C. J. Yeoman, Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal tract, Sci. Rep, vol.8, 2018.

S. J. Meale, F. Chaucheyras-durand, H. Berends, L. L. Guan, and M. A. Steele, From pre-to postweaning: Transformation of the young calf 's gastrointestinal tract, J. Dairy Sci, vol.100, pp.5984-5995, 2017.

C. E. Guzman, L. T. Bereza-malcolm, B. De-groef, and A. E. Franks, Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours, PLoS ONE, vol.10, 2015.

Z. Wang, Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA, Amplicon Sequencing. Front. Microbiol, vol.8, p.159, 2017.

R. W. Li, E. E. Connor, C. Li, R. L. Baldwin-vi, and M. E. Sparks, Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools, Environ. Microbiol, vol.14, pp.129-139, 2012.

E. Jami, A. Israel, A. Kotser, and I. Mizrahi, Exploring the bovine rumen bacterial community from birth to adulthood, ISME J, vol.7, pp.1069-1079, 2013.

D. R. Yáñez-ruiz, L. Abecia, and C. J. Newbold, Manipulating rumen microbiome and fermentation through interventions during early life: a review, Front. Microbiol, vol.6, p.1133, 2015.

Y. Song, N. Malmuthuge, M. A. Steele, and L. L. Guan, Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning, FEMS Microbiol. Ecol, vol.94, 2018.

N. Malmuthuge, P. J. Griebel, and L. L. Guan, The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract. Front, Vet. Sci, vol.2, p.36, 2015.

L. Abecia, Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids, Anim. Prod. Sci, vol.54, pp.1449-1454, 2014.

G. Fonty, P. Gouet, J. P. Jouany, and J. Senaud, Ecological factors determining establishment of cellulolytic bacteria and protozoa in the rumens of meroxenic lambs, J. Gen. Microbiol, vol.129, pp.213-223, 1983.

G. Fonty, J. Senaud, J. P. Jouany, and P. Gouet, Establishment of ciliate protozoa in the rumen of conventional and conventionalized lambs: influence of diet and management conditions, Can. J. Microbiol, vol.34, pp.235-241, 1988.

M. M. Mialon and . 3r, Rencontres autour des Recherches sur les Ruminants

L. Abecia, A. I. Martín-garcía, G. Martínez, C. J. Newbold, and D. R. Yáñez-ruiz, Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning, J. Anim. Sci, vol.91, pp.4832-4840, 2013.

L. Abecia, An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by Archaea, Archaea Vanc. BC, vol.2014, p.841463, 2014.

F. Chaucheyras-durand and G. Fonty, Influence of a Probiotic Yeast (Saccharomyces cerevisiae CNCM I-1077) on Microbial Colonization and Fermentations in the Rumen of Newborn Lambs, Microb. Ecol. Health Dis, vol.14, pp.30-36, 2002.

F. Chaucheyras-durand and G. Fonty, Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077, Reprod. Nutr. Dev, vol.41, pp.57-68, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00900420

R. G. Leuschner, J. Bew, and G. Bertin, Validation of an official control method for enumeration of authorised probiotic yeast in animal feed, Syst. Appl. Microbiol, vol.26, pp.147-153, 2003.

M. Rey, F. Enjalbert, and V. Monteils, Establishment of ruminal enzyme activities and fermentation capacity in dairy calves from birth through weaning, J. Dairy Sci, vol.95, pp.1500-1512, 2012.

K. A. Dill-mcfarland, J. D. Breaker, and G. Suen, Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation, Sci. Rep, vol.7, p.40864, 2017.

J. Liu, G. Bian, D. Sun, W. Zhu, and S. Mao, Starter feeding altered ruminal epithelial bacterial communities and some key immunerelated genes' expression before weaning in lambs, J. Anim. Sci, vol.95, pp.910-921, 2017.

W. K. Kwong and N. A. Moran, Gut microbial communities of social bees, Nat. Rev. Microbiol, vol.14, pp.374-384, 2016.

P. W. Maes, P. A. Rodrigues, R. Oliver, B. M. Mott, and K. E. Anderson, Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera), Mol. Ecol, vol.25, pp.5439-5450, 2016.

G. Fonty, P. Gouet, H. Ratefiarivelo, and J. P. Jouany, Establishment of Bacteroides succinogenes and measurement of the main digestive parameters in the rumen of gnotoxenic lambs, Can. J. Microbiol, vol.34, pp.938-946, 1988.

B. Yang, Alfalfa Intervention Alters Rumen Microbial Community Development in Hu Lambs During Early Life, Front. Microbiol, vol.9, 2018.

C. Béra-maillet, Y. Ribot, and E. Forano, Fiber-degrading systems of different strains of the genus Fibrobacter, Appl. Environ. Microbiol, vol.70, pp.2172-2179, 2004.

Y. Kobayashi, T. Shinkai, and S. Koike, Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion -review, Folia Microbiol. (Praha), vol.53, pp.195-200, 2008.

J. E. Edwards, PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front. Microbiol, vol.8, p.1657, 2017.

C. Béra-maillet, E. Devillard, M. Cezette, J. Jouany, and E. Forano, Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp, FEMS Microbiol. Lett, vol.244, pp.149-156, 2005.

C. J. Newbold, G. De-la-fuente, A. Belanche, E. Ramos-morales, and N. R. Mcewan, The Role of Ciliate Protozoa in the Rumen, Front. Microbiol, vol.6, p.1313, 2015.

P. Mosoni, G. Fonty, and P. Gouet, Competition between ruminal cellulolytic bacteria for adhesion to cellulose, Curr. Microbiol, vol.35, pp.44-47, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00889632

Y. Shi, C. L. Odt, and P. J. Weimer, Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrateexcess and substrate-limited conditions, Appl. Environ. Microbiol, vol.63, pp.734-742, 1997.

S. A. Huws, Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future, Front. Microbiol, vol.9, p.2161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890696

Y. Zeng, Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity, AMB Express, vol.7, p.75, 2017.

L. C. Skillman, 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs, Anaerobe, vol.10, pp.277-285, 2004.

G. Borrel, Phylogenomic data support a seventh order of Methylotrophic methanogens and provide insights into the evolution of Methanogenesis, Genome Biol. Evol, vol.5, pp.1769-1780, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01612746

G. M. Alugongo, Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves, J. Anim. Sci. Biotechnol, vol.8, p.34, 2017.

F. Chaucheyras-durand, Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi, J. Appl. Microbiol, vol.120, pp.560-570, 2016.

F. Chaucheyras-durand, N. Walker, and A. Bach, Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future, Anim. Feed Sci. Technol, vol.145, pp.5-26, 2008.

G. D. Poppy, A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows, J. Dairy Sci, vol.95, pp.6027-6041, 2012.

P. J. Weimer, Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations, Front. Microbiol, vol.6, p.296, 2015.

J. F. Garcia-mazcorro, Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits, Animal, vol.1, issue.9, 2019.

G. Fonty and F. Chaucheyras-durand, Effects and modes of action of live yeasts in the rumen, Biologia (Bratisl.), vol.61, pp.741-750, 2006.

A. Jousset, Where less may be more: how the rare biosphere pulls ecosystems strings, ISME J, vol.11, pp.853-862, 2017.

S. Comtet-marre, Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet, Front. Microbiol, vol.8, p.67, 2017.

A. Abot, CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems, BMC Genomics, vol.17, p.671, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01843061

S. Comtet-marre, FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota, Front. Microbiol, vol.9, 2018.

M. Hess, Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science, vol.331, pp.463-467, 2011.

X. Dai, Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen, Appl. Environ. Microbiol, vol.81, pp.1375-1386, 2015.

X. Dai, Metagenomic insights into the fibrolytic microbiome in yak rumen, PloS One, vol.7, p.40430, 2012.

G. Suen, The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist, PloS One, vol.6, p.18814, 2011.

G. Suen, Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7, J. Bacteriol, vol.193, pp.5574-5575, 2011.

L. E. Tailford, E. H. Crost, D. Kavanaugh, and N. Juge, Mucin glycan foraging in the human gut microbiome, Front. Genet, vol.6, p.81, 2015.

A. P. Neumann and G. Suen, The Phylogenomic Diversity of Herbivore-Associated Fibrobacter spp. Is Correlated to Lignocellulose-Degrading Potential, vol.3, pp.593-611, 2018.

C. Villot, B. Meunier, J. Bodin, C. Martin, and M. Silberberg, Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows, Anim. Int. J. Anim. Biosci, vol.12, pp.481-490, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01604921

Z. Yu and M. Morrison, Improved extraction of PCR-quality community DNA from digesta and fecal samples, BioTechniques, vol.36, pp.808-812, 2004.

P. Mosoni, C. Martin, E. Forano, and D. P. Morgavi, Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep, J. Anim. Sci, vol.89, pp.783-791, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02643195

A. R. Bayat, Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets, J. Dairy Sci, vol.98, pp.3166-3181, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637386

S. A. Bustin, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem, vol.55, pp.611-622, 2009.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinforma. Oxf. Engl, vol.30, pp.2114-2120, 2014.

P. D. Schloss, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol, vol.75, pp.7537-7541, 2009.

F. Escudié, FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, vol.34, pp.1287-1294, 2018.

C. Quast, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

K. Abarenkov, The UNITE database for molecular identification of fungi-recent updates and future perspectives, New Phytol, vol.186, pp.281-285, 2010.

H. Seedorf, S. Kittelmann, G. Henderson, and P. H. Janssen, RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments, PeerJ, vol.2, p.494, 2014.

P. J. Mcmurdie and S. Holmes, Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking, Bioinforma. Oxf. Engl, vol.31, pp.282-283, 2015.

. Love, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc Ser B Methodol, vol.57, 1995.

J. G. Caporaso, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, vol.7, pp.335-336, 2010.

R. Edgar, M. Domrachev, and A. E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, pp.207-210, 2002.