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Highlights 

 We present the major classes of genotype to phenotype models for predicting complex 

phenotypes with genotype by environment interactions in the field as functions of genotypic 

and environmental inputs. 

 We show how existing genotype-to-phenotype models can be generalized to incorporate 

information obtained by new phenotyping devices and techniques for improving the prediction 

of primary traits like yield under field conditions.  

 We demonstrate how the utility of information from new phenotyping devices and techniques 

can be evaluated within the context of predictive genotype-to-phenotype models ACCEPTED M
ANUSCRIP
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Abstract 

New types of phenotyping tools generate large amounts of data on many aspects of plant 

physiology and morphology with high spatial and temporal resolution. These new phenotyping 

data are potentially useful for a better understanding and prediction of complex traits, like yield, 

that are characterized by strong environmental context dependencies, i.e., genotype by 

environment interactions. For an evaluation of the utility of new phenotyping information, we 

will look at how this information can be incorporated in different classes of genotype-to-

phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and 

environmental inputs. In the last decade, easy access to high-density single nucleotide 

polymorphism markers (SNPs) and sequence information has boosted the development of a 

class of G2P models called genomic prediction models that predict phenotypes from genome 

wide marker profiles. The question now is to build G2P models that incorporate simultaneously 

extensive genomic information alongside with new phenotypic information. Beyond the 

modification of existing G2P models, new G2P paradigms are required. We present candidate 

G2P models for the integration of genomic and new phenotyping information and illustrate their 

use in examples. Special attention will be given to the modelling of genotype by environment 

interactions. The G2P models provide a framework for model based phenotyping and the 

evaluation of the utility of phenotyping information in the context of breeding programs.  

Keywords 

crop growth model; genomic prediction; genotype-by-environment-interaction; genotype-to-

phenotype model; mixed model; multi-environment model; multi-trait model; phenotyping; 

phenotyping platform; physiology; plant breeding; prediction; reaction norm; response surface; 

statistical genetics. 
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Abbreviations 

APSIM: Agricultural Production Systems sIMulator 

ASI: Anthesis Silking Interval 

BLUP: Best Linear Unbiased Predictor 

BLUE: Best Linear Unbiased Estimator 

CGM: Crop Growth Model 

G×E: Genotype by Environment (Interaction) 

G2P: Genotype to Phenotype 

LER: Leaf Elongation Rate 

NDVI: Normalized Difference Vegetation Index 

MET: Multi-Environment Trial 

QTL: Quantitative Trait Locus 

SEM: Structural Equations Model 

SNP: single nucleotide polymorphism markers 

SpATS: Spatial Analysis of field Trials with Splines 

TPE: Target Population of Environments 

VCOV: Variance-COVariance 
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1. Introduction 

A primary objective and problem in plant breeding remains the improvement of yield. 

Therefore, the utility of new genotyping and phenotyping techniques should be evaluated in the 

light of the additional genetic gain for yield that can be obtained by the implementation of new 

techniques, where cost-benefit considerations should be made in relation to the speed and cost 

of the additional genetic gain. Yield is an example of a complex traits characterized by the 

contributions of many genes with relatively small effects that show strong context dependencies 

in the form of epistatic and genotype by environment interactions (G×E). These context 

dependencies complicate the breeding process [1–3]. Improvement of yield is made in relation 

to a target population of environments (TPE), i.e. the set of conditions for which the genotypes 

(cultivars, varieties) are bred [3,4]. Across the TPE, typically the environmental conditions 

change to an extent that the phenotypic response curves of individual genotypes, the reaction 

norms [5,6], will show divergence, convergence, and intersection, which is an expression of 

G×E. Traditional phenotyping strategies consist of the evaluation of genotypes in a number of 

trials across a number of locations for a number of years, called multi-environment trials 

(METs). The hope is that the trials in the MET form a representative sample from the conditions 

in the TPE and that the MET provides enough information for identifying and estimating G×E 

patterns with enough precision to decide upon a strategy on how to handle G×E [7,8]. 

Early onwards it was recognized that hoping for METs to contain informative sets of 

environmental conditions was not an optimal strategy for developing adapted genotypes to 

defined biotic and abiotic stress conditions. Managed stress trials were introduced to 

complement classical location by year METs [8–10]. Furthermore, in many crops, physiology 

and physics driven measurement protocols were developed in attempts to predict the behaviour 

of genotypes under abiotic stress conditions [11]. Therefore, many phenotyping techniques 

were being used to help the breeding process attain genotypes with superior yields. 

However, phenotyping as a separate discipline within plant biology is a new phenomenon. The 

rapid development of new phenotyping technologies has led to an enormous increase in the 

types and amounts of phenotypic data that can be monitored and registered. All levels of 

biological organisation have become accessible from within the cell up to the level of the 

ecosystem, and at spatial and temporal resolutions that were unthinkable before, with whole 

new types of processes being open to study [12,13]. New phenotyping devices occur that can 

be classified as: 1) high precision platforms, which are not necessarily high throughput, for 
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omics, anatomical and functional traits at cell and organ level, covering short time scales 

[14,15]; 2) whole-plant field and controlled environment platforms for plant canopy traits 

[8,16,17]; 3) Networks of field experiments (METs), with high throughput phenotyping 

techniques across environmental ranges [18,19]. The diversity and complexity of new 

phenotypic data types raises the question of how to use this information efficiently to increase 

biological understanding of plant systems and how to improve the accuracy of prediction for 

complex traits like yield? Should we copy the genomic prediction paradigm and simply include 

all phenotypic data in our prediction models without any feature selection? Or, will we do better 

by selecting specific features from our phenotyping information, i.e., identify those traits that 

are relevant for better adaptation, as proposed by [12,20].  

In this paper, we will look at ways to incorporate new phenotyping data into predictive models 

for complex traits, where for simplicity of exposition we will focus on yield. We will describe 

various model classes, mainly statistical, but also crop growth models, that provide the means 

to evaluate and quantify the utility of new phenotyping information. We start with a 

presentation of a classification of phenotypic trait data according to the amount of modelling 

the data underwent. The next two sections, describe statistical models and crop growth models 

for predicting phenotypic traits from DNA profiles, environmental information, and additional 

phenotypic information, together with some illustrative examples. In these sections, attention 

will be given to some promising new G2P models and the role of modelling in relation to 

breeding strategies is considered. The last section presents some challenges ahead.  

2. A phenotypic trait hierarchy 

2.1. Traditional phenotyping 

Within plant breeding and genetics, phenotyping always played an essential role. To improve 

phenotypes via interventions at the genetic level, we need to measure the phenotypes and 

genotypes precisely and cost effectively. Furthermore, we need suitable G2P models that allow 

us to identify the most important genetic and environmental factors driving phenotypic variation 

and to predict the phenotype from genetic and environmental inputs. For complex traits, G2P 

models will have to address explicitly the phenomenon of G×E [19,21,22]. Traditionally, for 

the target trait of the breeding process, yield, MET evaluations of breeding material play an 

important role, where the included germplasm can consist of segregating offspring populations 

as well as diversity panels. Some popular G2P models for MET data are the following. For 
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genotype i in environment j (trial, year by location combination) a simple model is 𝑦𝑖𝑗 = 𝜇𝑖𝑗 +

𝜖𝑖𝑗, where 𝜇𝑖𝑗 stands for the expectation or mean of genotype i in environment j, while 𝜖𝑖𝑗 

represents a random residual. Roughly, in this model the expectation expresses the adaptation 

part of the phenotype of which we think we understand it well enough to predict it for given 

genotypes and environments, while the residual represents a combination of biological 

instability (to be modelled by genotype specific stability variances), not modelled phenotypic 

variation (polygenic variation), and experimental error. For the expectation, we try to find a 

model that makes the expectation a function of genotype specific sensitivities to environmental 

covariables: 𝜇𝑖𝑗 = 𝜇(𝛽𝑖; 𝑧𝑗), for a single environment covariable z with a value 𝑧𝑗 in 

environment j to which the genotype i has a sensitivity 𝛽𝑖. Genetic information can be inserted 

by making the genotypic sensitivities functions of marker profiles, 𝒙𝒊, 𝜇𝑖𝑗 = 𝜇(𝛽(𝒙𝑖); 𝑧𝑗). 

When the phenotypic responses for genotypes to the environmental covariable are linear, i.e., 

the reaction norm is linear, then 𝜇𝑖𝑗 = 𝜇(𝛽𝑖; 𝑧𝑗) =𝛽𝑖 𝑧𝑗 . The formulation 𝜇𝑖𝑗 = 𝜇(𝛽𝑖; 𝑧𝑗) allows 

the reaction norms also to be non-linear. In the latter case, the genotype can be characterized 

by multiple parameters as well, 𝜇𝑖𝑗 = 𝜇(𝜷𝑖; 𝑧𝑗). For example, for a logistic dependence, 𝜇𝑖𝑗 =

𝛽1𝑖

(1+exp (−𝛽2𝑖(𝑧𝑗−𝑧0))
 , with 𝛽1𝑖 the plateau for the reaction norm of genotype i, 𝛽2𝑖 the slope, and 

𝑧0, or 𝛽3𝑖, the value for which the response reaches half of its maximum. More flexible 

formulations are possible by choosing a spline basis for the environmental covariable z, 𝑠(𝑧𝑗) =

∑ 𝑏𝑖𝑣ℎ𝑣(𝑧𝑗)𝑣 , with  ℎ𝑣(𝑧𝑗) one of the elements in a set of the B-spline basis functions relevant 

to environment j,  and 𝑏𝑖𝑣 a genotype specific spline coefficient. Then, 𝜇𝑖𝑗 = 𝜇(𝛽𝑖; 𝑠(𝑧𝑗)) =

  𝜇( ∑ 𝑏𝑖𝑣ℎ𝑣(𝑧𝑗)𝑣 ). [23,24]. 

In traditional phenotyping, most resources were spent on METs to estimate yield itself, the 

primary trait, but it was not uncommon either to try to estimate other traits than yield, secondary 

phenotypes, that could be used as genotype specific covariables in prediction models for yield. 

For example, 𝜇𝑖𝑗
𝑓

= 𝜇 𝑓(𝜇𝑖
𝑠; 𝑧𝑗), with 𝜇𝑖𝑗

𝑓
 the expectation for the focus trait (target trait, primary 

trait, highest order trait), 𝜇 𝑓(𝑎; 𝑏) a function to generate the expectation for the focus trait with 

a genotypic input a and an environmental input b, 𝜇𝑖
𝑠 is the genotype specific expectation for a 

secondary trait measured under controlled conditions and 𝑧𝑗 is an environmental 

characterisation. This type of G2P model will also be suitable to incorporate new phenotyping 

information. However, the new secondary phenotyping information has higher spatial and 

temporal resolution than the more traditional secondary phenotyping information, it can come 
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from many biological levels of organization, and the number of secondary phenotypes can be 

huge. We will give examples of such secondary phenotypes below. Therefore, it is not obvious 

which secondary phenotypes are useful for predicting yield and how the secondary phenotypes 

should enter existing G2P models. In statistical terms, within a high dimensional regression 

context, we have simultaneously a covariable subset selection problem and a functional form 

or transformation problem. Furthermore, our current G2P models may have to be modified to 

benefit from the large quantity of secondary phenotyping information. 

To facilitate the development of a new G2P framework that can incorporate both large 

quantities of secondary phenotyping information as well as genomic information and 

environmental characterizations, we want to introduce a conceptual classification of new 

phenotyping traits. Advanced statistical and crop growth modelling methods will be required 

to generalize prediction and inference from the genotypes and environmental conditions 

included in METs to a wider set of genotypes representing the full collection of selection 

candidates and a wider set of environmental conditions representing the TPE. Table 1 shows 

how raw secondary phenotyping data are elaborated and converted into genotype specific 

covariables that enter G2P for yield. This conversion consists of a number of discrete modelling 

steps that transform large numbers of basic and raw secondary phenotype data with low 

predictive power and utility into relatively few genotype specific parameters with high 

predictive power.  

[Table 1 here] 

2.2. Feature extraction 

Let us define a typical phenotypic observation or measurement as 𝑦𝑖𝑟
𝑘 (𝑡𝑖𝑚), for trait 𝑘 (=

1 … 𝑛𝑇) genotype 𝑖 (= 1 … 𝑛𝐺) for the r-th replicate (𝑟 = 1 … 𝑛𝑅) at time point 𝑡𝑖𝑚, m =

1 … 𝑛𝑀𝑖𝑘
. The observation 𝑦𝑖𝑟

𝑘 (𝑡𝑖𝑚) can be interpreted as a raw data point. Alternative 

modelling steps add value to the data and aggregate information from raw data points into 

model parameters. The raw data are null level traits, they are not aggregated over time or 

environmental gradients and no value addition by modelling has taken place. In a sequence of 

modelling efforts, the raw data are converted into parameters, higher level traits, that integrate 

data over time and environmental gradients to become predictors of complex traits like yield.  
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Modern phenotyping devices and techniques can produce large numbers of variables that each 

by themselves not necessarily relate in a one-to-one fashion to phenotypic traits of interest. So 

an important first step in phenotyping is to extract from large numbers of variables those 

features that are potentially useful for modelling biological and genetic processes and 

structures. Imaging has become an important secondary phenotyping technique that generates 

large amounts of information of which only a part will be relevant for phenotypic prediction. 

There are several methods to extract the features from images  (Fig. 1). As images are usually 

quite noisy, pre-processing and feature-extraction methods are a key first step to produce 

phenotypic information with improved signal to noise ratios that at a later stage may prove to 

be useful for predicting a target trait [25,26].  

[Figure 1 here] 

Strategies to obtain trait information from images might involve segmentation [27,28], tracking 

procedures to deal with the problem of occlusions between plant organs [29] and using signal 

intensity at specific wavelengths (or indices derived from these intensities) as a proxy to plant 

traits. Common proxies using this approach are the normalized difference vegetation index 

(NDVI) to characterize biomass accumulation dynamics or canopy temperature to identify 

drought-tolerant genotypes [18,28,30,31]. An alternative is to identify morphological changes 

in sequential images (e.g. time to flowering) and segment specific organs (e.g. spikes) or organ 

surfaces (e.g. canopy drought stress [32]).  

2.3. Correcting for experimental design factors and spatial variation 

The extraction of features from the ample information generated by new phenotyping devices 

contains aspects of covariable subset selection, transformation and noise reduction. The result 

of this process is a set of secondary phenotypic traits for which it later on remains to be shown 

that they are useful for the prediction of primary traits. A first modelling step is now to estimate 

genotype and treatment means correcting for experimental design factors and spatial variation. 

Such an analysis is usually done per trait so that we can simplify the model to 𝑦𝑖𝑟(𝑡𝑖𝑚) =

𝜇𝑖(𝑡𝑖𝑚) + 𝜖𝑖𝑟(𝑡𝑖𝑚), with 𝜇𝑖(𝑡𝑖𝑚) the genotype specific expectation for the trait in its 

dependence on time, while 𝜖𝑖𝑟(𝑡𝑖𝑚) is a residual. When all genotypes are observed at the same 

times, we can write 𝑦𝑖𝑟(𝑡) = 𝜇𝑖(𝑡) + 𝜖𝑖𝑟(𝑡), where we want to estimate 𝜇𝑖(𝑡). In principle, 

when correcting for design and spatial variation we should take into account the dependence in 
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time between the observations on the same genotype and plant, but such an analysis is 

immediately non-trivial. Therefore, analyses are often performed per time point. Effectively we 

then fit the model 𝑦𝑖𝑟 = 𝜇𝑖 + 𝜖𝑖𝑟 for each time point, which is equivalent to an analysis of 

variance, or a mixed model with autoregressive formulations for the dependence in row and 

column directions [33]. A recently proposed alternative is a mixed model with a two 

dimensional P-spline basis for spatial variation [34,35]. This spline approach has the advantage 

of avoiding the difficult model selection step. An example using the so-called SpATS model is 

given in (Fig. 2). The corresponding R-package SpATS is available on CRAN (https://cran.r-

project.org/package=SpATS), and produces adjusted means (Best Linear Unbiased Predictions, 

BLUPs, or Best Linear Unbiased Estimates, BLUEs) as well as generalized heritabilities 

[36,37]. SpATS is flexible and user-friendly and performs comparably to more elaborate spatial 

models that require for each experiment a model selection process [34]. The absence of a model 

selection requirement allows a fully automatic implementation of this method for the analysis 

of field trial and platform experiments, especially convenient for the analysis of time series of 

phenotyping data obtained by the use of High Throughput Phenotyping devices. As an example, 

Fig. 2 shows the Arabidopsis data coming from the Phenovator platform [38] for the light-use 

efficiency of PSII of 344 Arabidopsis accessions [39].  

[Figure 2 here] 

 

2.4. Dynamic modelling of spatially adjusted secondary phenotypes  

Adjustment of genotypic and treatment means for experimental design and spatial variation was 

done per time point above. The next step is to model the genotypic means (or treatment means 

of any type) as adjusted for experimental design and spatial variation in relation to time, where 

these genotypic means are treated as if they were observations themselves, 𝑦𝑖(𝑡) = 𝜇𝑖(𝑡) +

 𝜖𝑖(𝑡) , with 𝑦𝑖(𝑡) actually being the estimated genotypic mean of the previous modelling step 

(see section 2.3), which we can write as 𝑦𝑖(𝑡) ≔ 𝜇𝑖̂ at time t.  

Models for 𝜇𝑖(𝑡) can be parametric, 𝜇𝑖(𝑡) = 𝜇(𝑡; 𝜽𝒊), with 𝜽𝒊 a parameter vector for genotype 

i that describes the dependence of its dynamic phenotype 𝑦𝑖(𝑡) on time. Common functions to 
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model trait dynamics are the logistic, Gompertz and exponential growth functions [40–43]. For 

a logistic relation to time the model would be 𝜇𝑖(𝑡) =
𝜃1𝑖

(1+exp (−𝜃2𝑖(𝑡−𝜃3𝑖))
 with 𝜃1𝑖 the upper 

asymptote, 𝜃2𝑖 the slope at the mid-point (where 𝑦𝑖(𝑡) reaches half of the asymptote), and 𝜃3𝑖 

the time at which the mid-point is reached [41,44]  

Fig. 3 illustrates the dynamics of leaf length of two genotypes that have been phenotyped over 

time, with both genotypes grown under three levels of temperature and two levels of water 

stress. The leaf elongation dynamics are summarized by a logistic curve. Genotype G1 is not 

very sensitive to temperature (reflected in the three red curves running close to each other, Fig. 

3A), but very sensitive to water stress (reflected in the two blue curves running far apart from 

each other). In contrast, genotype G2 is sensitive to temperature, but not so much to water stress. 

By fitting a logistic curve we can extract slope parameters (leaf elongation rate) that are at this 

stage both genotype and environment specific.  

Parametric models for 𝜇𝑖(𝑡) may be too restrictive to capture the dynamics of traits like canopy 

temperature, leaf area or senescence. A more flexible alternative for modelling trait dynamics 

is offered by P-splines [23,24]. For example, P-splines were used to model haulm senescence 

in potato and identify QTLs for the genotype-dependent slopes [45]. The use of splines can be 

extended to genomic prediction models for incorporating information from canopy temperature 

and NDVI over time [46]. 

In this context of dynamic models for phenotypes, we mention further the work on function-

valued trait models, in which explicit mathematical functions describe trait dynamics during 

the growing season [47]. Genotype specific curve parameters as conditioned by the 

environment were modelled in relation to a genetic basis within a functional mapping 

framework by [42,48,49].  

Some phenotypic traits are repeatedly measured over time without the genotype specific 

expectation changing over time. This brings us in the classical repeated measurements situation, 

𝑦𝑖(𝑡) = 𝜇𝑖 +  𝜖𝑖(𝑡), where for the residual term a correlation structure should be defined that 

allows for deceasing correlation between time points with increasing separation [50,51]. For 

example, repeated measures on NDVI were analysed by a multi-trait model with a special 

structure for the auto-correlation between successive measurements [46].  
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The curve parameters, 𝜽𝒊, represent traits of a higher level or order than the initial time 

dependent trait 𝑦𝑖(𝑡). They represent an integration over time of this lower level trait. New 

phenotyping technologies facilitate the characterization of growth and development during the 

growing season. High temporal resolution of measurements is achieved for secondary traits that 

are at a lower biological organization level than target or focus traits: leaf and stem size, biomass 

and disease scores [52,53]. Modelling the dynamics of such lower and intermediate level traits 

fits into a strategy to replace large amounts of data by limited numbers of genotype specific 

parameters. These parameters are often rates, like leaf elongation rate. The estimates for the 

time dynamics parameters can once again form the starting point of a new round of modelling 

when these parameters are seen as functions of environmental gradients (see next section 3.5) 

[Figure 3 here] 

 

2.5. Modelling phenotypes in relation to environmental gradients 

In section 2.4 we estimated genotype specific parameters that summarized dynamical behaviour 

of secondary phenotypes. These parameters were not only genotype specific, but also 

environment specific. Assume we have also environmental characterizations for the conditions 

under which the curve parameters were estimated, collected for each experiment or trial in a 

vector 𝒛𝑗. Let the slopes for genotype i in environment j, 𝜃2𝑖, simply be redefined as a new 

phenotype, 𝑦𝑖𝑗. A model for this phenotype is: 𝑦𝑖𝑗 = 𝜇𝑖𝑗 + 𝜖𝑖𝑗. When we want to express the 

dependence of the phenotype, for example the curve parameter from section 2.4, on a set of 

environmental characterizations, we write, 𝑦𝑖𝑗 = 𝜇(𝜷𝑖; 𝒛𝑗) + 𝜖𝑖𝑗, with 𝜷𝑖 genotype specific 

sensitivities to a set of environmental characterizations contained in 𝒛𝑗. The function 𝜇(𝑎; 𝑏) 

generates a genotype and environment specific expectation from a genotype specific input a 

and environment specific input b. In its simplest version, a linear regression with one 

environmental characterization, 𝑦𝑖𝑗 = 𝛽𝑖𝑧𝑗 + 𝜖𝑖𝑗.  

The genotype specific sensitivities of curve parameters, 𝜷𝑖, represent again a higher level of 

integration of phenotypic information. When we consider the dependence of curve parameters 

on environmental conditions, we effectively have integrated across temporal and environmental 

gradients. Examples of such high level traits are the physiological parameters that predict yield 
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across environments [53–55]. In Fig. 4A and 4B, they would correspond to the sensitivities of 

leaf elongation rate (a higher order trait) to temperature and water stress. The sensitivities to 

multiple environmental covariables can be incorporated in a higher level prediction model for 

yield.  

High precision platform and to some extent whole plant platform measurements aim at the 

phenotyping of higher-order traits that are expected to show a reduced complexity for the 

control of G×E because, as they represent sensitivities, their nature already embodies the 

genotypic response across environmental conditions. The information on the genetic and 

environmental controls of higher order traits is expected to be transferable to field conditions 

and to help in predicting yield across the TPE when inserted in appropriate G2P models like 

factorial regression models, multi-trait models, and crop growth models [56,57]. Evaluations 

of diversity panels on phenotyping platforms can involve single evaluations at a defined time 

under controlled environmental conditions. More often these platforms are used to measure 

time series on multiple traits measured jointly across a range of environmental conditions, 

thereby allowing analysis of G×E and calculation of higher order phenotypic traits [57–59]. 

[Figure 4 here] 

 

2.6. Integrating multiple higher order traits in prediction models for the target trait 

The structure of G×E observed for the target trait in the TPE and its underlying environmental 

drivers have a large influence on which phenotypic traits need to be estimated at various 

biological levels for a successful prediction of the target trait across environmental gradients. 

When we have an a priori idea of a statistical or physiological prediction model, the structure 

of such a model can guide us in which secondary traits to concentrate on for measurements at 

a phenotyping platform. As an illustration, we consider a crop growth model (CGM) that 

predicts a target trait from small sets of genotype specific inputs and environmental 

characterizations [60,61]. The inputs for the CGM were at the genotypic side, the physiological 

parameters total leaf number (TLN, a low level trait), area of largest leaf (AM, a low level trait), 

solar radiation use efficiency (SRE, a higher order trait), and thermal units to physiological 

maturity (MTU, an intermediate level trait). For the environmental side of the model, the 

important inputs were daily average temperature (Temp) and solar radiation (Rad). The 

structure of the CGM was: 𝑦𝑖𝑗
𝑓

= 𝜇𝐶𝐺𝑀(𝒚𝑖
𝑠; 𝒛𝑗) + 𝜖𝑖𝑗, with 𝑦𝑖𝑗

𝑓
 the focus trait, yield, for genotype 
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i in environment j, 𝒚𝑖
𝑠 the input vector of secondary phenotypes (TLN, AM, SRE, MTU), 𝒛𝑗 the 

input vector of relevant environmental characterizations (Temp, Rad), and 𝜇𝐶𝐺𝑀(𝑎; 𝑏) the CGM 

function that converts genotype specific inputs and environmental inputs in to predictions for 

the target trait. 

In the original study [61], only meteorological data from the weather station Champaign 

(Illinois) were used to estimate predictions 𝑦̂𝑖𝑗
𝑓
, whereas for additional calculations we used the 

information of another 19 weather stations in Illinois. After the integration over time and the 

meteorological characterizations by the CGM, the results of our calculations show non-linear 

responses for the target trait, 𝑦̂𝑖𝑗
𝑓
, in relation to the environmental covariables latitude and 

longitude (Fig. 5A). The impression is raised that at a suitable statistical model would be 𝑦𝑖𝑗
𝑓

=

𝜇𝑆𝑡𝑎𝑡(𝜷𝒊; 𝒛𝑗) + 𝜖𝑖𝑗, with 𝒛𝑗 is latitude and longitude, and 𝜷𝒊 the genotype specific curve 

parameters that describe the dependence on latitude and longitude. Both the CGM and statistical 

prediction model may produce acceptable accuracies (correlation between observed and 

prediction yield). The difference between both approaches may reside in the robustness of the 

predictions with respect to the specification of the training set of environmental conditions. 

The simulated heritability in our example was 0.85 per location, as in the original study [61]. 

Fig. 5A shows the two-dimensional response surface for yield in 2012 for one of the parents of 

the simulated DH population [61]), where a mixed model two-dimensional P-spline method 

was used to fit the spatial trend [62]. Fig. 5B shows the response curves for four genotypes as 

function of latitude, for predictions with the same longitude as Champaign. The early mature 

genotype (TLN=6) is performing best at high latitude, while the other three genotypes show 

non-linear response curves.  

[Figure 5 here] 

2.7. A reference framework for evaluating the prospects of secondary phenotyping 

information for improving the prediction of target traits. 

In earlier sections, we have introduced a number of G2P models that predict target traits from 

genotype specific and environmental inputs. Furthermore, a number of these models offered 

possibilities for incorporating secondary phenotyping information. Within the framework of a 

G2P model the contribution of secondary phenotyping to prediction of the target trait can be 
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assessed in a number of ways. In later sections, a number of examples will be given of possible 

improvements by the introduction of secondary phenotyping information into G2P models. The 

situation we envision for our modelling purposes is the following. We have at our disposal a 

set of field experiments for a target trait that belong to a MET that is supposed to represent the 

TPE. The target trait is estimated only once, at harvest, and no dynamical information is 

available for the target trait. We have measurements with phenotyping tools in one or more 

trials of the MET as well as on possible phenotyping platforms. With respect to secondary 

phenotyping, we may want to compare different technologies as well as sampling and 

measurement schemes.  

For statistical G2P models, and ignoring the time dependency of the focus or target trait, we 

can think of observations for genotype i in environment j, 𝑦𝑖𝑗
𝑓
, and we want to predict yield from 

genetic and environmental information, as well as from secondary phenotyping information: 

𝑦𝑖𝑗
𝑓

= 𝜇(𝐺(𝒙𝑖), 𝐸(𝒛𝑗), 𝑃(𝒚𝑖𝑗
𝑠 )) + 𝜖𝑖𝑗

𝑓
 

in which 𝜇(𝐺(𝒙𝑖), 𝐸(𝒛𝑗), 𝑃(𝒚𝑖𝑗
𝑠 )) is a function that generates the expectation for the target 

phenotype on the basis of three arguments: 1) a genotype related function, G(.), working on 

genotype specific genetic information, which can include marker information (SNPs, sequence 

profile), contained in the input vector 𝒙𝑖; 2) an environment related function, E(.), working on 

environment specific information contained in the vector 𝒛𝑗 consisting of summaries for 

meteorological, soil and management variables; 3) a phenotype related function P(.) working 

on secondary phenotypic information, 𝒚𝑖𝑗
𝑠 , with 𝑠 ∈ 𝑆, the set of secondary phenotypes, which 

can be genotype specific or, more often, can depend on a combination of genotype and 

environment (Figs. 3, 4 and 5). 

In many statistical-genetic G2P models, the functions G(.) and E(.) are simply identity functions 

and a dependence on higher order traits is absent, while the function 𝜇(𝐺(𝒙𝑖), 𝐸(𝒛𝑗), 𝑃(𝒚𝑖𝑗
𝑠 )) is 

a multiplication of genotypic and environmental information. For example, 

𝜇(𝐺(𝒙𝑖), 𝐸(𝒛𝑗), 𝑃(𝒚𝑖𝑗
𝑠 )) = 𝜇 (𝐺(𝒙𝑖), 𝐸(𝒛𝑗)) = 𝜇(𝑥𝑖; 𝑧𝒋) =  𝜃𝑥𝑖𝑧𝑗, with 𝑥𝑖 a count for the 

number of minor alleles for a marker in a quantitative trait locus (QTL) or candidate gene 

(between 0 and 2), and 𝑧𝑗 an environmental covariable like the average temperature in a critical 

developmental stage, and 𝜃 is the QTL allele substitution effect that scales with the environment 
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[19,21,22,63–65]. Traditional G2P models need to be generalized to accommodate secondary 

phenotypic information. Various options will be discussed in the remainder of this paper. 

Traditional statistical models for MET data do not contain dynamical aspects, developmental 

time is not explicitly present in such models. In contrast, CGMs have the dynamics of 

development as the core of their model formulation. One possible mathematical-statistical 

description of a CGM is as follows. Assume we consider yield as the focus trait, f, for genotype 

i in environment j at time Tj (harvest time in environment j, taken to be the same for all 

genotypes):  

𝑦𝑖𝑗
𝑓

(𝑇𝑗) =  ∫ 𝔉𝑡 [ (𝒚
𝑠∈𝑆𝑃(𝒙𝑖)) ;  (𝒚

𝑠∈𝑆𝐼(𝒙𝑖, 𝒛(𝑡𝒋)))
 
] 𝑑𝑡

𝑇𝑗

0
+ 𝜖𝑖𝑗

𝑓
,  

In a crop growth model, yield depends on two sets of underlying or component traits: 1) 

physiological parameters that are functions of DNA variation, represented by a SNP vector, 𝒙𝑖, 

that have no environmental and no time dependence, (𝒚
𝑠∈𝑆𝑃(𝒙𝑖)), with the secondary 

phenotypes, denoted by s, belonging to the set SP set of physiological parameters; 2) 

intermediate traits with G×E that are SNP, environment and time dependent, (𝒚
𝑠∈𝑆𝐼(𝒙𝑖 , 𝒛(𝑡𝒋))) 

with SI the set of intermediate traits. The environment dependence of the intermediate traits is 

expressed by a dependence on a vector of time varying environmental variables, 𝒛(𝑡𝒋). So, the 

focus trait is typically evaluated at a single time point at the end of the growing season, at 

harvest time, t =  Tj, and is a dynamical function ∫ 𝔉𝑡[[; ]]𝑑𝑡
𝑇𝑗

0
 integrating over time, with as 

arguments physiological parameters, intermediate traits, and environmental information. We 

add an error term 𝜖𝑖𝑗
𝑓

 as a simple way of introducing some stochasticity into the system.  

For physiological parameters, SP, think of resource capture (e.g., leaf angle, root architecture), 

conversion efficiency (e.g., light use efficiency, water use efficiency) and biomass allocation to 

yield (e.g., harvest index). For environmental variables, think of the amount of resource (e.g., 

light, water, nutrients) and conditions as temperature and CO2 [3,20,66,67]. The combination 

of CGMs for yield with QTL or genomic prediction models for component traits is described 

in multiple papers [53,61,68–74]. The attraction of such G2P models is that they in theory allow 

to predict phenotypes for combinations of new genotypes and environments from marker 

profiles and environmental characterizations. 
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In the case of statistical models, for the estimation of parameters, a loss function can be defined 

on the discrepancy between observations on the primary trait for MET data representing the 

TPE and the predictions of the G2P model [75]. A loss function puts weights on the 

discrepancies (𝑦𝑖𝑗 − 𝑦̂𝑖𝑗) during the estimation of model parameters. The choice of loss function 

determines the estimation and inference procedure including the model building. A well-known 

loss function is least squares, where parameters are estimated to minimize (𝑦𝑖𝑗 − 𝑦̂𝑖𝑗)
2
. An 

alternative estimation and inference procedure is based on maximization of (residual) maximum 

likelihood [76]. Given a G2P model for a primary trait and an inference procedure we can 

investigate to which extent the insertion of secondary phenotyping information itself or features 

extracted from secondary information into the G2P model leads to a smaller residual variance 

or higher likelihood.  

Another popular way of assessing the quality of secondary phenotyping information is by the 

correlation between observed and predicted primary trait values, i.e. corr(𝑦𝑖𝑗; 𝑦̂𝑖𝑗), where this 

correlation is often calculated as part of a cross validation process. Utility of phenotyping 

information can then be established by inspecting these correlations for different G2P models. 

This cross validation approach can be applied to both statistical and crop growth models.  

For CGMs genotype specific information on a number of physiological parameters may be 

required that can be difficult to obtain. Phenotyping platforms may then produce direct 

estimates for such parameters or approximations to such parameters. In such cases, the 

contribution of secondary phenotyping to genetic gain may be less straightforward to assess. In 

general, any correlation of secondary phenotypes to genotype specific inputs for G2P models 

will contribute to genetic gain, where higher level phenotypes will be more useful than lower 

level phenotypes because they are closer to the target trait, their phenotypic distance to the 

target trait is smaller [77]. Just like any correlation of secondary traits with G2P inputs will be 

useful, so will QTLs that are shared between secondary traits and G2P inputs. 

In this paper, with respect to G2P models to consider, we will focus on linear mixed models 

(LMMs) and crop growth models (CGMs), although we will also address Bayesian approaches. 

We will describe G2P models for a primary trait like yield and illustrate how these models help 

in assessing the usefulness of phenotyping strategies.  
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3. Statistical G2P models 

 

3.1. A correlated response framework connecting measurements on plant platforms and 

field observations 

Consider the simple case that a secondary trait is measured on a precision or whole-plant 

platform, 𝑦𝑠, to serve as an estimate for a similar and/or related trait in the field, 𝑦𝑓. Best is to 

think of a higher order trait like genotype specific physiological parameter that expresses the 

sensitivity to a certain environmental condition or factor and that we can estimate earlier, easier, 

more precisely or more cheaply under controlled conditions. We want to use the platform 

estimate to predict a similar and/or related environmental sensitivity for fields belonging to the 

TPE, where the TPE can be represented by a series of experiments belonging to a MET.  

The singularity of the platform and the field trait is a convenient opportunity to apply classical 

quantitative genetic theory on correlated responses as a framework to assess the utility of 

phenotyping. Realistically, the single trait on the platform may be a higher order secondary 

trait, a function of platform traits like a genotype specific summary across multiple measuring 

times or environments, a principal component calculated from a set of platform traits, or a 

selection index calculated to maximize the selection response for a trait in the field/TPE. The 

single trait in the TPE can again be a function of a number of field traits, i.e. a summary statistic 

like a genotypic mean, a sensitivity to an environmental gradient, or a selection index calculated 

from the experiments in a MET.  

Let us assume that the trait as measured on the platform will consist of an intercept, genetic part 

and an error part, 𝑦𝑖
𝑠 = 𝜇𝑖

𝑠 + 𝐺𝑖
𝑠 + 𝜖𝑖

𝑠, similarly so for the trait in the field/MET/TPE, 𝑦𝑖
𝑓

=

𝜇𝑖
𝑓

+ 𝐺𝑖
𝑓

+ 𝜖𝑖
𝑓
. We assume that the TPE is known and the field experiments in the MET 

represent a random draw from the TPE, so experiments are exchangeable and G×E is a source 

of error variation, and no repeatable interactions can be identified. For the latter case, a 

regression approach is a more suitable than a correlation approach. 

We may want to select genotypes on superior performances in the platform response, 

anticipating that the correlated selection response for the field trait will be larger than when 

selecting directly on the field response itself. Using indirect selection response theory we can 

say that this approach makes sense when the genetic correlation between platform and field, 
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𝜌(𝑠,𝑓) is high, i.e., the same genetic basis is involved, and the heritability on the platform, ℎ2,𝑠 =

𝑉𝐺𝑠

𝑉𝑦𝑠
=  

𝑉𝐺𝑠

𝑉𝐺𝑠  + 𝑉𝜖𝑠
 , is higher than the heritability in the field, ℎ2,𝑓 =

𝑉
𝐺𝑓

𝑉
𝐺𝑓  + 𝑉

𝜖𝑓
. More precisely, 

when the condition is fulfilled that 𝜌2,(𝑠,𝑓)ℎ2,𝑠 > ℎ2,𝑓 it makes sense to select on the platform 

representation of the trait in place of the field trait itself. The heritability at the platform may be 

higher because the conditions at the platform can be better controlled or more replicates can be 

taken, hence the error variance, 𝑉𝜖𝑠, is smaller than the error variance in the field, 𝑉𝜖𝑓. 

Additionally, the genetic variance at the platform, 𝑉𝐺𝑠, can be increased by choosing 

environmental conditions that are more strongly discriminating between genotypes and it is 

larger than the genetic variance in the field, 𝑉𝐺𝑓. The genetic correlation between platform and 

field depends on the extent to which the conditions in the field induce the same genes or QTLs 

to be expressed as on the platform, where the sign of the QTL effects should coincide and the 

magnitude of the effects should be proportional between platform and field. 

For a full evaluation of correlated responses versus direct responses, economic considerations 

for measurements on platforms and fields should be included as well. In that case, a selection 

index with economic weights is recommended. For example, economic weighting coefficients 

were included for the combination of several primary traits for sugar cane (biomass yield, sugar 

and fibre content )[78,79]. The index can also consider traits (e.g. physiological measurements) 

that do not have a direct economic impact, but correlate with economically important traits. In 

sugarcane for example, it was found that across diverse genotypes, the secondary phenotype 

mid-season plant stomatal conductance was highly correlated with total biomass yield, and this 

trait could be used as a proxy during the earlier stages of selection when genotype numbers are 

high, and plots are small, such that biomass yield per se is not reliable [80]. (Although the 

secondary trait is here not measured on a platform but in the field, the logic of correlated 

response remains valid.) 

When multiple measurements of the same trait under different environmental conditions are 

taken on the platform and the field, the framework can be extended to include G×E in either or 

both of platform and field. For that situation, the expressions for the heritabilities and the 

genetic correlation need to be modified. If we assume that repeated platform and field 

experiments can be interpreted as coming from a specific distribution of platforms, respectively, 

field experiments, then the error variances for platform and field in the expressions above 

should be replaced by 
𝑉𝐺𝐸𝑠

𝑛𝑒𝑠
+

𝑉𝜖𝑠

𝑛𝑒𝑠𝑛𝑟𝑠
 , with 𝑉𝐺𝐸𝑠 the genotype by experiment interaction (G×E) 
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variance for repeated experiments at the platform, 𝑛𝑒𝑠 the number of experiments at the 

platform, 𝑉𝜖𝑠 is now the intra block variance for the platform (assuming a randomized complete 

blocks design was used), and 𝑛𝑟𝑠 the number of replicates per platform experiment. Similar 

quantities can be defined for the field. Depending on the magnitude of the genotype by 

experiment interactions and the intra block errors, one can balance the number of experiments 

and replicates per experiment to find an efficient allocation of resources in which the platform 

heritability reaches a certain desired value. Whether this number of experiments and replicates 

is feasible will depend on additional information known to the breeder, where economic 

arguments will play an important role.  

The size of the error variance is thus largely under control of the breeder. This is to a lesser 

extent the case for the value of the genetic variance and the correlation between platform and 

field. The magnitude of these genetic parameters will depend on the timing of measurement 

and the method of measurement on platform and field as well as on the environmental 

conditions up to the measurements [81]. 

3.2. Illustrative examples correlated response framework for high precision and whole-plant 

platforms to predict phenotypes in the field 

Grain yield in maize depends on the ability of leaves and silks to maintain growth under 

fluctuating environmental conditions, especially under drought. Characterizing growth of 

leaves and silks under a range of environmental conditions in the field is a difficult task. 

Platforms have the advantages of facilitating more frequent and detailed measurements and also 

offer larger possibilities of controlling the environmental conditions than field experiments. For 

that reason, they are an interesting alternative to characterize relevant traits for drought 

adaptation in maize. For example, platform phenotypes have been used to estimate leaf 

elongation rate per unit of thermal time and the slope of leaf elongation to evaporative demand 

and soil water status [52]. QTLs of maximum leaf elongation rate on the platform co-located 

with QTLs of the anthesis-silking interval in well-watered fields, with alleles conferring high 

leaf elongation rate conferring a low anthesis-silking interval. The QTLs of the response of leaf 

elongation rate to water deficit at the platform co-located with QTLs of anthesis-silking interval 

in water deficit fields. For these QTLs, the allele conferring a larger anthesis-silking interval in 

the field (hence a reduced silk elongation rate) was also the one leading to a smaller leaf 

elongation rate on the platform. This suggested that common genetic mechanisms are shared 
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between the growth of reproductive organs in the field and leaf growth on the platform. These 

conclusions were further supported by a metaQTL analysis in which QTLs for maximum leaf 

elongation rate on the platform co-located with QTLs involved in the growth of shoots, roots, 

but also reproductive organs in controlled conditions and fields [82,83]. Further, the sensitivity 

of leaf growth to soil water deficit at the phenotyping platform was related to the sensitivity of 

maize grain number to soil water deficit around flowering time in the field [84]. A more detailed 

characterization of the sensitivity of leaf growth to environmental conditions was demonstrated 

and a model to predict leaf area in the field, as a function of leaf length and width and their 

respective sensitivities to intercepted light and evaporative demand has been proposed [57]. 

Platform and field data were used to calculate the genotypic sensitivity of leaf elongation to 

evaporative demand and of leaf width to intercepted radiation, respectively. The advantage of 

combining platform and field data is that the platform allowed a larger temporal resolution in 

the phenotypic and environmental measurements (leaf elongation rate, air temperature, air 

humidity and leaf temperature were measured every 15 min) and it also allowed to impose more 

specific levels of water limitation (and soil water potential higher than -0.05 MPa via automatic 

irrigation). The response of leaf elongation rate (leaf 6) to leaf-to-air vapour pressure deficit 

was estimated by using data at the time step of 15 min during daily peaks of vapour pressure 

deficit. The equations for the sensitivities of leaf elongation to evaporative demand and of leaf 

width to intercepted radiation were tested in an external data set, a network of 15 field 

experiments. Equations to predict leaf length and width resulted in an accurate prediction of 

individual leaf area in the whole field dataset (R2 = 0.62). QTL allelic effects underlying leaf 

width and length were smaller in the platform than in the field, but they were clearly correlated 

between platform and field experiments. Thus, although there was G×E between platform and 

field experiments, the correlated QTL effects would still allow to use platform data to improve 

selection for leaf area in field conditions [57].  

Another example of the use of indirect selection for field conditions based on traits measured 

in controlled conditions is the following. Nine early vigour characteristics of wheat F2:4 plants 

grown in trays (coleoptile tiller frequency, number of primary tillers, number of main stem 

leaves, breadth of leave 2, leave 3, mean leaf breadth, length of leaf 2, specific leaf area, plant 

leaf area and biomass) were evaluated to improve biomass production in the field for F2:6 plants 

[85]. Tray performance was a good predictor of field performance for leaf breadth and length, 

leaf area, and plant biomass. Genetic correlation between traits measured on the trays and 

biomass in the field was highest for biomass (r = 0.61), suggesting that early biomass measured 
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on the trays was a good predictor for early biomass in the field. Other traits measured on the 

trays that showed a moderate to high genetic correlation with field biomass were plant leaf area 

(r = 0.59), length of leaf 2 (r = 0.43), length of leaf 3 (r = 0.41) and mean leaf breadth (r = 0.40). 

The most promising for indirect selection were mean leaf breadth and breadth of leaf 2, with a 

relative gain from indirect selection that was 61 and 60% of the gain to be obtained from directly 

selecting for biomass in the field. Although plant leaf area on the tray showed a larger genetic 

correlation with field biomass than mean leaf breadth and breadth of leaf 2, it had a lower 

heritability (𝐻𝑝𝑙𝑎𝑛𝑡 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎
2 = 0.30,  𝐻𝑚𝑒𝑎𝑛 𝑙𝑒𝑎𝑓 𝑏𝑟𝑒𝑎𝑑𝑡ℎ

2 = 0.82, and 𝐻𝑏𝑟𝑒𝑎𝑑𝑡ℎ 𝑙𝑒𝑎𝑓 2
2 = 0.76) 

reducing its potential to be used for indirect selection (relative gain from indirect selection for 

leaf area on the tray was 55%). This example illustrates the importance of jointly considering 

the magnitude of genetic correlations between traits measured on the platforms and those in the 

field and trait heritability to assess the potential of traits to aid selection for early biomass in the 

field. One aspect that would need to be further assessed in this study [85] is whether selection 

for early biomass is indeed correlated to yield at the end of the growing season. Only if the 

correlation between early biomass and yield is reasonably large, it would be advantageous to 

use early biomass measured in the trays as early selection trait. In the previous example, all 

phenotyping was done by hand, which is a time-consuming process. However, thanks to 

imaging technologies, the approach could be scaled up to a breeding programme. For example, 

the dynamics of early growth for individual plants grown in greenhouse trays could be 

characterized with multi-view images [86]. Examples presented above are summarized in Table 

2. 

[Table 2 here] 

 

3.3. A multi-trait prediction framework for yield using high throughput phenotyping 

information 

HTP devices in the forms of sensors, drones, unmanned aerial vehicles generate high 

dimensional secondary phenotypic data for experiments that are part of METs representing the 

TPE. The HTP information is used to approximate yield related traits and components over the 

growing season. The HTP information is introduced in the form of additional traits alongside 

yield in multi-trait G2P models. 
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A multi-trait mixed model for genotype i and trait k can be defined as follows 𝑦𝑖
𝑘 = 𝜇𝑖

𝑘 + 𝐺𝑖
𝑘 +

𝜖𝑖
𝑘 , with 𝜇𝑖

𝑘 the fixed intercept for trait k, and 𝐺𝑖
𝑘 the random trait-specific genetic effect for 

genotype i and trait k, while 𝜖𝑖
𝑘 is a residual. The random genetic effects 𝐺𝑖

𝑘 will have a 

multivariate normal matrix distribution with mean zero and variance-covariance matrix 

(VCOV) 𝜮: {𝐺𝑖
𝑘 }~𝑀𝑉𝑁(𝟎, 𝜮) (Cullis et al., 2005). The VCOV for the genetic effects, 𝜮, has 

a special structure that can be interpreted as a product of a VCOV defined on the genotypes, 

𝜮𝐺, where pedigree and/or marker information determine correlations between genotypes, and 

another VCOV defining the genetic variances and correlations between traits, 𝜮𝑇, where each 

trait has its unique genetic variance and each pair of traits has its unique genetic correlation. 

The above multi-trait model is customarily turned into a multi-trait genomic prediction model 

by defining the matrix 𝜮𝐺 in terms of similarities between marker profiles of genotypes [87]. 

A multi-trait model can be generalized to multiple environments: 𝑦𝑖𝑗
𝑘 = 𝜇𝑖𝑗

𝑘 + 𝐺𝑖𝑗
𝑘 + 𝜖𝑖𝑗

𝑘  with 

intercept 𝜇𝑖𝑗
𝑘  and a random genetic effect 𝐺𝑖𝑗

𝑘  and a residual 𝜖𝑖𝑗
𝑘 . The VCOV for the genetic 

effects has a multi-variate normal distribution with zero mean and will have to represent the 

trait by environment variances and correlations. In the context of genomic prediction models 

for multi-environment data with G×E, VCOV structures for the environments have been 

described [88,89]. The VCOV for environments can be based on similarity in environmental 

characterization between environments, a generalization of the fixed factorial regression 

models, see next section, like in [89,90] and [91]. For the simultaneous modelling of VCOV 

structures for genotypes, environments and traits, see [92]. 

For the identification of multi-trait mixed models one can use log-likelihood ratio tests to 

compare different VCOV structures for 𝐺𝑖
𝑘 or 𝐺𝑖𝑗

𝑘  (see [93]) where the differences relate to how 

to combine pedigree and marker information for the genotypes in 𝜮𝐺 [94–96], which traits to 

include alongside yield in 𝜮𝑇, and how to efficiently represent the relations between 

environments in a VCOV for environments, 𝜮𝐸, and/or which environmental characterizations 

to use to calculate environmental correlations [89]. To test the utility of secondary phenotyping 

information, log-likelihood ratio tests can compare the fit of multi-trait models with differing 

sets of secondary traits. See also [97]. If these tests cannot be applied, because the VCOV 

models are not nested, then information criteria like AIC or BIC may be used [98,99]. Of course, 

models can also look at the predictive ability of models with different sets of secondary 

phenotypes. 
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The most common multi-trait prediction scenario considers yield and basic phenotypes 

measured simultaneously at the end of the growing season (e.g. [100,101]). A second (and less 

explored) scenario combines information from yield measured at harvest with low level 

phenotypes measured over multiple time points during the growing season, or with higher order 

traits that summarize the response of low level traits over time. Incorporating the genotype 

specific responses during the growing season into a prediction model provides a better insight 

in the traits underlying adaptation to particular growing conditions [8,72,102].  

3.4. Illustrative examples of multi-trait prediction to incorporate high precision and whole-

plant platforms 

One example for multi-trait prediction is the use of aerial measurements of canopy temperature, 

and green and red normalized difference vegetation index (NDVI) as secondary phenotypes to 

increase accuracy for grain yield in wheat [30]. In [30], single trait predictions were compared 

with multi-trait predictions across environments differing for the level of drought and 

temperature stress. In this example, prediction accuracy for yield increased by 70%, averaged 

across environments. The benefit from modelling multiple traits simultaneously was similar for 

all environmental conditions.  

An important issue to be considered when doing multi-trait prediction in multiple environments 

is to which extent those secondary phenotypes are related to phenology. Correcting for days to 

heading improved single-trait prediction accuracies across environments, suggesting that the 

G×E variance for grain yield corrected for days to heading is lower than that of uncorrected 

grain yield [30]. For both within- and across-environment prediction, correcting for days to 

heading reduced the genetic correlations between grain yield and the secondary traits, which in 

turn reduced the accuracy gained from including secondary trait data. A strategy to take full 

advantage of secondary trait data while avoiding indirect selection on a phenological trait may 

be to include data on the phenological trait in a multivariate prediction model alongside with 

any available secondary traits, and then use the multivariate BLUPs to calculate a selection 

index with yield and the phenological trait weighted appropriately [30]. 

3.5. Factorial regression incorporating platform traits for prediction of yield in the field 

In a factorial regression approach for platforms, we have to assume for statistical reasons that 

platform traits are measured without error, which in practice means little error, and can therefore 
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be used as genotypic covariables in factorial regression models to predict yield for the field. 

Typically on a platform, a set of genotypes is measured and the secondary phenotypes become 

genotype specific covariables. However, by a smart use of platforms to measure development-

related traits, it is also possible to define genotype and environment specific covariables (see 

example below). The prediction models can be of different classes. Simplest are regression 

models in which either genotype or genotype by environment specific covariables are 

introduced to predict a target trait. The complexity of the factorial regression model depends on 

the number and type of genotypic and environmental covariables that are included in the fixed 

part of the model and the assumptions that are made with respect to the structuring of the 

random residual. 

A simple statistical model for the value of a primary field trait (yield) for genotype i in 

environment j is: 𝑦𝑖𝑗
𝑓

=  𝜇𝑗
𝑓

+ 𝑔𝑖
𝑓

+ 𝑔𝑒𝑖𝑗
𝑓

 + 𝜖𝑖𝑗
𝑓

, with 𝜇𝑗
𝑓
 a fixed environmental intercept, 𝑔𝑖

𝑓
 a 

fixed genetic main effect, 𝑔𝑒𝑖𝑗
𝑓

 fixed G×E, and 𝜖𝑖𝑗
𝑓

 a random residual, which can be structured 

in various ways. To start, for the G×E term, the purpose will be to identify genotypic covariables 

that can be combined with environmental covariables and leave a proportionality constant to be 

estimated, 𝑔𝑒𝑖𝑗
𝑓

= ∑ 𝜃𝑐𝑑𝑦(𝒙𝑖)𝑐
𝑠𝑧𝑗𝑑

𝑒
𝑐∈𝐶,𝑑∈𝐷 + 𝛿𝑖𝑗

𝑓
, with 𝑦(𝒙𝑖)𝑐

𝑠 a genotype specific predictor 

measured at the phenotyping platform with a genetic basis contained in 𝒙𝑖, 𝑧𝑗𝑑
𝑒  an environmental 

characterization, and 𝜃𝑐𝑑 a scaling constant for the product 𝑦(𝒙𝑖)𝑐
𝑠𝑧𝑗𝑑

𝑒  that requires estimation. 

Lastly, 𝛿𝑖𝑗
𝑓

 represents a lack of fit term. The full sets of genotypic and environmental covariables 

are denoted by C and D, respectively. Although the genotypic specific platform traits can be 

related to their genetic basis by fitting a QTL or genomic prediction model this extra step of 

modelling is optional in that the field trait can be predicted directly from the platform traits at 

the phenotypic level as well as from their predictions from a genetic model. The use of a genetic 

model for the platform traits allows extending the selection set of genotypes by predicting 

platform trait values for non-phenotyped genotypes (at the platform). The genotypic and 

environmental covariables can include quadratic and cross product terms as well to allow the 

fitting of response surfaces. Another useful generalization is to allow the covariables to be 

expressed with respect to a spline basis.  

The approximation of the field response G×E model term by products of platform genotypic 

covariables and field environmental characterization covariables can equally be applied to the 

total of genotype dependent terms as follows: 𝑔𝑖
𝑓

+ 𝑔𝑒𝑖𝑗
𝑓

= ∑ 𝜃𝑐𝑑𝑦(𝒙𝑖)𝑐
𝑠𝑧𝑗𝑑

𝑒
𝑐∈𝐶,𝑑∈𝐷 +  𝛿𝑖𝑗

𝑓
 . 
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For the fitting of predictive models of the above types linear mixed models, penalized 

regressions and Bayesian approaches are required that allow for the modelling of the residual 

terms 𝛿𝑖𝑗
𝑓

 and 𝜖𝑖𝑗
𝑓

 with general variance-covariance structures allowing for kinship relationships 

between genotypes and heterogeneity of variance and correlation for environments. An 

important problem is the selection of predictive genotypic and environmental covariables in 

variable selection procedures. For penalized regression the choice of penalties requires 

attention, which translates to the choice of priors in the Bayesian context. The complicating 

issue is the simultaneous selection or penalization of information in the genotypic and 

environmental direction.  

Selection of predictive environmental covariables becomes even more difficult - yet even more 

vital - when considering high-frequency data obtained from sensors. Weather stations and soil 

moisture probes report environmental conditions throughout the growing season, on a daily, 

hourly, or even more frequent basis. These characterizations potentially can be incorporated as 

environmental covariables after variable selection or as principal components after 

dimensionality reduction, but then the G×E interactions at any given time point of observation 

will be lost. 

3.6. Illustrative examples of factorial regression incorporating platform information  

To build factorial regression models for prediction of yield in the TPE, a platform may be used 

to estimate genotype specific phenologies. Subsequently, for individual genotypes the time 

spent in different phenological stages can be calculated. The next step is to calculate summary 

statistics for environmental variables like minimum, maximum and average temperature, 

rainfall, radiation, and further variables for each genotype in each developmental stage. The 

assigned value for an environmental covariable in environment j for a genotype i in a particular 

growth stage depends on the beginning and end time of that growth stage for that genotype in 

that environment. Therefore, the covariable should be indexed by genotype, i, and environment, 

j, as well as the covariable itself, d: 𝑧𝑖𝑗𝑑. G×E can be modelled in terms of such genotype 

specific environmental covariables as 𝑔𝑒𝑖𝑗 = ∑ 𝛽(𝒙𝑖)𝑑𝑧𝑖𝑗𝑑𝑑∈𝐷  , with the genotypic 

sensitivities, 𝛽(𝒙𝑖)𝑑, being a (possible) function of a SNP profile. In maize, the progression of 

phenological stages closely follows thermal time, with a nearly constant leaf appearance rate 

[102]. Thermal time based on meristem temperature can be used to calculate leaf stages at the 

platform and in the field, provided that the leaf emission rates are the same. Leaf stages 
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correspond to developmental stages of the ear [103] and can be used to define phenological 

periods. So, measuring leaf appearance at the platform allows to define the length of 

phenological stages in the field and to calculate the environmental conditions working at a 

particular genotype in a field experiment. In that way, environmental covariables can be 

calculated that are genotype and environment specific. With respect to those covariables, 

genotypic sensitivities are estimated. For the maize panel, three environmental covariables 

could be identified that explained a substantial part of the G×E [19]. These sensitivities could 

successfully be predicted from marker profiles in a genomic prediction. Therefore, the G×E in 

this example could be predicted from marker data and environmental covariables by using a 

factorial regression model. The platform served to estimate the length of genotype specific 

phenological stages and environmental characterizations.  

3.7. Structural equations and network models 

Structural equation models (SEMs) are an alternative class of statistical models describing the 

relations between primary traits and secondary traits [104]. In their simplest form, SEMs 

describe functional relations among traits in a single environment and at a single time point. 

The response for genotype i and trait k is then modelled as 𝑦𝑖
𝑘 =  𝜇𝑘 + ∑ 𝜆𝑣

𝑘 𝑦𝑖
𝑘  + 𝜖𝑖

𝑘
𝑣∈𝑝𝑎(𝑘) , 

where 𝜇𝑘  is a trait specific intercept, 𝑝𝑎(𝑣) is the set of parents of trait k (i.e. the traits affecting 

trait k), and the 𝜆𝑣
𝑘’s are path coefficients, describing the strength of the relations. In the classical 

SEM literature [105], the functional relations are linear and the errors Normal, but 

generalizations are possible [106]. See e.g. [107] for a non-linear example in rice. SEMs are 

conceptually similar to factorial regression and crop growth models (in the sense that a primary 

trait is modelled in terms of component traits), but are more suitable for modelling additional 

levels of biological variation: the components can in turn depend on metabolites, methylation, 

proteins, gene expression, etc. The main advantage of structural models over regression models 

is the ability to predict the behaviour of the system after an intervention (i.e. selection decision), 

which mathematically is defined as a change in one or several of the structural equations. This 

property makes SEMs a tool for ideoptype design, helping breeders to define a selection 

strategy. 

While SEMs rely on functional relations specified beforehand, methods for causal inference 

aim to learn relations between traits from observational data, which is of particular interest for 

traits that are only partially understood [108]. The earliest causal inference methods such as the 
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PC-algorithm learn relations by estimating and comparing all the relevant conditional 

(in)dependencies between variables [109]. Under certain assumptions (notably the absence of 

feedback loops and latent variables) this gives the partially directed graph that is most consistent 

with the data.  

In the context of G2P models, causal inference methods have been used to model relations 

between traits at several biological levels and QTLs [110–117], or between random genetic 

effects [118,119]. Several causal inference methods have also been used to estimate causal 

effects among yeast traits, outperforming regression approaches [120,121].  

More recent causal inference approaches rely on invariance or time-course data [122,123]. 

Although longitudinal networks have shown promise in other fields [124], they have not yet 

been assessed in the context of plant breeding, making them worthwhile for exploration in 

further research. Another important open question is the extension to structural models for 

multiple environments. Variation in genetic correlations between traits across environmental 

conditions is an important form of G×E [92,125,126]. Network models could make such 

changes visible in a biologically meaningful way.  

4. Crop growth models as G2P models 

4.1. A crop growth modelling framework aiming at prediction 

The G2P models in section 3 are all static, the time dimension proper to growth and 

development can only be incorporated in a limited and somewhat artificial way. Crop growth 

models (CGMs) present a class of G2P models that integrate genetic and environmental 

variables in a natural way over time [53,61,127,128]. This solves several problems. First, the 

need for dimensionality reduction or variable selection of environmental covariables is 

eliminated. Second, the interaction of the crop with the environment across time is 

automatically accounted for. This essentially eliminates the need to correct for flowering time, 

as phenology is incorporated into the model. Finally, it takes advantage of previously 

determined biological interactions and observations of plant growth and development to 

estimate the target (such as yield) from a set of higher order traits [129]. The higher order traits 

used to parameterize the CGM for the target trait may exhibit higher heritability and stability 

across environments than the target trait itself, and therefore selection on those secondary traits 
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may be more efficient than selection on the target trait itself, as long as the physiological 

processes are properly modelled [129].  

In section 2.7, we described a CGM for a target trait f for genotype i in environment j as follows 

𝑦𝑖𝑗
𝑓

(𝑇𝑗) =  ∫ 𝔉𝑡 [ (𝒚
𝑠∈𝑆𝑃(𝒙𝑖)) ;  (𝒚

𝑠∈𝑆𝐼(𝒙𝑖, 𝒛(𝑡𝒋)))
 
] 𝑑𝑡

𝑇𝑗

0
+ 𝜖𝑖𝑗

𝑓
. 

The target trait, yield, depends on physiological parameters without environment and time 

dependence, (𝒚
𝑠∈𝑆𝑃(𝒙𝑖)), and intermediate traits with G×E that are environment and time 

dependent, (𝒚
𝑠∈𝑆𝐼(𝒙𝑖, 𝒛(𝑡𝒋))). The time varying environmental variables, 𝒛(𝑡𝒋) determine the 

environment dependence of the intermediate traits. The secondary traits are functions of SNP 

variation via the argument 𝒙𝑖, the SNP profile. The target trait is evaluated at the end of the 

growing season, for t = Tj. The dynamical function ∫ 𝔉𝑡[[; ]]𝑑𝑡
𝑇𝑗

0
 integrates physiological and 

intermediate traits over time,  

For most commonly used models, the time dimension is expressed at a daily time step, although 

hourly time steps have been recently proposed for sugar cane [130] and potato [131]. Therefore, 

most CGMs are not continuous time but discrete time models. Models combining processes 

occurring at different times scales and with facilities for feedback loops between physiological 

parameters and intermediate traits can generate reproducible emergent properties at plant level 

[12,55].  

For the estimation of parameters in a CGMs, Bayesian approaches are attractive [132,133]. 

Bayesian approaches have powerful capability to optimize multiple parameters in a nonlinear 

and complex model and to quantify the uncertainty in estimated parameters and predictions. 

Good demonstrations of Bayesian approaches in the integration of CGMs and genomic 

prediction models are [61,134,135]. The Bayesian framework enables information sharing 

between genotypes, which can contribute to the improvement of prediction accuracy. Moreover, 

the integration may enable the dissection of a target trait that has nonlinear relationship with 

genome-wide markers into component traits which are controlled in purely linear way [61]. 

Another advantage of Bayesian approaches is the possibility to use expert knowledge of 

breeders and/or historical experimental data as prior information.  
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Modelling can also be useful to evaluate the design of phenotyping strategies and the efficiency 

of resource allocation. Key design issues concern the number and type of environments to 

include in METs and the number and type of genotypes and traits that can be phenotyped. Other 

relevant design issues are how to choose the selection intensity on individual traits to arrive at 

the realisation of an ideotype, and how frequent and how precise phenotyping methods needs 

to be to increase prediction accuracy. 

4.2. Construction of a training set of environments 

When G×E is present in the TPE, the choice of which environments to use for phenotyping 

becomes crucial to obtain high prediction accuracies, as the environments used for training 

should represent well the environmental conditions in which future varieties will be grown [91]. 

The structure of G×E has a large influence on whether it is convenient to obtain field 

phenotyping information from METs (relying on the natural year-to-year variation to represent 

the range of environmental conditions relevant to the TPE), or whether it is necessary to use 

managed stress environments to ensure that all relevant levels of environmental variation are 

covered. The choice for one or the other strategy will depend on how well locations in an 

average year represent the whole range of environmental conditions and on the estimated year-

to-year variation [8,136,137].  

Crop growth models offer a valuable tool to characterize the G×E structure and to separate 

repeatable from non-repeatable G×E components. For example, the crop growth model APSIM 

was used to classify environments according to their water-deficit patterns [138] and to give an 

impression of the repeatability of a given water-deficit pattern at a given location, across years. 

The APSIM model has also been used to define the drought patterns of maize in Europe [139]. 

These results were used to develop a detailed QTL model with environment dependent QTL 

expression. Combining the drought patterns with temperature variation resulted into six 

different environmental scenarios that were introduced as a classifying factor in a multi-

environment QTL model [19]. Such an approach allows to identify the most likely water-stress 

scenario in a particular location and the QTL-alleles that should be selected. The CGM output 

can also be used to develop statistical criteria to optimize METs to increase prediction accuracy 

for the target trait [140] or to characterize genotype-by-environment-by-management 

interactions, helping breeders, physiologists and agronomists to better understand the drivers 

of genotype adaptation [129,141]. 
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4.3. Construction of a training set of genotypes 

The parametrization of statistical and crop growth models requires intensive phenotyping 

efforts. In place of measuring expensive physiological traits on all genotypes of a selection set, 

one can try to estimate these parameters on a reduced training set of genotypes and then predict 

the parameters for the total of the selection set of genotypes by QTL or genomic prediction 

models. For the construction of a training set of genotypes that well represent the selection set, 

a diversity analysis based on molecular markers is useful. See [142–144] for examples of 

strategies to select genotypes for the training set. Alternatively, and relying only on phenotypic 

data, principal components analysis of morpho-physiological traits can be used to identify an 

appropriate training set for estimating growth model parameters. For an example in sweet potato 

germplasm, see [145]. 

4.4. Ideotype construction and identification of selection targets 

Once the major environments types encountered in the TPE are identified and characterized, it 

is necessary to identify which traits are more likely to improve adaptation to a specific 

environment. Traits differ in their influence on grain yield and this influence might change from 

one environment type to the next. CGMs offer the opportunity to evaluate the effect of explicitly 

breeding to modify specific traits underlying yield, allowing breeders to design an ideotype that 

is best adapted to each environment type [77,129,141]. Most of the suitable CGMs are structural 

models, considering the resource capture and allocation, without taking into account the spatial 

arrangement and geometry of each plant organ. There is another type of models (the functional-

structural plant models, FSPM), which incorporate the 3-D spatial arrangement of plant organs 

by explicitly modelling plant architecture [146–150].  

The mechanistic model GECROS has been used to evaluate the impact of increased 

photosynthesis on rice biomass production [151]. The GECROS model considers the 

relationships between traits at different levels of organization over time, enabling to upscale 

from a basic process as photosynthesis to its effects at a whole crop level. A similar CGM 

aiming to scale up from photosynthesis to canopy level is the Diurnal Canopy Photosynthesis 

Simulator (DCaPS), implemented as a web-application [152]. The DCaPS package allows to 

assess likely canopy-level consequences of changes in photosynthetic properties, connecting 

photosynthesis with crop growth and development. 
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Virtual phenotyping using a functional structural plant modelling (FSPM) approach can help to 

support the decision cycle of plant performance analysis by integrating different traits into a 

spatial-temporal whole plant simulation [146–150]. For example, an optimization procedure 

was applied to the functional–structural plant model MAppleT to evaluate which parameter 

combinations would allow to identify the trait combinations leading to the optimal phenotypes 

for the target trait [153]. 

4.5. Evaluating the impact of phenotyping schedule on prediction accuracy 

The approach to characterize G×E using CGM [138,154,155] can be extended by combining 

the APSIM model with knowledge from quantitative genetics, simulating an explicit genetic 

basis for the APSIM parameters that are segregating in the population [156]. Such an approach 

would simulate trait dynamics across environments, characterizing G×E patterns and the 

change of trait correlations over time. For example, a wheat diversity panel segregating for 12 

parameters of APSIM-wheat over 84 environments in the Australian wheat belt was simulated 

[156] (a subset of the environments shown in [138,157]). The output of these simulations 

allowed to evaluate the potential of biomass measured during the growing season to improve 

yield predictions with a multi-trait genomic prediction model. A further opportunity offered by 

the combination of statistical genetic models and CGMs is the evaluation of the impact of 

phenotyping frequency and the size of measurement error on trait heritability and prediction 

accuracy for the target trait. In such a way, an approach that combines CGMs like APSIM-

wheat with a quantitative genetic basis potentially allows to evaluate phenotyping and selection 

strategies across environments.  

5. Challenges ahead 

This paper has discussed a number of G2P modelling approaches to take into consideration the 

different sources of phenotypic information and their underlying G×E structure. Unfortunately, 

the fast implementation of phenotyping technologies has not necessarily been accompanied by 

a proportional implementation of facilities for data storage and data interoperability. In the same 

manner, protocols for the design of experiments specifically in phenotyping platforms are not 

yet applied satisfactorily everywhere. In this regard, European initiatives as EMPHASIS 

(https://www.plant-phenotyping.org/Data_Policy) and EPPN2020 (https://eppn2020.plant-

phenotyping.eu/) will play a central role in the successful implementation and dissemination of 
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phenotyping technologies into breeding programmes by standardizing the phenotyping designs, 

phenotyping/envirotyping protocols and data storage. 

Throughout this paper, we have discussed a number of G2P models that can be used to predict 

phenotypes across environments and will help to obtain a larger response to selection. Although 

the central role of G2P models for genetic gain is not under discussion, little will be gained 

from these models, without their implementation in an effective pipeline that facilitates the 

integration of data pre-processing, prediction and decision support tools [158]. This aspect of 

an effective implementation of G2P models is still at an early stage, but its development 

promises to play a central role in the years to come. 

6. Concluding remarks 

 Additional phenotyping can be done at growth chambers, platforms, managed environment 

trials or a sample of (field) multi-environment trials. 

 Genotype-to-phenotype modelling (G2P) plays a central role in enabling breeders to 

combine the different sources of phenotypic and genotypic information and assisting them 

in the design of phenotyping strategies. 

 Modelling steps involve image pre-processing, correcting for spatial trends within each trial 

(low level traits), dynamical modelling of genotypic responses within environments against 

time thereby producing intermediate order traits, modelling dynamics parameters in their 

dependence on environmental gradients and calculate sensitivities (higher order traits), and 

combining the information of multiple higher order traits with environmental data to predict 

the target trait.  

 G2P models for the target trait from underlying component traits involve statistical models 

like multi-trait models, factorial regression models, and crop growth models.  

 Design issues that can be addressed with G2P models involve the decision of which 

environments and genotypes to use for phenotyping, which traits to prioritize in which 

environment type (ideotype design) and what kind of phenotyping schedule to use in terms 

of measurement frequency and precision to increase prediction accuracy for the target trait.  
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Figure 1. Identification of young wheat plants to count plant density per unit area. After objects are isolated and 

sized from rows, the data are processed to predict intersecting objects and estimate their number (Liu et al., 2017). 
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Figure 2. Raw plot data (A) are adjusted for experimental design factors and spatial variation (B). The results are 

adjusted genotypic means (best linear unbiased estimators, BLUES) or predictions (best linear unbiased predictors, 

BLUPS) per time point and environment (C).   
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Figure 3. Modelling the dynamics of phenotypic traits. Spatially adjusted genotypic means are modelled in their 

dependence on time. A logistic curve is fitted and genotype specific parameters describing the dynamics are 

extracted. (A) Model formulation for logistic curve. (B) Logistic curves as fitted for a genotype G1 on the dynamics 

of leaf length under two water stress conditions (WS1, WS1) and three temperature stress conditions (Temp1, 

Temp2, Temp3). (C) as (B) for a genotype G2. Genotype G1 in (B) shows a low sensitivity to water stress and a 

high sensitivity to temperature stress, whereas G2 in (C) shows a high sensitivity to water stress and a low 

sensitivity to temperature stress. 
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Figure 4. Genotype specific parameters expressing dynamics of leaf length on time as extracted across different 

environmental conditions, see Fig. 3, are modelled in relation to water and temperature stress characterizations. 

For leaf elongation rate (trait 1), a two dimensional a response surface is fitted. For other higher order traits (trait 

2 and 3) one dimensional reaction norms are fitted as these traits depend in a simpler way on the environmental 

conditions. In the fitted response surface for leaf elongation rate the yellow points indicate conditions that were 

sampled in experiments. The higher order traits 1, 2 and 3 together determine a response surface for yield, the 

target trait. The prediction model for yield has trait 1, 2 and 3 as inputs as well as water and stress temperature 

characterizations. 
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Figure 5.  A response surface and four response curves for yield in maize. (A) The response surface for a parent 

of a bi-parental cross obtained from crop growth simulations using inputs from 19 weather station locations in 

Illinois, with a heritability of 0.85 per location. (B) For the longitude indicated by the dotted vertical red line in 

(A) four genotypes are compared for their dependence of yield on latitude; the two parents of a bi-parental cross, 

plus two offspring lines showing extreme values for the trait total leaf number (TLN). 
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Table 1. The modelling process that converts raw data into strongly model dependent predictions, thereby adding 

value to data over successive cycles of modelling. Dimensions of input data decrease because data are replaced by 

integrative parameters that become increasingly model dependent.  

Size  

input  

data 

Modelling  

step 
Input 

Model / 

strategy 
Output 

Model 

dependence 

output 

 Feature 

extraction 

Multiple 

pixels/wavelengths 

for each plot, 

genotype, time point 

and environment 

(low level traits) 

Segmentation 

Organ Tracking 

Indices (e.g. 

NDVI) 

Machine 

learning 

Trait value for 

each plot, 

genotype, time 

point and 

environment 

 

Correcting for 

design factors 

and spatial 

trends 

Trait value for each 

plot, genotype, time 

point and 

environment 

Mixed models: 

  - AR⨂ AR 

  - SpATS 

Adjusted trait 

value for each 

genotype, time 

point and 

environment 

Dynamical 

modelling  

Trait value for each 

genotype, time point 

and environment 

 

Standard 

mathematical 

functions 

(Logistic, 

Gompertz) 

Repeated 

measures 

Splines 

Crop growth 

models 

Genotype 

specific 

parameters for 

each 

environment 

(intermediate 

level traits) 

Modelling 

dependence on 

environmental 

gradients 

Genotype specific 

parameters for each 

environment 

 

Standard 

mathematical 

functions  

Splines 

Crop growth 

models 

 

Genotypic 

sensitivities to 

environmental 

covariables 

(higher level 

traits) 

Target trait 

prediction 

Higher order traits 

and environmental 

characterizations 

 

Mixed models 

(multi-trait, 

factorial 

regression) 

Crop growth 

models 

Genotype 

specific yield 

predictions per 

environment 
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Table 2. Correlated response framework for high precision and whole-plant platforms to predict phenotypes in the 

field. 

 

Platform  Field Ref 

QTLs of maximum leaf 

elongation rate 
Co-location 

QTLs of anthesis-silking 

interval in WW fields 

[52] 
QTLs of response of leaf 

elongation rate to WD 
Co-location 

QTLs of anthesis-silking 

interval in WD fields 

This suggested that common genetic mechanisms are shared between the 

growth of reproductive organs in the field and leaf growth on the platform 

QTLs for maximum leaf 

elongation rate 
Co-location 

QTLs involved in the 

growth of shoots, roots, 

reproductive organs 

[81, 82] 

Sensitivity of maize leaf 

growth to soil water deficit 
Correlation 

Sensitivity of maize grain 

number to soil water deficit 

around flowering time 

[83] 

Genotypic sensitivity of leaf 

elongation to evaporative 

demand and of leaf width to 

intercepted radiation 

Prediction 

equation 

with 

genotype-

specific 

parameters 

Predict individual leaf area 

in a network of field 

[57] 

Allelic effects underlying 

leaf width and length 
Correlation 

Allelic effects underlying 

leaf width and length 

Although there was G×E between platform and field experiments, the 

correlated QTL effects would still allow to use platform data to improve 

selection for leaf area in field conditions. 

Biomass, plant leaf area, 

length of leaf 2 and 3, leaf 

breadth 

Correlation 

and indirect 

selection 

Biomass 

[84] Illustrates the importance of jointly considering the magnitude of genetic 

correlations between traits measured on the platforms and those in the field 

and trait heritability to assess the potential of traits to aid selection for early 

biomass in the field 
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