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Abstract 10 

Powerful data pretreatment strategies inspired from the field of metabolomics were adapted to chemical food 11 

safety context to enable samples discrimination by multivariate methods based on low abundance ions. A 12 

highly automated workflow was produced. The open-source XCMS package was used and efficient data 13 

filtration strategies were set up. Data were treated using Independent Components Analysis, and data mining 14 

strategies developed to automatically detect and annotate ions of low abundance by coupling blind data 15 

exploration strategies with a broad scale database approach. Our method was efficient in discriminating tea 16 

samples based on their contamination levels (even at 10 µg.kg-1) and detecting unexpected impurities in the 17 

spiking mix. Several “tracer” contaminants were considered, covering a broad range of physicochemical 18 

properties and structural diversity with overall 66% detected and annotated blindly. The methodology was 19 

successfully applied to a data set exhibiting only 3 “tracer” contaminants (at 50 µg.kg-1) and more product 20 

diversity. 21 

Keywords: Independent Components Analysis; XCMS; ToF; Chemical food safety; Non-targeted approaches; 22 

Unexpected contaminants  23 
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1. INTRODUCTION 24 

In recent years, a new field of food research called “Foodomics”, defined as “a discipline that studies the food 25 

and nutrition domains through the application of omics technologies”, has emerged (Cifuentes, 2009). Even 26 

though foodomics was first intended for the study of major constituents of food products, related for instance 27 

to their authenticity (Ortea et al., 2012), its potential contribution to trace analysis for chemical food safety 28 

assessment has also been raised (Antignac et al., 2011). However, chemical food safety assessment faces 29 

several challenges since food matrices are highly complex, chemical contaminants are numerous and diverse 30 

(pesticides, mycotoxins, process-induced toxicants or migrants from packaging), and often found at trace levels 31 

(down to µg.kg-1) (Antignac et al., 2011). Classical targeted analysis strategies are limited since unexpected or 32 

unknown contaminants remain non-detected (Tengstrand, Rosén, Hellenäs, & Åberg, 2013). Therefore, there 33 

is a rising interest (and demand) for developing untargeted (also referred as “non-targeted”) analyzes of 34 

contaminants in food products using a relevant instrumental / analytical strategy combination, as pointed out 35 

by numerous reviews (Antignac et al., 2011; Castro-Puyana, Pérez-Míguez, Montero, & Herrero, 2017; 36 

Knolhoff & Croley, 2016; Lehotay, Sapozhnikova, & Mol, 2015). There is a consensus on the fact that 37 

hyphenated techniques (especially high resolution instrumentation operated in full-scan mode like Ultra-High 38 

Pressure Liquid Chromatography coupled to High Resolution Mass Spectrometry, UHPLC-HRMS) are key 39 

technologies for this application thanks to their sensitivity and broad analytical scope, as well as the formula 40 

information they provide on potential contaminants (Antignac et al., 2011; Castro-Puyana et al., 2017). Our 41 

previous study combining generic extraction and UHPLC-HRMS showed its efficiency on analysis of a wide 42 

variety of contaminants with a large range of physicochemical properties (Cladière, Delaporte, Le Roux, & 43 

Camel, 2018). 44 

Among new analytical strategies proposed for global chemical food safety assessment, suspect-screening 45 

approaches (Gómez-Ramos, García-Valcárcel, Tadeo, Fernández-Alba, & Hernando, 2016; Gosetti, 46 

Mazzucco, Gennaro, & Marengo, 2016) and relevant chemical patterns detection using data mining tools 47 

(Cotton et al., 2014) show interesting performances in terms of sensitivity. They do not require any initial 48 

analysis of the non-contaminated food product but they both rely on a priori hypotheses on the chemical 49 

structures of contaminants. On the opposite, untargeted metabolomics-like strategies require the analysis of a 50 

reference food product (to compare signals between a control and a suspect group for differences detection), 51 
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without any a priori hypotheses on the structure of potential contaminants. Hence, only untargeted strategies 52 

based on tools from the field of metabolomics might enable the real “blind” detection of unknown or 53 

unexpected trace molecules in complex food samples. The main characteristic of such untargeted approaches 54 

lies in the generation of a very high number of signals (several thousand for a single sample). Therefore, 55 

powerful data analysis strategies must be set up to increase the probability to detect contaminated samples. 56 

Early results showed their potential in detecting unexpected compounds in food products (Inoue et al., 2015; 57 

Knolhoff, Zweigenbaum, & Croley, 2016; Kunzelmann, Winter, Åberg, Hellenäs, & Rosén, 2018; Tengstrand 58 

et al., 2013). However, food matrices studied remain relatively simple (orange juice, milk) with either high 59 

levels of contamination (near mg.kg-1) (Tengstrand et al., 2013) or low molecular diversity of chemical 60 

contaminants (Inoue et al., 2015; Knolhoff et al., 2016). The latest published paper (Kunzelmann et al., 2018) 61 

shows promising results in terms of sensitivity (contamination detection down to 25 µg/kg) , but only focused 62 

on pesticides. More work is therefore needed to develop such untargeted strategies in the food safety field, 63 

especially considering even lower contamination levels (down to 10 µg.kg-1 as frequently required by the 64 

European regulation) and a wider contaminants diversity (including migrants from packaging and process-65 

induced toxicants). To that end, the method proposed here relies on the combination of three tools to take full 66 

advantage of UHPLC-HRMS data: (i) data filtration based on univariate statistics, (ii) separation of sample 67 

groups and highlighting of discriminating ions using Independent Components Analysis (ICA), an 68 

unsupervised multivariate method based on source signals decomposition (Rutledge & Jouan-Rimbaud 69 

Bouveresse, 2015), (iii) automated data mining-tools to help the annotation of discriminating ions. Thus, our 70 

data analysis strategy combines the use of XCMS open-source R package (Smith, Want, O’Maille, Abagyan, 71 

& Siuzdak, 2006) and ICA method: to the best of our knowledge, this combination for MS data analysis in 72 

untargeted food safety analysis is successfully performed for the very first time. Unless previous untargeted 73 

approaches reporting the use of either vendor (Knolhoff et al., 2016) or in-house tools (Tengstrand et al., 2013), 74 

that often work as “black boxes”, our approach benefits from using a freely available package that exists for 75 

more than 10 years and is supported by a dynamic and worldwide scientific community, which made it become 76 

very versatile for MS data analysis. On top of that, it became user friendly thanks to the development of free 77 

web-based platforms like XCMS-Online (Tautenhahn, Patti, Rinehart, & Siuzdak, 2012) or 78 

Workflow4Metabolomics (Giacomoni et al., 2015). 79 
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Tea has been chosen as the development foodstuff, for it is the most consumed hot beverage in the world 80 

(Chang, 2015). Moreover, in its raw product form (tea leaves), it is classified as a difficult commodity by the 81 

European Commission (SANTE/EU, 2015) which makes it very interesting as a methodological development 82 

food sample. In addition, tea is frequently produced under remote areas where agricultural and production 83 

practices may be less controlled than in Europe. Therefore this food product is the subject of frequent alerts on 84 

the European Rapid Alert System for Food and Feed, relative to non-authorized pesticides or contaminant 85 

levels above regulated limits (i.e. minimum 10 µg.kg-1 for most pesticides). Finally, recent metabolomics-like 86 

approaches have been reported on tea but they only focus on quality and authenticity issues (Fraser et al., 2013; 87 

Pongsuwan et al., 2008), i.e. on major constituent. The methodology that we propose here focuses on trace 88 

compounds, with specific analytical methods and data treatment strategies to be set up to achieve their 89 

detection. 90 

2. MATERIAL AND METHODS  91 

2.1 CHEMICALS AND REAGENTS 92 

Acetonitrile (ACN) (HPLC plus gradient, LC/MS), water, methanol (MeOH) and formic acid (FA) (all LC/MS 93 

grade) were purchased from Carlo Erba. Ultrapure water (Milli-Q®) was produced by an Integral 3 water 94 

purification system from Millipore®. The compound used for ToF-MS calibration was Leucine Enkephalin 95 

(LC/MS grade), purchased from Waters®. 96 

Analytical standards solutions (100 µg.mL-1 in ACN or MeOH) for 21 pesticides, 4 mycotoxins, 2 process-97 

induced toxicants and labelled compounds acrylamide-d3, dimethoate-d6 and malathion-d6 were purchased at 98 

CIL Cluzeau France. Ochratoxin-d5, bisphenols A, F and S, bisphenol A diglycidyl ether (BADGE), bisphenol 99 

F diglycidyl ether (BFDGE) and bisphenol A-d14 (purity > 99%) were provided by Sigma Aldrich (Saint-100 

Quentin Fallavier, France). Two pooled stock solutions containing respectively all non-labelled molecules 101 

(each at 1 µg.mL-1), and all labelled molecules (each at 1 µg.mL-1) were prepared in ACN and stored in the 102 

fridge. Regularly, target analyzes of these solutions were done to check for their stability. 103 

 104 

 105 
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2.2 SAMPLE COLLECTION AND STUDY SET-UP 106 

The goal of this work is to assess the ability of a workflow based on UHPLC-HRMS and chemometrics 107 

methods (including multivariate analysis) to blindly detect an unexpected contamination in a food sample. To 108 

that end, a study was designed so that this workflow would face two very different situations: (i) a quite 109 

homogeneous product (i.e. samples from one brand) contaminated at several levels by a large number of 110 

molecules (development data set) (ii) a heterogeneous product (i.e. samples from two brands) contaminated at 111 

a single level by only few molecules (validation data set). Raw data sets have been deposited to the EMBL-112 

EBI MetaboLights database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552) with the respective 113 

identifiers MTBLS752 and MTBLS754 for data set n°1 (development) and n°2 (validation of the approach) 114 

(Haug et al., 2013). The complete data sets can be accessed at 115 

https://www.ebi.ac.uk/metabolights/MTBLS752 and https://www.ebi.ac.uk/metabolights/MTBLS754. 116 

Green teas were purchased at local retailers (Paris, France) and crushed in our laboratory using a mortar and a 117 

pestle. Green tea n°1 is a Japanese Bancha tea, and green tea n°2 a Chinese tea. They were used to generate 118 

the development data set (green tea n°1) and the validation data set (green teas n°1 & 2). 119 

Two spiking mixes were prepared. The first one (mix n°1), intended for the development data set, consists in 120 

a pool of 32 chemical contaminants (a detailed list of compounds used can be found in Supplementary data, 121 

Table S.1). These target molecules, called “tracers”, were chosen to be representative of potential 122 

contaminants, both in terms of chemical structures, source types (mycotoxins, pesticides, process-induced 123 

toxicants and migrants from packaging) and analytical behavior (instrumental response, peak width, retention 124 

time and adduct / isotopic information). The second one (mix n°2) consists in selected three contaminants from 125 

the previous list, chosen for their chemical diversity, namely ochratoxin A (OTA), bisphenol S (BPS) and 126 

tolfenpyrad. 127 

For the development data set, four samples were considered (each time three sub-samples were collected to 128 

obtain triplicates of preparation): three samples spiked with mix n°1 at 10, 50 or 100 µg.kg-1, and a control 129 

sample (i.e. spiked only with the ACN solvent). Tea samples were initially analyzed using a classical multi-130 

residue method in order to check for the absence of the “tracers” considered (Cladière et al., 2018).  131 

https://www.ebi.ac.uk/metabolights/MTBLS752
https://www.ebi.ac.uk/metabolights/MTBLS754
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For the validation data set, four samples were considered as well (again three sub-samples were collected each 132 

time to get triplicates of preparation): two control samples respectively made of unspiked green tea n°1 and 133 

unspiked green tea n°2, and two suspect samples respectively composed of green tea n°1 or green tea n°2 134 

spiked at a level of 50 µg.kg-1 with mix n°2.  135 

Spiking levels were chosen in accordance to EU regulation No 396/2005 and 1881/2006. Some of the least 136 

sensitive compounds (namely deoxynivalenol, bisphenols A and F) were spiked with a magnification factor of 137 

5, and for the same reason acrylamide was spiked with a factor of 10. In addition, all sample groups were 138 

systematically spiked (at 40 µg.kg-1) with the pool of labelled molecules for analytical quality control purpose. 139 

For spiking, samples of 1 g were weighted in centrifuge polypropylene tubes (Corning, New York, USA), and 140 

spiking was performed using the lowest possible volume of solution (maximum of 100 µL). After spiking, 141 

samples were homogenized using a vortex and allowed to equilibrate for 2 hours at room temperature. 142 

The workflow employed (both for sample preparation and data treatment) is shown in Figure 1. 143 

2.3 ANALYTICAL METHOD 144 

The generic analytical method is based on previous work (Cladière et al., 2018). Tea samples were extracted 145 

using direct solvent extraction with 5 mL of an ACN/MeOH (90/10 v/v) mixture acidified with 0.1% FA, and 146 

tubes were agitated upside-down on an agitating plate during 1 h before centrifugation at 3,000 g for 10 min. 147 

The supernatant was then collected and an aliquot (2 mL) was evaporated to dryness under a gentle stream of 148 

nitrogen. The extract was further reconstituted in 0.2 mL of ACN acidified with 0.1% FA. Then 0.8 mL of 149 

ultrapure water with 0.1% FA was added in order to reconstitute 1 mL of final volume, and centrifuged at 150 

12,000 g for 10 min. At the end, 0.5 mL of the final extract was sampled and filtered at 0.2 µm using a 151 

syringeless filter vial (mini-uniprep G2, Whatman) before analysis. A Quality Control (QC) sample for each 152 

data set was prepared by pooling together 0.2 mL of final extract from every sample of the set; an aliquot of 153 

0.5 mL was then taken and filtrated at 0.2 µm using a syringeless filter vial. 154 

Analyzes were performed on a Waters® Acquity UPLC® H-Class system, composed of a quaternary solvent 155 

manager pump, a refrigerated sample manager Flow-Through-Needle and a column oven, coupled to a 156 

Waters® high resolution Time-of-Flight mass spectrometer Xevo® G2-S ToF operated in centroid mode 157 

(UHPLC/HRMS-ToF) with a mass range from m/z 60 to 800. 10 µL of the final extract were injected and 158 
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separation was performed on a C18-PFP column (150×2.1 mm, 2 µm particles diameter, ACE supplied by AIT 159 

France). An electrospray ionization source was used in both positive (ESI+) and negative (ESI-) modes. ESI+ 160 

and ESI- modes were run separately. For ESI+, the mobile phase was composed of water (A) and ACN (B), 161 

both acidified with 0.1% FA, and MeOH (C), flowing at 0.4 mL.min-1. Gradient started at 100% A and reached 162 

100% B in 10 min, being kept for 6 min before switching to 100% C to rinse the system in 1 min, being hold 163 

for 5 min, returning back to 100% A in 1 min and finally equilibrating for 3 min, with a total run duration of 164 

26 min. For ESI-, the mobile phase was composed of water buffered at pH 6.45 with 10 mM of ammonium 165 

formate (A) and MeOH (B) flowing at 0.3 mL.min-1. The gradient started at 100% A and reached 100% B in 166 

13 min, holding this condition for 7 min before turning back to 100% A in 1 min and finally equilibrating for 167 

3 min, with a total run duration of 24 min. For both chromatographic methods the temperature of the column 168 

oven was kept at 30°C. Electrospray parameters have been fixed at the previously reported values (Cladière et 169 

al., 2018). 170 

The analytical sequence started with injection of 10 mobile phase blanks in order to reach complete equilibrium 171 

of UHPLC-HRMS-ToF apparatus. Sample vials were randomized in the analytical sequence, and a blank as 172 

well as a QC sample were injected every 10 sample vials. For each ionization mode, all sub-samples were 173 

injected either in triplicate (development data set) or in quadruplicate (validation data set). 174 

2.4 DATA TREATMENT 175 

The data treatment workflow was set up to be as much automated as possible. Indeed, only few manual steps 176 

are remaining, the main one being the final curation of the automated annotation algorithm. Moreover, no 177 

information about the level or nature of contaminants are provided in the workflow, only the group information 178 

(ex: “vial n°1 belongs to group n°3”). The term “group” refers here to all injections related to the same sample 179 

(i.e. three replicates for sample preparation plus triplicates or quadruplicates of injections each time). In other 180 

word, for each sample several raw data are obtained, these being grouped together before data treatment. 181 

Step 1: Building of data matrix from raw data 182 

Vendors (Waters®) raw data files were first converted to the open-source format mzXML using ProteoWizard 183 

(Chambers et al., 2012) and then uploaded onto the Workflow4Metabolomics (W4M) platform (Giacomoni et 184 
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al., 2015). Data matrix building was then achieved using open-source XCMS package (Smith et al., 2006) on 185 

this platform.  186 

XCMS builds the data matrix from raw data files using the following workflow. First, “xcmsSet” with 187 

CentWave method (Tautenhahn, Bottcher, & Neumann, 2008) extracts peaks from the data files. Peaks are 188 

then grouped across the samples and aligned using “group”, “retcor” and then “group” functions again. The 189 

final step of the algorithm, “fillpeaks”, identifies for each sample the peaks for which this sample has no value: 190 

for these peaks, the tool integrates the signal noise in this area to avoid missing values at the end. XCMS 191 

parameter values for each step of the workflow were chosen as suggested for UHPLC-Q-ToF instruments by 192 

Patti et al. (Patti, Tautenhahn, & Siuzdak, 2013), except for the “peak width” parameter in the “xcmsSet” step 193 

which was chosen less stringent (5-60 s instead of 5-20 s) to limit data loss. A complete list of XCMS 194 

parameters can be found in Table S.2 of Supplementary material. The XCMS peak extractions were performed 195 

separately for ESI+ and ESI- sequences. Finally, the data matrix is a table gathering the different peak areas 196 

integrated by XCMS sorted by ions in row (combination of m/z and retention time) and by samples in column. 197 

Data matrix files (.txt) were then imported in Matlab using in-house scripts.  198 

Step 2: Data filtration and reduction 199 

Since the number of output ions generated by XCMS is very high (between 10,000 and 30,000), the data 200 

matrices needed to be filtrated to remove as many irrelevant ions as possible. Data cleaning by successive 201 

filtration steps is critical since an adequate filtration should enable to clean the data from irrelevant signals 202 

while avoiding or minimizing relevant chemical information loss. Data matrices were filtrated using only the 203 

group information (i.e. blind to the nature and levels of the spiked molecules). Therefore, ions that do not differ 204 

from the blanks or do not vary between samples were filtrated in order to keep only suspect ions and try to 205 

highlight a food contamination. This filtration strategy is commonly used in metabolomics approaches 206 

(Antignac et al., 2011) but applied here for the first time to non-targeted food safety analysis. It is generally 207 

based on statistical tests (t-test) designed to determine significant differences for each ion between samples at 208 

a commonly admitted p-value of 0.05 (Gika, Theodoridis, Plumb, & Wilson, 2014; Rubert et al., 2017; 209 

Thévenot, Roux, Xu, Ezan, & Junot, 2015). This strategy can be completed by using the fold change of each 210 

ion between samples: the common fold change value used is 2, but it is still under discussion for metabolomics 211 

purpose (Ortmayr, Charwat, Kasper, Hann, & Koellensperger, 2017).  212 
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Finally, filtration of data matrices composed initially of around 20,000 ions was done within three successive 213 

automated steps plus an automated pre-filtering step: 214 

a) Pre-filtering step: unusable and unreliable variables that exhibit a poor stability, meaning relative standard 215 

deviation (%RSD) on peak area above 100% in every sample group were discarded (about 50 to 100 ions 216 

discarded). 217 

b) First step of filtration: removal of ions that show no significant difference (peak area) between blank runs 218 

and any of the sample groups using pairwise t-tests results (blanks vs. sample groups, about 19,000 ions 219 

remaining).  220 

c) Second step of filtration: removal of ions that show no significant difference (peak area) between any 221 

sample groups using pairwise t-tests results (sample groups vs. sample groups, about 10,000 ions 222 

remaining).  223 

d) Third step of filtration: removal of ions that show a low fold change among sample groups, to select only 224 

ions exhibiting high contrast between sample groups. For each ion, the median value of peak areas of each 225 

sample groups (n=9, extraction triplicates, each analyzed in triplicate) was considered. The fold change 226 

is then calculated by dividing the highest median value by the lowest one (assumed to be the most 227 

concentrated sample divided by the least concentrated one, about 1,000 ions remaining after this step).  228 

Step 3: Normalization and scaling  229 

Missing values and algorithm artifacts such as zero, infinite and negative values in the data matrix were 230 

managed according to the guidelines given by Wherens et al.(Wehrens et al., 2016). Briefly, for each ion 231 

(named as “m/z – retention time” combination), any irrelevant value was replaced by the lowest value of this 232 

ion (blank excluded).  233 

The data matrix was then log- and pareto- scaled (Antignac et al., 2011), and normalized using a median-based 234 

Probabilistic Quotient Normalization (PQN) (Dieterle, Ross, Schlotterbeck, & Senn, 2006) using the QC 235 

samples. Briefly, the median of each ion in QC samples is computed. Then, for each ion, values in samples are 236 

divided by a reference value (here the median of the measurement for the ion in QC samples), leading to a 237 

ratio matrix. Then, for each sample, the median of the ratios is computed, and the initial values are divided by 238 

the ratio median.  239 
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Step 4: Multivariate data analysis 240 

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were tested in order to 241 

discriminate contaminated samples. ICA showed better performance than PCA to resolve complex signal 242 

mixtures as already demonstrated for metabolomics data (Liu et al., 2016). Therefore, ICA was used to 243 

interpret and visualize data with respect to their source signals, and then try to evidence potential discrimination 244 

between sample groups. Indeed, ICA is a blind source separation method, which aims at extracting from mixed 245 

signals their original source signals as well as the weights in which they are mixed. Among the different few 246 

algorithms enabling to compute ICA models, the JADE algorithm was used here (Rutledge & Jouan-Rimbaud 247 

Bouveresse, 2015). 248 

The determination of optimal number of Independent Components (ICs) to use is the key step during the 249 

building of an ICA model. This optimal number was determined using the random ICA method (Kassouf, 250 

Jouan-Rimbaud Bouveresse, & Rutledge, 2018), briefly summarized as follows: the data set is randomly split 251 

into two equivalent groups. ICA models with 1 to F components (here, F = 20) are calculated in each subset. 252 

For each model (i.e., each investigated number of ICs), correlations between all ICs from one subset and all 253 

ICs from the other subset are calculated. The idea underlying this procedure is that if an IC is significant, it 254 

should be extracted in each subset and therefore, strong correlations should be observed between ICs from 255 

each subset. Hence, one looks for the highest number of ICs for which each IC of one subset is highly correlated 256 

with one IC of the other subset. However, the repartition of samples into the two subsets being random, there 257 

is a possibility that the subsets are not representative, in which case a significant IC might be extracted from 258 

one subset only. This is the reason why this procedure has to be repeated, here, 50 times. 259 

Step 5: Annotation and interpretation  260 

For automated annotation, an in-house broad-scale database was built combining data from several databases, 261 

namely the Toxin and Toxin-Target Database (T3DB, http://www.t3db.ca/ (Wishart et al., 2015)), the literature 262 

(Gallart-Ayala, Núñez, & Lucci, 2013; Nielsen & Smedsgaard, 2003), and to a lesser extent, the Pesticides 263 

Properties Database (Lewis, Tzilivakis, Warner, & Green, 2016). 264 

After evidencing a discrimination along one component of the ICA model, the signal matrix, which gives the 265 

weight of each ion (“m/z – retention time” pair) in the component, was analyzed: ions were sorted by 266 

http://www.t3db.ca/
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descending contribution value along the components explaining the group separation, and the annotation was 267 

performed according to the following strategy:  268 

a) In-house automated tools were developed for isotopic pattern detection (inspired from work by 269 

Cotton et al. [14]) and then for in-house toxicant database annotation to highlight suspect ions; 270 

b) Manual curation of the annotation results was then performed for discriminating ions using 271 

information provided by step a) as well as online databases [such as Metlin 272 

(https://metlin.scripps.edu/), HMDB (http://www.hmdb.ca/), mzCloud 273 

(https://www.mzcloud.org/) and T3DB] and raw data visualization when necessary. 274 

With mass spectrometry, and especially electrospray ionization, a single molecule usually produces several 275 

observed signals, either fragments, adducts or isotopic peaks. All ions assumed as coming from the same 276 

compound (i.e. retention time, correlation, known Δm/z: M+1, M+2 with relevant intensity ratio) were grouped 277 

in “features” during step a), each one representing a single compound. During the same step, adducts were 278 

annotated with the database search. Annotation levels nomenclature used is based on guidelines proposed by 279 

Sumner et. al. (Sumner et al., 2007). 280 

3. RESULTS AND DISCUSSION 281 

3.1 MULTIVARIATE ANALYSIS OF DEVELOPMENT DATA SET 282 

All data treatments were developed and performed blindly, meaning without optimizing the parameters for our 283 

tracers. The objective of this approach is to evaluate the efficiency of a generic blind untargeted analysis based 284 

on multivariate tools to discriminate contaminated samples and annotate ions of potential contaminants.  285 

A multivariate exploration of the data was first tried without any (pre)filtration, but it remained unsuccessful 286 

since no clear group separation could be observed (see Figure 2). The detailed filtration process was thus 287 

developed and applied. It appears (Supplementary material - Figure S.1) that, even though PCA enables a 288 

discrimination for the filtrated data, the one given by ICA is superior both by its quality (better sample 289 

separation) and its ability to align chemical phenomenon on a single component. So, the detection of suspect 290 

samples and ions is eased thanks to ICA by simply sorting ions based on their weight on the discriminating 291 

component.  292 

https://metlin.scripps.edu/
http://www.hmdb.ca/
https://www.mzcloud.org/
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3.1.1 BLIND DISCRIMINATION OF SAMPLES BY ICA  293 

Optimal number of ICs was determined as 4 for the development data set in both positive and negative modes 294 

with the random ICA method. For each ionization mode, score plots were drawn considering the different ICs 295 

prone to discriminate sample groups (an illustrative plot is given in Figure 2). Interestingly, all sample groups 296 

could be discriminated whatever the ionization mode, and each time IC1 was determined as the most probable 297 

meaningful component regarding group information. It is clear that group separation along IC1 is related to 298 

the level of contamination. It should be emphasized that tea samples contaminated at the low level (10 µg.kg-299 

1) could be distinguished from control tea samples, even with a high chemical diversity of contaminants. This 300 

is the first time that contaminated food samples are discriminated from control samples at this level: this opens 301 

new perspectives for food safety control, since 10 µg.kg-1 is the maximum level authorized for several 302 

regulated chemicals, especially pesticides. 303 

The next step is the annotation of discriminating ions, in order to assess if the discrimination observed is really 304 

due to the contaminants. 305 

3.1.2 ANNOTATION AND INTERPRETATION OF ICA OUTPUT  306 

Most of the annotation process was automated thanks to database search and data mining scripts. For each 307 

ionization mode, the filtered data matrix went through two automated steps: (i) isotopic peaks were first 308 

grouped together, and (ii) observed ions were searched through a broad-range toxicants database for testing 309 

their potential matching with different adducts. Then, for each ionization mode, ions were sorted along the 310 

discriminating component(s) and extracted with their information (m/z, retention time, presence of isotopes, 311 

and potential match in the database for different adducts). At the end, the results can be quickly curated by the 312 

user, who can then rapidly spot suspect samples and ions. These information can be completed, when needed, 313 

by a manual exploration of raw data files. 314 

That way, for positive mode, the 69 first discriminating ions were putatively annotated or characterized and 315 

grouped into 20 “features” (see Table 1a). Over those 20 “features”, 14 were attributed to our “tracers”. Three 316 

others (#13, 18 and 19) were not expected to be present in the samples (since they were not found after a 317 

targeted analysis of the control samples, nor reported in the analysis certificate of standards used). Raw 318 

chemical formulas could be proposed, that show very strong similarities with some of our “tracers”, so they 319 
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were putatively annotated as impurities from the initial standard solution (such result has been confirmed by 320 

an a posteriori classical targeted analysis of the standard solution). This clearly underlines the potential of our 321 

developed method to detect unexpected compounds at trace levels since those impurities were not expected 322 

before the analysis. Three other features remained unknown. 323 

Putative annotation and characterization of the 69 first ions in negative mode was also achieved, and these ions 324 

were grouped into 14 “features” (see Table 1b). For these features, raw molecular formulas hypotheses were 325 

made based on information given by the automated annotation step, enabling a putative characterization to be 326 

achieved. Thus, 12 of our “tracers” could be recovered. Two “features” (corresponding to eight ions) remained 327 

unresolved after annotation attempt (using both automated scripts and manual exploration of raw data), but 328 

they were characterized as being halogenated compounds thanks to the isotopic peaks found during the 329 

automated data mining step. 330 

3.2 METHOD PERFORMANCE 331 

Performance was assessed based on blind detection rates of “tracer” contaminants. In positive mode, 44% of 332 

our “tracers” were successfully putatively annotated, and 38% in negative mode. When considering both 333 

modes, the overall detection rate is 66% (since some molecules were detected in both modes, e.g. diuron and 334 

ochratoxin A). By comparing with detection performance of a dedicated targeted multi-residue method on the 335 

same samples (Cladière et al., 2018), it appears that the “tracers” not successfully annotated using the 336 

untargeted approach were also the most difficult to analyze with a targeted approach (i.e. showing high ion 337 

suppression and therefore low signal/noise ratio, high relative standard deviation of the signals and poor 338 

recoveries). A manual exploration of the raw chromatograms reveals that these molecules give very noisy 339 

peaks, which are not even extracted during the pretreatment step with XCMS. In fact, to date, it is likely that 340 

there is no algorithm that can achieve exhaustive peak extraction from raw data in untargeted LC-MS study 341 

(Coble & Fraga, 2014). In our case, XCMS managed to extract 75% of our “tracers” (i.e. 24 over 32) from the 342 

raw data files, which is still a good score even though the noisiest peaks are missed. We tested the only existing 343 

optimization algorithm for XCMS parameters (IPO) (Libiseller et al., 2015), but with no improvement. 344 

Unsurprisingly, the response factor of a compound has been found to be the main factor affecting its 345 

detectability.  346 
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Thus, the data treatment methodology applied after XCMS treatment (including filtration of the data matrix, 347 

preprocessing and multivariate analysis coupled with data mining) successfully annotated 21 tracers over the 348 

24 extracted by XCMS (i.e. 88%). This is very satisfactory regarding the wide diversity of molecules studied, 349 

both in terms of chemical structure and response factor in LC-MS, as well as regarding the trace levels studied. 350 

Last but not least, the detection and putative annotation of unexpected impurities coming from the spiking mix 351 

highlights the ability of our untargeted approach to detect potentially unknown or unexpected trace 352 

contaminants in food products and to propose the user annotation hypotheses. It should be spotted that a 353 

molecule generating a high number of ions (adducts, isotopes, fragments, etc.) will be more easily annotated 354 

than a molecule generating only few signals. 355 

For each annotated compound, a limit of detection (LOD) was estimated based on the calculated fold change 356 

(calculated between the group with the highest level -100 µg.kg-1- and the control group). Briefly, a rule of 357 

three was made to figure out what concentration would lead to a fold change of 3, which is the most commonly 358 

used signal/noise ratio for LOD determination. For compounds annotated as impurities, assumption was made 359 

that they come from standards of similar families (i.e. atrazine for simazine, diflubenzuron or diuron for 360 

fenuron, and acid herbicides for 2,4-D isopropyl ester) and a LOD was then estimated for each by taking the 361 

standard purity into account. As shown in Table 1a and 1b, estimated LODs are relevant against EU regulation 362 

since they are in the range 10 µg.kg-1 or below for almost every annotated compound. Again, our untargeted 363 

approach proves to have quite similar performance in terms of sensitivity as compared to our dedicated targeted 364 

multi-residue method [18], having the additional asset to detect unexpected molecules. 365 

3.3 APPLICATION ON VALIDATION DATA SET  366 

The  developed methodology (including filtration parameters, pretreatment steps and multivariate method) was 367 

blindly applied to the validation data set, obtained based on the analysis of two different types of green tea, 368 

either non-spiked (controls) or spiked with a mix composed of only three contaminants in order to offer a much 369 

more challenging discrimination between blanks and contaminated samples. 370 

Data from the two types of tea were treated simultaneously. Data matrix was filtrated using same parameters 371 

as for development set, and then the optimal number of ICs was determined for this data set. It was calculated 372 

as 6 both for positive and negative modes. Unsurprisingly, since the data set is more heterogeneous, the 373 

filtration led to a smaller reduction of ion number than for the development data set. Still, the number of ions 374 
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dropped from 23,391 and 17,269 (respectively for positive and negative mode) to 9,789 and 9,409 thanks to 375 

the filtration. For each ionization mode, two discriminating ICs were clearly observed (Figure 3). IC1 376 

separates samples based on their brand, and IC6 separates control and contaminated samples. It should be 377 

emphasized that in ICA, ICs are not ordered by descending contribution like in PCA, meaning in other words 378 

that IC1 does not necessarily explain more variability than IC6. 379 

Annotation of the data matrix was done as described for the development data set. IC6 was determined as 380 

bearing the separation due to contaminants thank to information provided in the automated annotation step. 381 

The three “tracers” were successfully annotated within the first 10 ions of IC6 with this methodology in at 382 

least one ionization mode. This results is of prime interest in our case since ICA, as employed here, shows its 383 

main assets which is to separate independent phenomenon. Indeed, we can see that in our case, the “natural” 384 

variability of the product is well separated from the variability brought by the spiking (these two phenomenon 385 

are likely to be mixed in less powerful methods).  Moreover, the number of ions generated in a complex data 386 

set such as the validation one is very high despite of filtration strategy applied (in our case ~9,000 per ionization 387 

mode). Therefore, the use of multivariate methods enables the reduction of the dimensionality of the data and 388 

the achievement of suspect samples and ions detection. Thanks to ICA, the annotation of only 10 ions per 389 

ionization mode was sufficient to underscore a contamination of tea.  390 

This highlight the ability of ICA to resolve complex signal mixtures and simplify annotation of relevant ions, 391 

even in cases where the information is bore by few, low intensity ions. Our proposed approach thus has a 392 

strong potential in detecting food contaminants at low levels in complex and rather heterogeneous data sets. 393 

Its applicability to other food matrices should be feasible if reference samples are available. 394 

4. CONCLUSION 395 

This work shows some important methodological features for untargeted approach development for food 396 

chemical contaminants detection. It gives evidence that the blind untargeted detection of contaminants in 397 

complex food matrices is feasible thanks to high resolution methods coupled to powerful data analysis 398 

strategies. A widely spread, well-known, freely available and easy to use tool (i.e. XCMS run on W4M 399 

platform) was used for peaks extraction from raw data. Then, an efficient automated strategy was set up for 400 

data filtration, using well-known easy to use tools (t-tests and fold change). Samples were separated using a 401 



16 

 

multivariate method (ICA), and discriminating ions putatively annotated by the help of automated data mining 402 

methods.  403 

Thanks to this strategy, 66% of the “tracers” considered were successfully putatively annotated. This detection 404 

rate rises to 88% if brought back to tracers actually in the data matrix (after the peak extraction step). This 405 

shows the power of our developed data treatment strategy to detect potential food contaminants in a data 406 

matrix. In addition to the known “tracers”, some unexpected molecules were detected and putatively annotated 407 

in the samples, which clearly highlights the potential of this approach. Method LODs were roughly estimated 408 

for each putatively annotated compound (both expected and unexpected), with values below or near 10 µg.kg-409 

1 for most of them, which compares favorably with a targeted multi-residue method. The approach, developed 410 

on a rather simple case, has been validated on a more complex and realistic situation, where the contamination 411 

is brought by a low number of molecules, and in which different brands of the same food product are considered 412 

simultaneously. This study opens new perspectives in the development of truly untargeted approaches based 413 

on tools and strategies from metabolomics (particularly HRMS and chemometrics) for food chemical safety 414 

assessment. Such approaches may constitute, in a near future, a major complement to targeted methods in a 415 

view of rapidly screening possibly contaminated food products. A next step towards a routine use of these 416 

approaches would be to implement them on even more complex cases like the following of a production batch. 417 

Interestingly, since our developed methodology is rather generic, it could be applied with only few 418 

development on any other UHPLC-HRMS data set, or even to other applications such as origin or authenticity 419 

issues to complement existing approaches. As a conclusion, no doubt that these results will encourage new 420 

developments on this analytical issue, both on the methodology and the tools, especially on the improvement 421 

of existing peak extraction methods or the handling of the product variability.  422 
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Table 1a: Discriminating features for positive ionization mode and respective putative annotation. 562 

POSITIVE IONIZATION MODE 

Feature 

#a 

Cumulative weight 

of the feature 

Number of 

ions in the 

feature 

Experimental 

exact mass of 

adductb 

Adduct 
Proposed raw 

formula 

Proposed putative 

annotation 

Mono-

isotopic 

mass c 

Delta 

(ppm) 

Estimated 

LOD 

(µg.kg-1) 

1 23.76 8 331.0435 [M+H]+ C10H19O6PS2 Malathion 330.0361 0.48 1.1 

2 20.44 12 607.2926 [M+H]+ N/Ad Unknown N/A N/A N/A 

3 18.32 7 230.0076 [M+H]+ C5H12NO3PS2 Dimethoate 228.9996 3.04 0.9 

4 13.83 5 233.0248 [M+H]+ C9H10Cl2N2O Diuron  232.0170 2.32 1.0 

5 12.22 5 404.0894 [M+H]+ C20H18ClNO6 Ochratoxin A 403.0823 -0.34 4.9 

6 9.37 4 229.0416 [M+K]+ C7H14N2O2S Aldicarb 190.0776 4.41 15.1 

7 9.23 3 311.0398 [M+H]+ C14H9ClF2N2O2 Diflubenzuron 310.0321 1.45 1.9 

8 9.09 3 220.9537 [M+H]+ C4H7Cl2O4P Dichlorvos 219.9459 2.47 3.6 

9 8.56 3 384.1471 [M+H]+ C21H22ClN3O2 Tolfenpyrad 383.1401 -0.67 1.3 

10 8.00 3 228.1283 [M+H]+ C9H17N5S Ametryn 227.1205 2.59 1.5 

11 7.86 3 216.1010 [M+H]+ C8H14ClN5 Atrazine 215.0938 -0.14 2.9 

12 6.01 2 306.1041 [M+H]+ C11H20N3O3PS Pirimiphos methyl 305.0963 1.56 0.4 

13 4.69 2 263.0243 [M+H]+ C11H12Cl2O3 2,4-D Isopropyl Estere 262.0163 2.73 0.5 

14 4.69 1 256.0604 [M+H]+ C9H10ClN5O2 Imidacloprid 255.0523 3.19 16.3 

15 4.36 2 621.2713 N/A N/A Unknown N/A N/A N/A 

16 4.29 2 623.2868 N/A N/A Unknown N/A N/A N/A 

17 2.73 1 251.0380 [M+H]+ C12H10O4S Bisphenol S 250.0300 3.08 12.1 

18 2.24 1 202.0855 [M+H]+ C7H12ClN5 Simazinee  201.0781 0.68 0.7 

19 2.03 1 182.1282 [M+NH4]+ C9H12N2O Fenurone 164.0950 -3.57 0.9 

20 1.69 1 335.1254 [M+Na]+ C19H20O4 Bisphenol F diglycidyl Ether 312.1362 0.12 57.0 
a Features sorted by descending cumulative weight of ions in the discriminating IC 563 
b Mass measured for the ion having the highest weight in the discriminating IC 564 
c Electron mass used: 5.485.10-4 Da 565 
d Not Applicable 566 
e Found in the spiking mix, may be considered as impurities567 



Table 1b: Discriminating features for negative ionization mode and respective putative annotation. 568 

 569 

NEGATIVE IONIZATION MODE 

Feature 

#a 

Cumulative weight 

of the feature 

Number of 

ions in the 

feature 

Experimental 

exact mass of 

adductb 

Adduct 
Proposed raw 

formula 

Proposed putative 

annotation 

Mono-

isotopic 

mass c 

Delta 

(ppm) 

Estimated 

LOD 

(µg.kg-1) 

1 27.50 10 266.9385 [M-H]- C9H7Cl3O3 Fenoprop 267.9461 -1.02 2.0 

2 22.07 8 252.9227 [M-H]- C8H5Cl3O3 2,4,5-T 253.9304 -1.90 3.0 

3 21.62 8 309.0249 [M-H]- C14H9ClF2N2O2 Diflubenzuron 310.0321 0.40 2.6 

4 16.59 6 231.0091 [M-H]- C9H10Cl2N2O Diuron 232.0170 -2.97 0.9 

5 14.32 8 232.9771 [M-H]- C9H8Cl2O3 Dichlorprop 233.9850 -2.75 5.9 

6 13.48 5 213.0313 [M-H]- C10H11ClO3 MCPP 214.0397 -4.98 2.5 

7 11.68 5 199.0152 [M-H]- C9H9ClO3 MCPA 200.024 -7.72 5.2 

8 8.05 6 204.9217 N/A N/A Unknown chlorinated N/A N/A N/A 

9 7.75 3 249.0223 [M-H]- C12H10O4S Bisphenol S 250.0300 -1.53 6.0 

10 5.37 2 239.0668 [M-H]- C10H12N2O5 Dinoseb 240.0746 -2.08 10.4 

11 4.61 2 402.0749 [M-H]- C20H18ClNO6 Ochratoxin A 403.0823 -0.13 10.3 

12 3.88 2 254.0444 [M-H]- C9H10ClN5O2 Imidacloprid 255.0523 -2.29 25.9 

13 2.62 2 218.9611 [M-H]- C8H6Cl2O3 2,4-D 219.9694 -4.74 15.5 

14 2.36 2 771.1431 N/A N/A Unknown chlorinated N/A N/A N/A 
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 572 

Figure 1: Workflow developed for untargeted contaminants detection at trace levels in tea. 573 
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 575 

Figure 2: ICA score plots for filtered and unfiltered data matrix for both ionization modes on the 576 

development data set. 577 
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 579 

Figure 3: Score plots of discriminating ICs (both ionization modes) for the validation data set. 580 
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SUPPLEMENTARY DATA 583 

Table S.1: Information on “tracer” contaminants used in this study. 584 

N° Name Class Chemical family log Kow 
Ionization 

mode 

Adduct - 

ESI+/ESI- 

1 
 (2,4-dichlorophenoxy)acetic acid  

2,4-D 

Pesticide 

(herbicide) 
Auxinic herbicide -0.82 +/- [M+H]+/[M-H]- 

2 

 (4-chloro-2-

methylphenoxy)acetic acid      

MCPA 

Pesticide 

(herbicide) 
Auxinic herbicide -0.81 - ND/[M-H]- 

3 

 2-(4-chloro-2-

methylphenoxy)propanoic acid  

MCPP 

Pesticide 

(herbicide) 
Auxinic herbicide -0.19 - ND/[M-H]- 

4 
 2,4,5-trichlorophenoxyacetic acid  

2,4,5-T 

Pesticide 

(herbicide) 
Auxinic herbicide 2.88 - ND*/[M-H]- 

5 

 4-(2,4-dichlorophenoxy)butanoic 

acid   

2,4-DB 

Pesticide 

(herbicide) 
Auxinic herbicide 1.35 +/- [M+H]+/Frag** 

6 Acetamiprid 
Pesticide 

(insecticide) 
Neonicotinoid 0.8 + [M+H]+/ND 

7 Acrylamide 
Process-

induced 
Amide -0.67 + [M+H]+/ND 

8 Aldicarb 
Pesticide 

(acaricide) 
Carbamate 1.15 + [M+Na]+/ND 

9 Ametryn 
Pesticide 

(herbicide) 
Triazine 2.63 + [M+H]+/ND 

10 Atrazine 
Pesticide 

(herbicide) 
Triazine 2.7 + [M+H]+/ND 

11 Bisphenol A 
Migrant from 

packaging 
Bisphenol 3.3 - ND/[M-H]- 

12 
Bisphenol A diglycidyl ether 

BADGE 

Migrant from 

packaging 
Diglycidyl ether 3.84 + [M+Na]+/ND 

13 Bisphenol F 
Migrant from 

packaging 
Bisphenol 1.65 - ND/[M-H]- 

14 
Bisphenol F diglycidyl ether 

BFDGE 

Migrant from 

packaging 
Diglycidyl ether 

Not 

available 
+ [M+Na]+/ND 

15 Bisphenol S 
Migrant from 

packaging 
Bisphenol 2.91 +/- [M+H]+/[M-H]- 

16 Deoxynivalenol Mycotoxin Trichothecene 0.29 +/- [M+H]+/[M-H]- 

17 Dichloprop 
Pesticide 

(herbicide) 
Auxinic herbicide 2.29 - ND/[M-H]- 

18 Dichlorvos 
Pesticide 

(acaricide) 
Organochlorinated 1.9 + [M+H]+/ND 

19 Diflubenzuron 
Pesticide 

(insecticide) 
Benzoylurea 3.89 +/- [M+H]+/[M-H]- 

20 Dimethoate 
Pesticide 

(acaricide) 
Organophosphate 0.7 + [M+H]+/ND 

21 Dinoseb 
Pesticide 

(herbicide) 
Dinitrophenol 2.29 - ND/[M-H]- 
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22 Diuron 
Pesticide 

(herbicide) 
Phenylurea 2.87 +/- [M+H]+/[M-H]- 

23 
Fenoprop  

2,4,5-TP 

Pesticide 

(herbicide) 
Auxinic herbicide 2.84 - ND/Frag** 

24 Fumonisin B1 Mycotoxin Fumonisin -0.5 + [M+H]+/ND 

25 Fumonisin B2 Mycotoxin Fumonisin 1.2 + [M+H]+/ND 

26 Hydroxymethylfurfural 
Process-

induced 
Furan -0.09 + [M+H]+ 

27 Imidacloprid 
Pesticide 

(insecticide) 
Neonicotinoid 0.57 +/- [M+H]+/[M-H]- 

28 Malathion 
Pesticide 

(insecticide) 
Organophosphate 2.75 + [M+H]+/ND 

29 Ochratoxin A Mycotoxin Ochratoxin 4.74 +/- [M+H]+/[M-H]- 

30 Pirimiphos-methyl 
Pesticide 

(insecticide) 
Organophosphate 3.9 + [M+H]+/ND 

31 Propargite 
Pesticide 

(acaricide) 
Organosulfite 5.7 + Frag**/ND 

32 Tolfenpyrad 
Pesticide 

(insecticide) 
Pyrazole 5.61 +/- [M+H]+/[M-H]- 

*ND: Not Detected 585 

** Frag=Fragment  586 

  587 
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Table S.2: Full parameters and their corresponding values for peak extraction using XCMS. 588 

Step Parameter  Value 

xcmsSet 

scanrange 180-2400 

nSlaves 1 

method centWave 

ppm 15 
peakwidth 5-60 

mzdiff -0.001 

snthresh 10 

integrate 1 

noise 0 

prefilter 0 

group - A 

method density 

minfrac 0.5 

bw 2 

mzwid 0.015 

sleep 0.001 

retcor 

method peakgroups 

smooth loess 

extra 1 
missing 1 

span 0.2 

family gaussian 

plottype mdevden 

group - B 

method density 

minfrac 0.5 

bw 2 

mzwid 0.015 

sleep 0.001 

max 50 

fillPeaks 

method chrom 

convertRTMinute FALSE 

numDigitsMZ 4 

numDigitsRT 2 

intval into 

annotatediff 

nSlaves 4 

sigma 6 
perfwhm 0.6 

ppm 15 

mzabs 0.015 

maxcharge 1 

maxiso 4 

minfrac 0.5 

quick TRUE 

convertRTMinute FALSE 
numDigitsMZ 4 
numDigitsRT 0 

intval into 

 589 
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 590 

 591 

Figure S.1: PCA score plots for filtered and unfiltered data matrix for both ionization modes on the 592 

development data.  593 
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