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Abbreviations 

AgRP, agouti-related peptide; BSS, behavioral satiety sequence; AMPK, AMP-activated 

protein kinase; ARC, arcuate nucleus; BDNF, brain-derived neurotrophic factor, CART, 

cocaine and amphetamine regulated transcript; CCK, cholecystokinin; CfD, cafeteria diet; 

CNS, central nervous system; DIO, diet-induced obesity; DIWL, diet-induced weight loss; 

DMH, dorsomedian nucleus; DMV, dorsal motor nucleus of the vagus; DR, diet resistant; EB, 

energy balance; EE, exergy expenditure; EH, energy homeostasis; EI, energy intake, EIEE, 

exercise-induced energy expenditure; FFA, free-fatty acids; GLP-1, glucagon-like peptide 1; 

IMI, intermeal interval; LH, lateral hypothalamus; MCH, melanin concentratin hormone; NPY, 

neuropeptide Y; NEAT, non-exercise activity thermogenesis; nREE, non-resting energy 

expenditure; NAcc, nucleus accumbens; NTS, nucleus tractus solitarius; OXM, oxyntomodulin 

PAL, physical activity level; POMC, pro-opiomelanocortin; PP, pancreatic polypeptide; PPGD, 

preprandial glucose decline; PVN, paraventricular nucleus; REE, resting energy expenditure; 

SCN, suprachiasmatic nucleus; SNS, sympathetic nervous system; SPA, spontaneous physical 
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Abstract 

The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a 

debated concept. Thus, we will see that the set-point theory is highly challenged and that 

other models integrating an anticipative component, such as energy allostasis, seem more 

relevant to experimental reports and life preservation. Moreover, the current obesity 

epidemic suggests that EH is poorly efficient in the modern human dietary environment. 

Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. 

In this review, the apparent failed homeostatic responses to energy challenges such as 

exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative 

determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, 

neuronal, and metabolic factors of energy intake or energy expenditure are briefly 

presented. Last, this review focuses on the contributions of two of the most pivotal and 

often overlooked determinants of EH: the availability of endogenous energy and the pattern 

of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in 

adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous 

system activity.   
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1. Introduction 

Homeostasis is the tendency of an organism to maintain a stable internal state. It is a more 

neutral and descriptive concept than control or regulation [1], that need to determine the 

operator and the regulated value [2] to achieve balance. In the case of energy homeostasis 

(EH), this supposes that the energy balance (EB) between the energy supplied and dissipated 

is stable. For some authors, this means that energy stores are kept constant throughout the 

lifespan. The worldwide epidemic of increased obesity in humans [3] shows that this is not 

the case, at least during the dynamic phase. Actually, EH is often used to describe the 

mechanism by which an organism not only fulfills its energy needs, but also reduces or 

induces input (intake) when output (expenditure) decreases or increases, respectively. If 

energy needs are efficiently supplied when environmental conditions are appropriate, 

experimental and epidemiological data show that the reduction of energy intake (EI) is not 

sufficient to preclude increased energy storage when energy expenditure (EE) is low e.g., low 

physical activity level (PAL), leading to fat deposition and obesity. Mechanisms of EH seem to 

be poorly efficient against excessive EI in individuals [4]. One hypothesis is that in certain 

dietary environments and with certain behaviors, excess EI relative to total EE (TEE) is 

necessary to maintain energy supply due to impaired mobilization of energy stores.  

In the concepts of homeostasis by Claude Bernard [5] or Walter Cannon [6] there was the 

notion than outside of a given interval of stability, life was not possible. Neither of them 

imagined a fixed programmed value but only a response adapted to an external stimulus [7]. 

However, homeostasis was reactive and not anticipative. Most of the models were based on 

the satisfaction of basic needs, such that the response of the organism to the low availability 

of a specific need for an "element" resulted in the stability of the dependent body variables, 

either by a behavioral (research of the required "element") or physiological (cascade of 

effects leading to the compensation of this missing "element") response. The opposite was 

expected when the "element" was provided in excess. This theory is now challenged, 

supporting a large excess of EI without apparent behavioral or physiological responses 

leading a large proportion of humans, notably in recent history, to store much more energy 

than they need. This may either be interpreted as a failed EH or maybe it is an incorrect 

understanding of what is EH. It must be remembered that overweight and obesity conditions 

did not exert any negative selective pressure on humanity during most its history.  
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2. Modelizing and discussing energy homeostasis  

2.1. Input and output of energy homeostasis 

EH must not be represented by a simple input / output model. Between the two lies a very 

flexible energy storage compartment which is the target of many physiological factors 

(Figure 1). A long history of experimental studies conducted in animal models has explored 

these factors. In rats confined in a laboratory or in animals and humans during growth, more 

than homeostasis, we should use the term homeorhesis [8], the phenomenon by which the 

internal state is maintained, not in the initial state but in the state of its normal trajectory 

through time. Control groups of rats usually gain weight and fat mass during the 

experimental periods. Thus, when the interventional groups are compared to their control 

pairs to determine whether homeostasis occurred, what is tested is not homeostasis per se, 

but homeorhesis. 

 

2.2. The set-point theory 

The set point theory [9] supposes that a regulated hypothalamic body weight or white 

adipose tissue (WAT) mass would be defended against voluntary (e.g., dieting) or involuntary 

(e.g., fluctuating availability or composition of food) changes. This would make EH an 

ancillary mechanism to fat mass regulation as proposed by Kennedy [10] in his lipostatic 

model. He proposed that fat mass was regulated at the hypothalamic levels so that it 

remains constant in varied environmental conditions and provides the necessary energy 

substrates. Kennedy was the first to link adipose tissue (called "fat depots") to satiety. This 

was an innovative and promising concept that was even interpreted as the existence of a 

adipocyte-derived factor acting on eating behavior [11]. The theory would be confirmed 

several years later, notably with the discovery of leptin. This direct afferent link was 

demonstrated with the observation that adipocyte size may alter food intake [12]. However, 

the results of surgical lipectomy have challenged the theory that fat mass was tightly 

regulated, showing that fat pads restoration displayed large variations according to their 

localization [13] and to the composition of provided food, being only effective with a high-fat 

diet [14]. Interestingly, leptin is not involved in this restored process [15]. The restoration of 

fat mass after lipectomy was hypothesized to be the consequence of reduced sympathetic 

nervous system (SNS) activity and consecutive reduction in TEE and lipolysis more than 

increased EI [16]. Importantly, another lipostatic approach was proposed by Jacques Le 
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Magnen, based on the fatty acid utilization during the rest period (daytime in rats) of the 

fatty acids stored during the active period (nighttime in rats) [17]. Overeating in the active 

period was associated with increased fat synthesis and followed by reduced food intake and 

increased lipolysis in the rest period. Therefore, a more flexible metabolic model was 

therefore proposed and experimentally supported [18], in which fat mass stabilization was 

achieved when the mean respiratory quotient reached the mean food quotient i.e., the 

proportions of fat and carbohydrate metabolized by the organism reached those in the diet. 

Thus, more than energy per se, the macronutrient content and individual potential oxidative 

capacities, would be a prerequisite for accurate EH. EH could be considered as a stochastic 

value with some possibility to be predicted with an expected accuracy if enough 

determinants are known. The major challenge to date is to accumulate the exhaustive 

inventory of these determinants. Although the set point theory is strongly contested [2,7] to 

this date it is a theoretical framework used by many authors [19]. 

 

2.3. Alternative models to homeostasis 

One hypothesis is that EH is not centered on the stability of energy stores or the equilibrium 

between energy needed and supplied, but on the availability of energy over the various 

periods of energy disposal during the circadian cycle. This would explain why some dietary or 

sedentary habits lead to apparently inconsistent EI, and an excess of energy stored in the 

form of fat mass, due to a weak stimulation of fatty acid disposal. The allostasis concept in 

which the body "anticipates needs and prepares to satisfy them before they arise" [20] 

seems to fit more to observations in the domain of EH. A predictive model [21], in opposition 

to a reactive model, is not only better adapted to the irregular availability of energy 

substrates, but avoids the unpleasant consequences of energy deficit such as prolonged 

hunger [22]. It has been shown that rats adapt to meal omission by rapidly switching from a 

reactive (increase of the next meal size) to an anticipatory (increase of the previous meal 

size) strategy when conditioning is possible using external e.g., time of day [23] or 

nutritional, e.g., odor or savor [24] cues. Thus, food intake, and therefore EH, must be 

considered as Pavlovian conditioning [25] with sensory characteristics of foods and the 

environmental cues associated with food intake, as conditioning factors. To this day, most of 

the models of EH are unfortunately based on a response to a shortage of energy and not to 
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cues signaling a necessary anticipatory behavior. Moreover, the behavioral components of EI 

are too much overlooked.  

 

2.4. The role of pattern of energy intake in energy homeostasis 

Energy exchanges are not a continuous but a sequential process. If TEE is relatively constant 

on a daily scale, bouts of EE, most often due to physical activity, are however spread during 

the circadian cycle. Similarly, energy is provided through macronutrients in the form of food 

in a specific entity called a meal. A meal is not simply an eating period, but has several 

temporal, behavioral and even biological characteristics (see below, in the Glucose section). 

In rats, a behavioral satiety sequence (BSS) is even used to define a meal [26]. Some authors 

have defined non-meal eating (snacks) as having some missing criteria of the BSS [27]. In 

humans, meals are most often defined on purely cultural criteria (breakfast, lunch, dinner) 

and snacks as intermeal eating, but some biological and behavioral characteristics have been 

proposed such as initiating eating with a low or no-hunger feeling [28]. For heuristical 

purposes, a meal should be considered as a physiological process of energy supply. There are 

some reasons to suspect that snacks contribute to excess EI and may impair EH [29]. When 

eating in the absence of hunger (EAH) was studied, it was positively associated with weight 

gain in adolescents [30] and normal-weight women [31]. The supposed benefit of snacking 

on satiety and EH [32,33] uses the social or quantitative definition of snacks, confusing the 

putative benefits of meal frequency with snacks [34]. According to definitions used for 

snacks, their effects on EH are discrepant [35]. Our team has repeatedly found that snacks, 

defined as eating in a no-hunger state, exerted poor satiety effects and were not 

compensated for at the next meal and therefore added extra-energy to total EI [28,36,37]. 

However, the consequence on 24-h EB is not known. Since conditioning on an arbitrary cue 

can trigger eating [38], it is possible that permanent food solicitation may initiate EAH.  

In free meal conditions, EI response to varying availability or energy content of food, occurs 

mainly through the modification of intermeal intervals (IMI) and not meal size [39]. Thus, 

satiety (duration of the IMI) and not satiation (size of the meal), seems to be the main 

component of EI involved in EH [40]. This role in the homeostatic response to diets inducing 

obesity has been highlighted in a study where after a phase of weight gain, rats fed a highly 

palatable diet decreased their eating frequency that became much lower than in rats 

maintained on chow [41]. This was shown in diet-induced obesity (DIO) compared to diet 
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resistant (DR) or chow fed rats [42], and further confirmed when separating meals and 

snacks based on BSS characteristics, with a decrease in meal but not snack frequency [27]. 

Similarly, in humans, switching from 4 to 3 meals per day led to increased fat mass after 30 

days [43], confirming that longer IMI (lower meal frequency) is rapidly associated with higher 

fat mass. This confirmed older studies conducted in free-living conditions showing that 

children switched on a low meal frequency increased their fat mass compared to children on 

a high meal frequency [44]. Moreover, individuals with a high meal frequency showed a 

reduced risk of obesity [45] an improved efficiency in adapting EI to manipulation of foods 

and maintaining EH [46]. The supposed fat mass-increasing effect of high eating frequency, 

for example in postmenopausal women [47], is based (and biased) on a definition of eating 

not discriminating between meals and snacks (any drink, sugar-containing or not, consumed 

without any food was even considered as an eating episode). Moreover, in randomized 

controlled trials comparing eating frequency, eating episodes are not defined [48].  

In rats, it was demonstrated that during the passive period, animals used fatty acids stored 

during the active period to delay IMI and therefore reduce meal frequency [17]. In humans, 

spontaneous initiation of meals is a prerequisite to explore the role of eating patterns in EI 

and EH. Using this procedure, our team has found that dietary [49,50] and pharmacological 

[51] interventions that enhance fat availability to metabolism, increased satiety i.e., length 

of the IMI. The mechanism would involve the sparing-glucose effect of fat oxidation [52], 

known as the Randle cycle [53,54], that may delay the next meal onset. However, the ratio 

between the oxidized proportion of dietary fat and the increase in IMI is small [49], leading 

to fat storage [55]. 

 

3. A brief description of the actors involved in energy homeostasis 

Multiple substrates, hormones, neurotransmitters and brain neurons [56] were found to 

exert an action on EH through their effects on EI and/or EE, and new molecules are 

constantly discovered [57]. An exhaustive analysis and discussion of their putative 

involvement in EH would exceed the authorized length of this review. However, it is 

important to schematically distinguish six components (Figure 2).  

The first component is the beam of afferent hormones and neurons linking the peripheral 

system to the CNS [58]. Most studied were 1) the adipokines leptin [59] and adiponectin 

[60], 2) the pancreatic hormones insulin [61], amylin [62] and pancreatic polypeptide 
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(PP)[63], 3) gut hormones such as the anorexigenic cholecystokinin (CCK), glucagon-like 

peptide 1 (GLP-1), oxyntomodulin, peptide tyrosine tyrosine (PYY) [64–66], and the 

orexigenic ghrelin [67], and 4) the vagal neurons [68].  

The second component is the hypothalamus, the brain area where peripheral messages 

induce homeostatic responses altering EI and EE [69,70]. Most of the afferent pathways 

converge on the arcuate nucleus (ARC) where are localized neurons synthetizing the 

orexigenic neuropeptide Y (NPY) and agouti-related peptide (AgRP) as well as the 

anorexigenic pro-opiomelanocortin (POMC)-derived α melanin stimulating hormone (αMSH) 

and cocaine and amphetamine regulated transcript (CART)[71]. Projections are sent 1) from 

the NPY/AgRP neurons to NPY receptors (NPY1, NPY2 and NPY5) in the orexin and melanin-

concentrating hormone (MCH) neurons of the lateral hypothalamus (LH) leading to 

increased EI, and 2) from the POMC/CART neurons to the melanocortin receptors 

(MC3R/MC4R) localized on the paraventricular nucleus (PVN) leading to decreased EI. 

Moreover, AgRP acts as a natural antagonist of MC3R and MC4R, inhibiting the orexigenic 

action of αMSH [72]. Other target of the POMC/CART neurons is the ventromedial 

hypothalamic nucleus (VMH), activating neurons synthetizing the anorexigenic brain-derived 

neurotrophic factor (BDNF) [73]. The VMH also exerts a potent stimulating effect on SNS 

activity [74]. 

The third component is the brainstem and notably the nucleus tractus solitarius (NTS), 

receiving contributing to reduced EI through the interaction between leptin and gut 

hormones (e.g., GLP-1) with AMPK as intermediate, [75] integrating blood-borne and vagal 

mediated messages from periphery [76]. 

The fourth component is the reward system consisting of: 1) the mesolimbic dopamine 

system and more specifically the ventral tegmental area (VTA) and the nucleus accumbens 

(NAcc), where schematically the hedonic and reward response to eating are established 

based on previous experiences [77], and 2) the opioid system in specific subregions of the 

ventral pallidum (VP)[78] and the NAcc (the hotspots) [79], specifically involved in the 

reward of highly palatable food [80] and the support of the "liking" versus "wanting" theory 

[81] according to the implication of the hedonic component in the reward-induced 

motivations to eat [82]. Lastly, the amygdala, through its connection with the LH, is crucial 

for conditioning processes i.e., associating food to cues [83]. 
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The fifth component is the cognitive frontal and cortical system, notably the prefrontal 

cortex (PFC) and anterior cingulate cortex (ACC)[84], involved in decision making, self-control 

and executive functions that were found to differ between non obese and obese status of 

the individuals [85].  

All of these brain areas are highly interconnected [82] and EH must be considered as 

resulting from an integrative process involving all of these aforementioned brain and 

peripheral actors [84]. For example, ghrelin [86] and amylin [87] have been shown to 

interact with the dopamine mesolimbic system.  

The sixth component, often overshadowed by the directly altered EI effect of these factors, 

is the neuronal efferent pathway represented by the SNS. This is all the more important 

since as we will see, its role exceeds the modulation of EE but may also strongly influence 

the effects of all the previous factors on EI [88].  

 

4. Energy homeostasis challenges 

Conditions challenging EH represent potential sources of knowledge about its mechanism of 

action. Among them, four are particularly interesting due to their relevance to contemporary 

situations in humans.  

 

4.1. Exercise  

Studies showed that when shifted from inactivity to exercise on a treadmill, rats did not 

increase their EI but decreased it and lost weight [89], thus challenging the concept of EH. It 

was not before reaching 60 min of daily exercise that EI reached a higher level than when 

they were inactive [90]. The homeostasis interval was estimated between 1.7-1.8 and 2.2 x 

REE [91]. These results raise two complementary interpretations: 1) "no-exercise" leads to a 

positive energy balance resulting in gain weight, and 2) under a certain volume of activity, 

exercise-induced energy expenditure (EIEE) is not compensated. The possible contribution of 

low PAL to human obesity [92,93] has received some support and is consistent with the 

hypothesis that under a threshold level of PAL, EH is impaired.  

In obesity, exercise induces only modest weight-loss [94] but results in a decrease in fat mass 

and an increase in fat-free mass [95], showing the mobilization of energy stored in the WAT. 

Considering the role of exercise in EH only through the consequences on EE is erroneous. 

Although even in very active individuals EIEE may only account for 15 to 30% of TEE [96,97], 
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exercise leads to profound metabolic changes [98] that alter substrate metabolic partitioning 

between oxidation and storage [99]. One mechanism of these exercise-induced benefits in 

EH would actually be through its effects on TEE [100] and free fatty acid (FFA) release from 

the WAT [101], both being potentially mediated by SNS activity [102] leading to increased fat 

oxidation as soon as in the post-exercise period [103]. 

As in rats, EIEE is weakly compensated in humans [104,105] at least in the short-term. The 

mechanisms of this absence of efficient energy compensation is still unclear but the 

involvement of gut peptides, specially GLP-1, PP and PYY [106] and also acylated ghrelin 

[107,108] have received some experimental support. Importantly, when individuals are free 

to initiate their meal following an exercise session, an increased IMI has been reported [109–

111]. The post-exercise increase in FFA disposal may contribute to this effect [112] notably 

through increased SNS activity during exercise [113] and an improved catecholamine 

response in the WAT [114]. 

 

4.2. Cafeteria and high-fat diets  

The fact that rats can drastically increase their EI without apparent need and become obese 

when either high-fat [115] or highly varied, palatable and high-energy density foods [116] 

are provided i.e., cafeteria diet (CfD), suggests that EH can be easily overridden with a simple 

modification of dietary environment. This excess EI and consequent body weight gain greatly 

varies both across strains [117] and between substrains [118] of rats, some showing no 

tendency to overeat and to gain weight (illustrating accurate EH) whereas others showing 

various levels of gain weight, some reaching high level of obesity (illustrating failed EH). 

Interestingly, variety constantly leads to weight gain whereas less varied but high-fat diets 

produce obesity only in DIO rats [119]. High-energy density of the CfD is not the culprit since 

variety with low-energy density foods can yield a similar and even greater level of overeating 

and weight gain [120–122]. The increased EI effect of variety has been verified in human 

studies [123,124] and may represent a major factor of failed EH and obesity [125]. This has 

led some authors [126] to propose that EI is not only driven by homeostatic but also by non-

homeostatic mechanisms, mainly related to hedonism and reward [127]. The eating 

triggering-power of the environment is a potential disturbance factor, free choice being one 

of the main causal factors of the obesogenic power of a high energy-density diet [128]. 

These results indicate that EH is easily impaired or, more neutrally, switched to a new 
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equilibrium, by dietary conditions such as variety and palatability. This supports the potential 

role of the hedonic reward system to alter EH toward a non-homeostatic EI [127]. 

Interestingly, when metabolic characteristics of DIO compared to DR rats were analyzed, the 

most often reported results were a reduced SNS activity and a lower efficiency to oxidize fat 

[129], associated with increased insulin levels [130]. This difference in the capacity to oxidize 

dietary and stored fats in rats is in common with human diet induced obesity [18]. 

 

4.3. Overfeeding 

A recent systematic review [131] concluded that overfeeding leads to a 7 to 18% increase in 

TEE, allowing ~25% of excess energy to be dissipated [132]. This suggests that the efficiency 

for EE to realize EH is limited. Among the components of TEE, REE represented only a small 

part (~one fourth) of overfeeding-induced increase [132]. EIEE was reported to display 38 to 

50% of the increase in EE [132–134], integrating spontaneous physical activity (SPA) as a 

potent actor of EH. Non-exercise activity thermogenesis (NEAT), such as fidgeting, posture, 

and the physical activities of daily life, represented the largest part of the increased EE and 

was found to be closely linked to overfeeding-induced fat storage [133]. No reduction in EI 

was observed during the days following an overfeeding period [134,135]. However, in real 

life conditions, when subjects are back in their pre-overfed dietary environment, they return 

to their initial body weight after several months [136]. It is not known whether this is the 

consequence of a physiological process or of the complex interaction between social, 

cultural and biological parameters. Moreover, age seems crucial since young (~24 yr) but not 

elderly (~70 yr) men were reported to lose all the accumulated weight gain during the 

overfeeding period after 46 days [137]. On the mechanistic side, SNS activity has again been 

proposed as the candidate to explain differences in altered EH [138], limiting energy storage 

in increasing EE. 

 

4.4. Weight-loss  

Relapses after diet-induced weight loss (DIWL) are relatively frequent (~50% at year 1) 

[139,140]. Factors leading to weight regain are beginning to be clearly determined including: 

decreased PAL, increased percentage of dietary fat, and dietary disinhibition [141–143]. The 

reduction in REE after DIWL strongly depends on the type of tissue lost i.e., decreased 

energy needs if more fat-free mass is lost, but is constantly higher than that predicted by 
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tissue loss. Called adaptative thermogenesis, this phenomenon represents a factor limiting 

further weight loss [144], explaining ~50% of the less than expected weight loss results 

[145]. In a study [146], 10% of body weight lost in lean and obese individuals obtained with a 

low-energy diet, was associated with a 10 to 15% decline in REE. The proportion of fat mass 

lost showed a high variability between individuals and between initial BMI categories e.g., 

63.7 ± 27.5% and 83.6 ± 23.8% in lean and obese subjects, respectively [146]. This was 

associated with a 20% increase in skeletal muscle work efficiency that could account for 

~75% of the decline in non REE [147]. There are various causative factors: a decrease in the 

glycolytic to oxidative enzyme activity ratio [148], a change in muscle fiber structure [149] 

and a decrease of SNS activity [150]. The higher than expected reduction in TEE after a DIWL 

would have no impact on regain if EI decreased accordingly. However, an increased 

motivation to eat was described using subjective (questionnaires) and objective (meal 

intake) tools after a 10% body weight reduction [151]. Excessive EI relative to energy needs 

after DIWL suggests that the energy consumed to maintain body weight is not sufficient to 

preclude an activation of the orexigenic system. With eating behavior being subjected to a 

learning process linking EI to the post-prandial effects and energy needs [24,152], the 

conditions are therefore not fulfilled for a satisfying flux of energy precluding the body to 

search for more energy. Allowing EI mechanisms of EH to operate seems to be important, 

since an ad libitum low-fat diet leads to an improved maintenance of DIWL compared to a 

fixed energy similar diet [153]. Interestingly, exercise has been shown to improve 

maintenance of weight loss [154,155] in increasing EE but also in changing substrate 

partitioning in favor of fat oxidation [156].  

 

5. The glucoadipostatic loop 

 

From the various results reported after previously described EH challenges, it appears that 

the capacities for stored or consumed fatty acids to reenter in the oxidative cycle is crucial to 

preventing weight gain. The main determinants of these capacities are the SNS, glucose, 

insulin and leptin. To be exhaustive, the role of some intestinal hormones will be briefly 

summarized and the influence of the circadian rhythmicity.   

 

5.1. Sympathetic nervous system   
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The role of SNS activity in EH is well known [157] and its dense and heavily interconnected 

network with brain areas such as the ARC, the VMH and the DMH has been extensively 

described [158]. Importantly, WAT receives SNS innervation from the CNS [159] that 

increases adipocytes lipolysis [160] and inhibits fat cell proliferation [161]. Visceral and 

subcutaneous adipose tissues do not completely share the same circuitry [162]. SNS activity 

has been implicated in the impaired EH associated with obesity [163]. Low muscle [164] and 

total [165] SNS activity was proposed as a risk factor to developing obesity on a westernized 

diet after studying the weight gain outcomes in Pima Indians. This led to the MONA LISA (for 

Most Obesities kNown Are Low In Sympathetic Activity) theory [166]. Once obesity is 

established [167] or even after modest weight gain [168], muscle sympathetic nervous 

system (MSNS) activity is higher but WAT SNS activity is lower [169], potentially reducing 

lipolysis and fatty acid release [170] for supplying energy needs. This may contribute to the 

apparent discrepancy between EI and energy stores, the latter being not available at the 

predicted level due to low adipose SNS activity and high insulin levels. Moreover, SNS 

activity reduces glucose-induced insulin secretion [171] and this action has been considered 

the onset of metabolic deleterious consequences of the decreased SNS activity induced by 

high-fat diets [172].  

 

5.2. Glucose 

The contribution of glucose to EH has been proposed by Mayer [173] in the conceptual 

framework of the glucostatic theory, making this energy substrate the main intermediate of 

the short-term EH in triggering meal onset. This was given experimental support in rats [174] 

and in humans [175], each meal being preceded by a short preprandial glucose decline 

(PPGD) [176]. A PPGD was shown to discriminate between meals (EI motivated by hunger) 

and snacks (EI initiated with low or no hunger feeling) [28]. Thus, glucose is a satiety and not 

a satiation factor in the sense that it is involved in initiating and not in terminating a meal. 

The more this PPGD will be postponed, for example by fat oxidation, the longer will be the 

duration of the IMI as it was demonstrated with various dietary or pharmacological 

interventions [49,51]. 

The involvement of glucose in the different areas of the brain controlling energy is 

ubiquitous. In a classic paper, Oomura et al. [177] reported that in the LH, neurons could be 

inhibited by glucose (GI neurons) and that in the VMH, neurons showed a dose-dependent 
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increased excitation in response to glucose (GE neurons) [178]. The role of these GI and GE 

neurons on food intake was rapidly documented in rats and monkeys [179,180]. In the ARC, 

orexigenic NPY/AgRP neurons were found to be GI neurons [181] whereas anorexigenic 

POMC/CART neurons were found to be GE neurons [182]. Consistently, GE neuron activity is 

inhibited by orexigenic neurotransmitters (NPY, orexins) [183] and stimulated by 

anorexigenic neurotransmitters (POMC, α-MSH) [184]. Importantly, the VMH contains GE 

and GI neurons [185] and it was shown that food intake was associated with an increased 

glucose level in the VMH [186]. Thus, consistent with the glucostatic theory, glucose appears 

to be a pivotal modulator of the action of factors from the afferent pathways in orexigenic 

and anorexigenic neurotransmitter synthesis and action [187]. For example, orexin synthesis 

requires a fall in plasma glucose [188]. The actions of glucose-sensing neurons needs the 

intermediate of glucokinase [189] and the metabolic sensor AMP-activated protein kinase 

(AMPK) [190]. Moreover, glucose is a potent activator of EE through its effect on the beta-1 

adrenergic receptor of the SNS [191]. An impaired glucose response in the hypothalamus has 

actually been established in DIO rats [192] and obese humans [193].  

One hypothesis is that glucose modulates the action of the peripheral actors on the brain 

areas in charge of EH, with regard of the required concentrations of glucose in the blood. 

Since it does not completely overlap with the glucostatic theory, it has been renamed the 

glucoadipostatic hypothesis [194]. In a holistic perspective, it is reasonable to hypothesize 

that the presence of glucose in the integration of messages provided by multiple neuro-

hormonal actors, would represent a safety system for the body.  

 

5.3. Leptin 

The role of the adipokine hormone leptin in EH is relatively complex [59]. Since its 

administration reduces body weight and more specifically fat mass via decreased food 

intake, it was considered as regulating WAT [195] and called a "satiety" factor [196]. An 

effect on satiety should mean an increased length between meals and not a reduced meal 

size. This was confirmed in a study comparing leptin and fenfluramine [197]. Leptin is the 

main actor of an afferent path linking WAT and the brain, in particular the hypothalamic 

areas involved in food intake and EE [198–200]. In EH terms, leptin may serve as a hormonal 

factor leading the body to rely more on stored energy and less on EI. In this mechanistic 

mode, any change in EI or EE would be followed by an opposite change driven by leptin to 
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maintain a null EB. Fat mass increases leptin levels and will have two complementary and 

consistent actions in the CNS: 1) to decrease exogenous sources (food intake) and 2) to 

increase endogenous sources of energy.  

Targets and circuitry for the action of leptin on food intake in the CNS are partially known. In 

the ARC, leptin stimulates anorexigenic POMC and CART expression [201] and inhibits 

orexigenic NPY and AgRP expression [202]. In the LH, leptin inhibits orexigenic orexin [203]. 

In the VMH, leptin activates steroidogenic factor 1 (SF-1) and reduces the orexigenic effect 

of a high-fat diet [204]. In the NTS, leptin acts synergistically with GLP-1 and CCK to decrease 

food intake [205]. In the mesolimbic dopamine system and in particular the VTA [206–209], 

leptin decreases the hedonic response to foods in rats [210] and in humans [211], adding a 

role of this hormone in the increased-intake effect of food palatability. Lastly, via its 

inhibiting action on orexin, a neurotransmitter that stimulates arousal, alertness and 

locomotor activity [212], leptin also modulates SPA. These actions on VTA and orexins were 

shown to be interrelated and contribute to EH [213].  

The mechanism for increasing endogenous sources of energy is less well established. Leptin 

leads to increased FFA release from WAT possibly via a direct action on adipocytes [69] but 

much more importantly by increasing SNS activity [170,214] in the ARC [215]. This increased 

adipocyte lipolysis is also mediated by its direct [216] and SNS-induced [217] inhibitory effect 

on insulin secretion, demonstrated with changes in physiological concentrations [218].  

In the dynamic phase of obesity this mechanism fails, although leptin levels increase 

proportionally to weight gain [219]. Thus, "something" overrides the homeostatic function of 

leptin. However, this does not occur for all individuals and this heterogeneity suggests that 

there are vulnerability factors to this environmentally-induced impaired leptin function in 

EH. Hitherto, administrating leptin to obese humans without leptin deficiency has resulted 

only in modest weight loss [220–224]. Actually, leptin replacement exerts a significant 

physiological effect only when circulating leptin levels are low [225]. Correspondingly, it has 

been found that leptin administration inhibited all the changes observed after DIWL: 

decreased levels of TEE [226], increased skeletal muscle work efficiency, decreased nREE and 

SNS activity [227], reduced satiation [151], hyper-response to visual cues [228].  

Altogether, this suggests that leptin would not only be an afferent hormonal intermediate in 

a WAT-CNS axis leading to reduce EI via its action on homeostatic (ARC, LH, VMH, PVN) and 



17 
 

non-homeostatic (VTA, NAcc, amygdala) brain areas, but also act in a loop with the SNS as an 

efferent pathway [229], adding endogenous substrate availability, notably FFA. 

 

5.4. Insulin 

The role of insulin in energy homeostasis must be considered differently in periphery (i.e., 

vascular, muscular and visceral) and in the CNS (more specifically the areas involved in EH). 

In periphery, its classic effects on glucose uptake by insulin-dependent tissues lead to 

hypoglycemia, hunger, and EI, increasing the number of meals for low doses and both size 

and number for the highest doses [230]. On the opposite, infusing insulin intravenously to 

rats during a nocturnal fast led to reduced EI on the subsequent day and this was interpreted 

as a centrally effect of insulin reducing intake [231]. It had actually been shown that insulin 

stimulated the GE neurons in the VMH in presence of glucose, but inhibited them when 

administrated alone, whereas on LH, insulin increased neuron activity in a dose-dependent 

relation [232]. Further studies clarified this action. Insulin stimulates the GE neurons in the 

ARC when glucose levels are low, leading to decreased release of orexigenic 

neurotransmitters and therefore reduces intake, and has no effect when glucose levels are 

elevated [184]. Insulin receptors are expressed in POMC neurons and insulin administration 

enhances POMC synthesis [233], and therefore reduces EI and increases EE. Moreover, 

insulin reduces NPY expression [234]. This latter action seems to be essential for EH as 

shown recently with animal models lacking insulin signaling in NPY neurons [235]. Thus, 

similarly to leptin, insulin has been considered as an adiposity signal [236]. Note that the cell 

signaling of insulin and leptin is often common in POMC [237] and NPY [238] neurons. 

Moreover, insulin was shown to reduce activity of dopamine neurons in the VTA [239] and, 

again similarly to leptin, at low doses the reward potential of food [240]. Importantly, insulin 

administration in the mediobasal hypothalamus has been reported to inactivate hormone-

sensitive lipase and suppresses lipolysis [241], suggesting an efferent action of central insulin 

in reducing fatty acid disposal for peripheral metabolism probably via a decrease in SNS 

activity. This led these authors to propose a "Yin and Yang" concept of insulin and leptin 

opposed actions on the WAT [242].  

 

5.5.Intestinal hormones   
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Several intestinal hormones have been reported to be involved in EH, and more specifically 

in eating behavior [66]. They have firstly been considered as nutrient censors and to have 

mainly an action on postprandial satiety [65]. We will constrain our review to 

cholecystokinin, ghrelin, GLP-1 and PYY, which have shown the most documented 

involvement in EH.  

5.5.1 Ghrelin  

Ghrelin is a hormonal acylated-protein principally secreted in the stomach [243] sending its 

afferent messages directly via 1) the bloodstream where it crosses the blood-brain barrier 

[244] and reaches the ARC [245] and 2) the vagal afferent to the NTS [246]. In the ARC, 

ghrelin stimulates the synthesis of NPY and AgRP [247] and opposes leptin effects in 

inhibiting POMC neurons [245], consistent with its orexigenic effect [248]. However ghrelin 

also exerts actions in several brain areas involved in reward such as ventral tegmental area 

(VTA) and the nucleus accumbens (NAcc) [249], in memory such as the amygdala [250] and 

the hippocampus [251] and in seeking behavior such as the olfactory bulb [252]. After being 

described, ghrelin was rapidly proposed as initiating meals [253] and this hypothesis seemed 

confirmed with subjects spontaneously eating [254]. It was moreover shown that ghrelin 

decreased satiety (meal frequency) and had no effect on satiation (meal size) [255]. The role 

in meal initiation was questioned by experiments in rats showing that ghrelin was entrained 

by habitual meal pattern [256,257] suggesting the importance of conditioning in its 

observation. The higher postprandial ghrelin levels in individuals who had anticipated a meal 

[258] and the fact that ingesting food was not even necessary for its postprandial levels to 

decrease, suggested a strong conditioning involvement [259]. Ghrelin may represent a signal 

for the anticipation of feeding due to conditioning potential of environmental cues [260], 

improving the adaptation of EI to energy requirements by learning processes based on 

internal cues, circadian factors and external cues associated with food [261]. Ghrelin could 

therefore contribute to enhance the power of appetizing human food environment to trigger 

intake and reduce the IMI. Last, ghrelin may contribute to increase fatty acid storage in 

adipocytes [262] and decrease fatty acid oxidation [263], by an action on the CNS, 

hypothetically mediated by the SNS [262].  

5.5.2. CCK  
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CCK is a peptide hormone secreted by the upper intestine (duodenum and jejunum) in 

different amounts according to macronutrient composition [264,265]. It is released in 

bloodstream as soon as 10 min after eating onset and peaks at 60 min [266], remaining 

elevated until 7 hours [267]. CCK is present in various forms (with 8, 22, 33, 39 and 58 amino 

acids) all sharing a same heptapeptide carboxyl terminus supposed to carry the bioactivity 

[268]. The octapeptide CCK8 was the most often used in experiments. The anorexigenic role 

of CCK via satiation (meal size) was documented long ago [269] as was the fact that CCK33 

but not CCK8 increased satiety (IMI) [269]. In the brain, CCK binds to CCK-A and -B receptors 

[270] and exerts actions in 6 hypothalamic and 2 hindbrain (DMN and NTS) sites [271]. Its 

anorexigenic effect requires the integrity of the vagal pathway [272]. CCK8 was also shown 

to inhibit the orexigenic effect of ghrelin though its action in the ARC [273] and to more than 

two-fold increase the insulin transport in the brain [274]. However in overweight and obese 

individual, CCK8/33 increase was not associated with any alteration in meal size either after 

a high-CHO or a high-fat meal [265]. Importantly, CCK58 is the most abundant in humans 

[275] and was found to also increase satiation and satiety whereas CCK8 only altered 

satiation [276,277]. 

5.5.3. GLP-1  

GLP-1 belongs to the incretins family [278,279] and is released prostprandially by the small 

intestine and the colon, with great differences according to the nutrient content of the meal 

[280] and in particular glucose [281]. It binds to GLP-1 receptors in various brain regions such 

as the ARC, the NTS, and the PVN, resulting in decreased EI, notably through its effect on the 

CRH [282]. This anorexigenic effect has been described either with intracerebroventricular 

[283] or peripheral [284] administration. The effect with peripheral administration seems to 

require the vagal afferent [285]. Its kinetics is characterized by a short early phase (10–15 

min) followed by a longer second phase (30–60 min) [281]. The main role of GLP-1 is to 

increase glucose-induced insulin secretion [286]. This may lead to modulate the PPGD-

induced meal initiation but this has never been explored. Its effect on EI was documented 

with a reduced satiation at the meal following administration [287] but the effect is much 

more potent when administrated with PYY [288]. 

5.5.4. PYY 
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PYY, and more specifically its endogenous isoform PYY3-36, is also released postprandially by 

the lower intestine (distal intestine, colon and rectum [289]) and binds to various Y receptors 

in the hypothalamus, the vague and the brainstem [290]. Its main effect is anorexigenic and 

has been shown at physiological doses in humans [291]. As for GLP-1, this action requires the 

integrity of the vagal afferent [285]. This action may be mediated partly by inhibiting NPY 

secretion with important interaction between them for this effect to be operant [292] as is 

its additive interaction with GLP-1 [288,293]. Its kinetics, with an appearance at 15 min, a 

peak at 90 min after meal onset and a prolonged high blood levels until 180 min [289], and 

its observed effects [288,293,294], are in favor of a role in the next meal satiation more than 

on satiety, but it may indicate a contribution to the subjective satiety between two meals 

[294].  

 

5.6. Leptin and glucose interaction: the glucoadipostatic loop 

From all the elements described above, it seems that an adaptation of the glucoadipostatic 

hypothesis [194] and the neuro-adipose connection [295] can be proposed. It overlaps these 

models since the role of glucose is pivotal, but extends their mechanisms to a loop with an 

efferent axis represented by the SNS activity. The leptin-SNS loop was previously described 

but without involving eating behavior [242]. Figure 3 is a graphical representation of this 

loop. Leptin, in enhancing fatty acids disposal released by adipocytes through the 

stimulation of the SNS activity and the reduction of the glucose-induced insulin secretion, 

may postpone the PPGD and increase satiety, here considered as the delay before the meal 

initiation. Moreover, glucose potentiates the stimulating effect of leptin on the ARC neurons. 

This loop requires a spontaneous eating behavior to operate, a situation rarely satisfied in 

the social environment of everyday life. Moreover, with time, this mechanism switches to an 

adaptation of meal size based on conditioning processes and learning. Intestinal hormones 

may participate to this loop in modulating the interval until the next meal (satiety) and the 

amount eaten during this meal (satiation) according to the composition and the amount of 

the previous meal.   

 

5.7. Modulation of the glucoadipostatic loop by the diurnal rhythms  

As stated in the Introduction, the circadian periodicity of eating behavior was extensively 

explored by Jacques Le Magnen and his various collaborators. They showed in rats that 
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sustained high insulin levels and fat synthesis during their active period were followed by a 

reduced EI during their passive period due to higher lipolysis, fatty acid oxidation, and longer 

intervals between meals [17,39,296]. They even showed that in lean and obese-stable rats, 

the circadian rhythm was characterized by a high and low glucose tolerance in the active and 

passive periods, respectively, this being not found in VMH-lesioned rats [297]. This provided 

a support to the role of SNS in this diurnal metabolic-induced eating behavior pattern. VMH 

is strongly involved in this phenomenon since its lesion definitively abolished glucose and 

insulin circadian patterns but only temporarily eating behavior one [298]. All the actors of 

this glucoadipostatic loop, and more largely, of EH, follow a diurnal rhythm. A circadian clock 

is situated in the suprachiasmatic nucleus (SCN) [299] and synchronizes circadian oscillators 

(peripheral clocks) localized in most organs and in every cell. This allows an anticipatory 

behavior and improves the metabolic efficiency as shown by the obesogenic effects of 

desynchronization such as in shift work [300], chronic jet lag [301] or even unusual meal 

patterns like regular breakfast skipping [45]. In rats, an inverse relation between SNS activity 

and food intake was reported, with a decrease effect of insulin on SNS activity when 

administrated in the VMH. Interestingly, in the SCN, insulin decreased SNS activity only 

during the rest period (high SNS activity and low EI) but increased it during the active period 

(low SNS activity and high EI) [302], making of insulin a pivotal actor of this circadian 

mechanism. This diurnal pattern is essential to maintain EH as shown recently in mice who 

accumulated fat depots when food was restrained to their rest period even when exercise 

was added [303].  

 

6. Conclusions 

Although the concept of homeostasis is not fully adapted to the anticipative characteristics 

of constant energy disposal, it is still used to describe the adaptation of energy supply to 

needs. To maintain a persistent EE with intermittent EI, the brain relies on a diversity of 

afferent neuro-hormonal messages with glucose and insulin as modulators. Energy stored in 

the WAT provides substrates when food is not available or between meals and requires 

efficient SNS activity. Adaptation of EI to changes in food availability or composition relies 

mainly on the delay between meals before conditioning i.e., learning. Learning processes are 

based on the association of the energy content of food and its postingestive effects, with 

hedonic and reward effect acting as an enhancer or moderator. This system is perfectly 
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appropriate in the environmental conditions that humans encountered during most their 

history. However, in contemporary conditions it appears that 1) the sedentary body fails to 

mobilize fat from the WAT to the level needed, leading to reliance on EI, 2) the social 

constraints do not authorize satiety i.e., length of the interval until the next meal is initiated, 

to modulate EI, 3) the constant availability, abundance and diversity of highly palatable 

foods overstimulates the hedonic and reward systems and overrides their physiological role, 

leading to non-homeostatic intake, and 4) the constant variety of foods precludes efficient 

conditioning of eating behavior to post-ingestive effects and energy supply, 5) sustained high 

insulin levels impair the re-enter of fatty acids in the metabolism to participate to satiety. A 

model based on a glucoadipostatic loop seems relevant to the current knowledge about the 

reactive and anticipative adjustment of EI and its frequent failure to maintain energy 

stability.  
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Legends  

 

Figure 1. Schematic representation of the 3 components of energy homeostasis: energy 

intake, energy expenditure and endogenous energy stores. The three group of factors 

modulating energy stores are described. Note that in this homeostatic model, the 

anticipative capacity of the allostatic model is missing. CNS, central nervous system; EH, 

energy homeostasis; PA, physical activity; REE, resting energy expenditure; TEF, thermic 

effect of food;  

 

Figure 2. Schematic representation of the afferent neuro-hormonal actors and their relations 

with brain areas involved in energy intake and expenditure. The currently known functions 

and the main involved neurotransmitters are summarized in the text. ARC, arcuate nucleus; 

CCK, cholecystokinin; DMH, dorsomedian nucleus; GLP-1, glucagon-like peptide 1; LH, lateral 

hypothalamus; NAcc, nucleus accumbens; NTS, nucleus tractus solitarius; OXM, 

oxyntomodulin, PAL, physical activity level; POMC, pro-opiomelanocortin; PP, pancreatic 

polypeptide; PPGD, preprandial glucose decline; PVN, paraventricular nucleus; REE, resting 

energy expenditure; SNS, sympathetic nervous system; SF-1, steroidogenic factor 1; SPA, 

spontaneous physical activity; TEE, total energy expenditure; VMH, ventro-medial 

hypothalamus; VTA, ventral tegmental area. 

 

Figure 3. The glucoadipostatic loop. Energy intake (EI) has been found to exert its energy 

homeostastic role by modulating the duration of intermeal intervals (IMI) i.e., satiety. Each 

meal is preceded and initiated by a preprandial glucose decline (PPGD). ① If energy was 

exclusively provided by glucose, the duration of the IMI would only depend upon the glucose 

absorbed in the duodenum and released by the liver (not shown). ② The release of free 

fatty acids by adipocytes adds substrates to total oxidation, spares glucose and delays the 

PPGD and the onset of the next meal, increasing the duration of the intermeal interval. 

Glucose-induced insulin secreted in the bloodstream will reduce adipocyte lipolysis and 

limits the increase of the intermeal interval. ③ Leptin secreted by adipocytes reaches the 

hypothalamus via the bloodstream, where it stimulates neurons synthetizing anorexigenic 

neurotransmitters (not shown) and sympathetic nervous activity (SNA). This action is 

modulated by local glucose levels. The sympathetic nervous system will 1) reduce glucose-
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induced insulin secretion and its inhibiting effect on adipocyte lipolysis, 2) directly stimulate 

the release of fatty acids by adipocytes, enhancing their contribution to total substrate 

oxidation and their glucose-sparing effect, leading to increase the intermeal interval. This 

homeostatic response requires that meals are spontaneously initiated and that no intermeal 

intake alters the sequence. The anticipation, conditioning and reward processes are 

therefore possible, based on the postingestive duration of the IMI (satiety) of the food 

consumed at the meal.  










