i
j for

all beams.
Hence, the ML estimator (also called modified contact frequency) 1

c λ̃ = I
cze

can be generalized to
multiple viewpoints.

As explained in the previous study [15], the MLE exhibits a positive bias when the optical path
explored within the voxel is limited. Following supplementary C in the previous study [15], we can
adapt the bias correction to the multiview formulation. Since MLELAD = αf

(
Nil,

∑
cze

)
with f(x, y) = x

y ,
the unbiased estimator LADm can be approximated as:

L̃AD
M

α
=

Nil∑
cze
−

1
2
σ2

Nil
∂2 f
∂x2

(
Nil,

∑
cze

)
−

1
2
σ2∑

cze

∂2 f
∂y2

(
Nil,

∑
cze

)
− σ

Nil,
∑

cze

∂2 f
∂x∂y

(
Nil,

∑
cze

)
(B7)

The different terms can be estimated as follows:

−
1
2
σ2

Nil
∂2f
∂x2

(
Nil,

∑
cze

)
= −

1
2
σ2

Nil
× 0 = 0 (B8)

−
1
2
σ2∑

cze

∂2 f
∂y2

(
Nil,

∑
cze

)
= −σ2∑

cz
Nil

(
∑

cze)
3 (B9)

− σNil,
∑

cze

∂2f
∂x∂y

(
Nil,

∑
cze

)
= σNi,

∑
cze

1

(
∑

cze)
2 (B10)

We now estimate σ2∑
cze

= E
[
(
∑

cze)
2
]
− E[

∑
cze]

2 and σ
Nil,

∑
cze

= E
[
Nil

∑
cze

]
− E

[
Nil

]
E[

∑
cze].

Because of beam independency, and since E
[
z2

]
= 2

λE
[
1lea f hitze

]
(Equation (C13) in the previous

study [15]) and LAD
α ≈

Nil∑
cze

(Equation (B6)):

E
[
(
∑

cze)
2
]
=

∑
j

c j
2E

[∑
ze j

2
]
=

∑
j

c j
2N jE

[
ze j

2
]
=

∑
j

1
λ j/1/c j

2N jE
[
1lea f hitc jze j

]
≈

∑
j

α
LAD 2

∑
lea f hit

c jze j =
2α

LAD
∑

lea f hit
cze

(B11)

Similarly:
E
[
Nil

∑
cze

]
=

∑
j

E
[∑

1lea f hitc jze j
]
=

∑
lea f hit

cze (B12)

Hence, the plug-in in Equation (B7):

L̃AD
M

α
=

Nil∑
cze
−

 2α
LAD

∑
lea f hit

cze −
(∑

cze
)2

 Nil

(
∑

cze)
3 −

 ∑
lea f hit

cze −Nil
∑

cze

 1

(
∑

cze)
2 (B13)

Hence, because of Equation (B6):

L̃AD
M

=
α∑
cze

(
Nil −

∑
l cze∑
cze

)
(B14)
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Appendix C. A Numerical Experiment to Compare Different MULTIVIEW Formulations

Method

We conducted a numerical experiment rather than using actual data because attributing error
source in actual data is often difficult in this research field [2,13,23]. The goals of this experiment were
to (i) provide a theoretical validation of the “M” multiview estimator of LAD presented above (Equation
(15)), and (ii) compare its performance with the two usual formulations to combine single-view

estimates (“Nmax” and “N-weighted” L̃AD
Nmax

and L̃AD
NW

, Equations (10) and (11)). We first
generated a “reference” LAD tridimensional field LADref in a mesh grid, with voxels of size equal to 0.1
m, corresponding to a cubic vegetation scene with a 10-m lateral extension and a 10-m height. LADref
corresponded to a clumped spatial distribution simulated from RandomFields R package, which was
parameterized to correspond to realistic features of natural vegetation. The mean clump size, which
was representative of the tree crown diameter, was 4 m, whereas typical LAD vertical profiles, as well
as a projection function, were implemented. In order to get a more realistic reference field, the random
field LADref was modified as follows. We multiplied it by a realistic vertical profile to get limited
vegetation under 3 m, and a peak in LAD around 7 m height (Figure A1a). Also, the first decile of
LADref values was set equal to 0 in order to generate actual gaps between crowns. Finally, random
variations were also introduced to simulate the occurrence of small gaps (~1 m), representative of
branch-scale heterogeneity inside tree crowns. These settings led to a clumped vegetation scene with a
70% cover fraction (Figure A1b) and a vertical structure (Figure A1a). The LAI of the virtual scene
was about 3.8, which corresponds to a mean LADref of 0.38 m-1 (the scene vertical extent was 10 m).
Maximal LADref values reached 3.8 m−1.

A leaf projection function was implemented to complete vegetation properties:

G(θ, z) =
1
2
+ 0.4

z
h

cos(2θ), (C1)

where θ was the angle between the beams and the vertical, which ranged between 0 and π.
According to this setting, leaves were planophile near the canopy top (z ≈ h), with G = 0.9 for

vertical beams (θ ≈ 0 or θ ≈ π) and 0.1 for horizontal beams
(
θ ≈ π

2

)
, and random near the ground

(z ≈ 0), with G = 0.5.
At last, the leaf fraction was parameterized to account for wood and leaf association along the

vertical axis following:

F(z) =
(
0.1 + 0.8

z
h

)2
(C2)

The leaf fraction was, hence, equal to 0.9 at canopy top (z ≈ h) and 0.1 near the ground (z ≈ 0).
The vertical profile of LADref, as well as a two-dimensional horizontal distribution of this vegetation
field, are shown in Figure A1a,b. They correspond to a LAI of 3.8 and a cover fraction of 70%.

We then simulated virtual TLS scans processed at five different locations, with a 0.036◦ angular
resolution. Simulations were based on turbid media assumption (assuming that λ1 ≈ 0, for simplicity),
which states that the probability of a beam to be intercepted increases exponentially with the optical
depth (product of attenuation coefficient and distance travelled). For simplicity, the volume fraction of
wood elements was neglected (α = 1). The locations in which individual laser beams were intercepted
were, thus, generated from random numbers, as in the previous study [15], but the approach was
generalized to a heterogeneous vegetation scene, as in a previous study [23].

The reference attenuation coefficient λre f , j related to LADref for a given scan j depends on leaf
projection, leaf fraction, vegetation heterogeneity, and scanner properties (inverting Equation (1)). Let(
x j, y j, z j

)
be the coordinates of the scanner corresponding to scan j and (x, y, z) the coordinates of the
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center of a voxel in the vegetation scene. The effective attenuation coefficient for both leaf and wood
for scan j was:

λre f , j(x, y, z) = LADre f (x, y, z)
G j(x, y, z)

F(z)H j(x, y, z)
(C3)
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A beam emitted from the scanner j in the direction of (x, y, z) had the following projection function
G (since cos(2θ) = cos(θ)2

− sin(θ)2):

G j(x, y, z) =
1
2
+ 0.4

z
h

(
z− z j

)2
−

(
x− x j

)2
−

(
y− y j

)2(
x− x j

)2
+

(
y− y j

)2
+

(
z− z j

)2 (C4)

We assumed that the distance effect (caused by an increase in effective footprint of the scanner, as
identified in a previous study [14]) has the following effect on the attenuation coefficient:

H j(x, y, z) = 1− 0.05

√(
x− x j

)2
+

(
y− y j

)2
+

(
z− z j

)2
, (C5)

which expressed that leaf area was overestimated by a factor of 2 at a distance of 10 m to the scanner
(H j = 0.5), which is in agreement with observations in a previous study [14].

We simulated five virtual point clouds corresponding to a scanner located 1 m from the ground
and at each corner of the plot and one scan at the center: (x1, y1, z1) = (7.5, 7.5, 1); (x2, y2, z2) =

(7.5, 2.5, 1); (x3, y3, z3) = (2.5, 2.5, 1); (x4, y4, z4) = (2.5, 7.5, 1); (x5, y5, z5) = (5, 5, 1). Their shooting
patterns corresponded to a 0.036◦ angular resolution over the horizontal (ranging from 0 to 180◦) and
the vertical (ranging from 0 to 360◦), so that each scan contains around 50 million beams, which is
typical of the resolution used in the field [11,14,23]. For each beam, we simulated its eventual hit
location with a ray-tracing algorithm. First, the optical path (i.e., initial potential to pass through
vegetation) of each beam was randomly simulated according to the Beer’s law (assuming infinitely
small elements, i.e., λ1 ≈ 0):

l = − log(p), (C6)

with p as a random number within ]0;1], which corresponds to the initial chance to be intercepted
by vegetation. We then computed the trajectory of this beam within the computational grid from its
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initial position at scanner location by computing the “amount” of the optical path required to cross the
next voxel.

This amount was calculated by multiplying the reference attenuation coefficient of this voxel
(computed from Equation C3) by the length of the segment corresponding to the intersection of the
beam and the voxel. When the residual optical path of the beam was shorter than this amount, a hit
occurred within this voxel at a location corresponding to this residual optical path. On the contrary,
when the remaining optical path was greater than this amount, it meant that the beam travelled farther
than the voxel. The process was recursively applied to the next voxel—the “new” residual optical
path corresponding to the remaining of the previous one. The process ended in the case of a hit, or
when a beam reached the bounding box of the computational grid. In this later case, the beam was
never intercepted in the computational grid, thus corresponding to a beam with no hit. This process
was similar to the one used in a previous study [20] to simulate photon trajectories to compute the
radiative transfer from a flame through a voxelized heterogeneous vegetation scene with a Monte Carlo
approach. Hence, five virtual point clouds were simulated in accordance with λeff,j, which accounted
for both vegetation and instrument properties.

Finally, we applied a traversal algorithm to each point cloud j to retrieve leaf hits and free path
distributions in the voxel (size equal to 0.1 m) in order to compute the different statistics required for
the different multiview estimators of the LAD. In particular, the number of hits Ni, the number of
sampling beams N, and the free path lengths of individual beams were computed in each voxel.

We computed the three multi-#view estimators (L̃AD
Nmax

, L̃AD
NW

, and L̃AD
M

).

A two-dimensional horizontal distribution of L̃AD
M

is shown in Figure A2 to illustrate these estimates
and can be directly compared to Figure A1b. The blank pixels correspond to locations in which voxels
were not sampled by any beam because of vegetation occlusion. The impact of such occlusion was
discussed in detail in a previous study [23] and is beyond the scope of the present article.
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at z = 6 m. This distribution could directly be
compared to LADre f in Figure A1b. Blank pixels correspond to unexplored voxels, which revealed
occluded locations in the canopy.

The performance of the three multiview estimators were compared thanks to reference LAD
values. We first evaluated their biases by comparing estimated and reference LAD values, grouped by
classes of total beam numbers exploring voxels (N). Indeed, a previous study [15] showed that the
magnitude of the biases can strongly vary with the number of sampling beams. Then, we computed
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the Root Mean Square Error (RMSE) of the estimations in individual voxels. As for the bias, RMSE was
computed per class of total beam numbers exploring voxels (N). Both biases and RMSE were expressed
in percentage of the mean LAD in corresponding voxels in order to ease the interpretation of the results.

Results
Figure A3 shows some comparisons between the three multiview formulation for two classes

of beam numbers (N ∈ [5, 15[ and N ∈ [100, 500[ ). In these examples, Equation (15) leads to the best
results, although improvements can be marginal, especially when beam number are larger than 100.
Results in the other classes are presented in Tables 2 and 3.Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 23 
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Appendix D. Leaf Fraction Corresponding to the 200 Numerical Simulations Presented in
Section 4.1
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