W. R. Butler and R. D. Smith, Interrelationships Between Energy Balance and Postpartum Reproductive Function in Dairy Cattle, J. Dairy Sci, vol.72, pp.767-783, 1989.

C. R. Staples, W. W. Thatcher, and J. H. Clark, Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows, J. Dairy Sci, vol.73, pp.938-947, 1990.

J. L. Leroy, G. Opsomer, A. Van-soom, I. G. Goovaerts, and P. E. Bols, Reduced fertility in high-yielding dairy cows: Are the oocyte and embryo in danger? Part I. The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows, Reprod. Domest. Anim, vol.43, pp.612-622, 2008.

V. Van-hoeck, P. E. Bols, M. Binelli, and J. L. Leroy, Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: A possible pathway to subfertility?, Anim. Reprod. Sci, vol.149, pp.19-29, 2014.

K. Bender, S. Walsh, A. C. Evans, T. Fair, and L. Brennan, Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows, Reproduction, vol.139, pp.1047-1055, 2010.

Y. Zeron, A. Ocheretny, O. Kedar, A. Borochov, D. Sklan et al., Seasonal changes in bovine fertility: Relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles, Reproduction, vol.121, pp.447-454, 2001.

J. E. Fortune, G. M. Rivera, and M. Y. Yang, Follicular development: The role of the follicular microenvironment in selection of the dominant follicle, Anim. Reprod. Sci, pp.109-126, 2004.

P. Mermillod, R. Dalbies-tran, S. Uzbekova, A. Thelie, J. M. Traverso et al., Factors affecting oocyte quality: Who is driving the follicle?, Reprod. Domest. Anim, vol.43, pp.393-400, 2008.

J. Buratini and C. A. Price, Follicular somatic cell factors and follicle development, Reprod. Fertil. Dev, vol.23, pp.32-39, 2011.

A. J. Hsueh, K. Kawamura, Y. Cheng, and B. C. Fauser, Intraovarian control of early folliculogenesis, Endocr. Rev, vol.36, pp.1-24, 2015.

J. E. Fortune, Ovarian follicular growth and development in mammals, Biol. Reprod, vol.50, pp.225-232, 1994.

D. A. Dumesic, D. R. Meldrum, M. G. Katz-jaffe, R. L. Krisher, and W. B. Schoolcraft, Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health, Fertil. Steril, vol.103, pp.303-316, 2015.

R. B. Gilchrist, M. Lane, and J. G. Thompson, Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality, Hum. Reprod. Update, vol.14, pp.159-177, 2008.

J. L. Leroy, T. Vanholder, B. Mateusen, A. Christophe, G. Opsomer et al., Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro, Reproduction, vol.130, pp.485-495, 2005.

A. Revelli, L. D. Piane, S. Casano, E. Molinari, M. Massobrio et al., Follicular fluid content and oocyte quality: From single biochemical markers to metabolomics, Reprod. Biol. Endocrinol, vol.7, pp.1-13, 2009.

M. Assidi, S. J. Dieleman, and M. A. Sirard, Cumulus cells gene expression following the LH surge in bovine preovulatory follicles: Potential early markers of oocyte competence, Reproduction, vol.140, pp.835-852, 2010.

E. Warzych, A. Cieslak, Z. E. Madeja, P. Pawlak, A. Wolc et al., Multifactorial Analysis of the Follicular Environment is Predictive of Oocyte Morphology in Cattle, J. Reprod. Dev, vol.60, pp.1-8, 2014.

S. Matoba, K. Bender, A. G. Fahey, S. Mamo, L. Brennan et al., Predictive value of bovine follicular components as markers of oocyte developmental potential, Reprod. Fertil. Dev, vol.26, pp.337-345, 2014.

A. Bunel, A. L. Nivet, P. Blondin, C. Vigneault, F. J. Richard et al., Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes, Reprod. Fertil. Dev, vol.26, pp.855-865, 2014.

, Int. J. Mol. Sci, vol.19, pp.3261-3288, 2018.

E. Collado-fernandez, H. M. Picton, and R. Dumollard, Metabolism throughout follicle and oocyte development in mammals, Int. J. Dev. Biol, vol.56, pp.799-808, 2012.

E. M. Ferguson and H. J. Leese, A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development, Mol. Reprod. Dev, vol.73, pp.1195-1201, 2006.

M. L. Sutton-mcdowall, R. B. Gilchrist, and J. G. Thompson, The pivotal role of glucose metabolism in determining oocyte developmental competence, Reproduction, vol.139, pp.685-695, 2010.

H. F. Hashemi and J. M. Goodman, The life cycle of lipid droplets, Curr. Opin. Cell Biol, vol.33, pp.119-124, 2015.

R. R. Grummer and D. J. Carroll, A review of lipoprotein cholesterol metabolism: Importance to ovarian function, J. Anim. Sci, vol.66, pp.3160-3173, 1988.

T. J. Acosta, A. Miyamoto, T. Ozawa, M. P. Wijayagunawardane, and K. Sato, Local release of steroid hormones, prostaglandin E2, and endothelin-1 from bovine mature follicles In vitro: Effects of luteinizing hormone, endothelin-1, and cytokines, Biol. Reprod, vol.59, pp.437-443, 1998.

F. Nuttinck, L. Gall, S. Ruffini, L. Laffont, L. Clement et al., PTGS2-Related PGE2 Affects Oocyte MAPK Phosphorylation and Meiosis Progression in Cattle: Late Effects on Early Embryonic Development, Biol. Reprod, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000294

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: Where they are and how they behave, Nat. Rev. Mol. Cell Biol, vol.9, pp.112-124, 2008.

A. Z. Fernandis and M. R. Wenk, Membrane lipids as signaling molecules, Curr. Opin. Lipidol, vol.18, pp.121-128, 2007.

R. G. Sturmey, A. Reis, H. J. Leese, and T. G. Mcevoy, Role of fatty acids in energy provision during oocyte maturation and early embryo development, Reprod. Domest. Anim, vol.44, pp.50-58, 2009.

S. Uzbekova, S. Elis, A. P. Teixeira-gomes, A. Desmarchais, V. Maillard et al., Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries, Biology, vol.4, pp.216-236, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02630020

D. I. Campbell, C. R. Ferreira, L. S. Eberlin, and R. G. Cooks, Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization, Anal. Bioanal. Chem, vol.404, pp.389-398, 2012.

C. R. Ferreira, S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo et al., Single embryo and oocyte lipid fingerprinting by mass spectrometry, J. Lipid Res, vol.51, pp.1218-1227, 2010.

K. Silva-santos, C. Ferreira, G. Santos, M. Eberlin, L. Siloto et al., Lipid Profiles of Oocytes Recovered by Ovum Pickup from Bos indicus and 1/2 indicus x taurus with High vs Low Oocyte Yields, Reprod. Domest. Anim, vol.49, pp.711-718, 2014.

P. Bertevello, O. Ghazouani, C. Banliat, S. Elis, A. P. Teixeira-gomes et al., MALDI-TOF mass spectrometry analysis of lipids in single bovine oocytes during IVM, Proceedings of the 32nd Scientific Meeting of the AETE, p.712, 2016.

L. Sanchez-lazo, D. Brisard, S. Elis, V. Maillard, R. Uzbekov et al., Fatty Acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine, Mol. Endocrinol, vol.28, pp.1502-1521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129856

S. Elis, M. Oseikria, A. Vitorino-carvalho, P. S. Bertevello, E. Corbin et al., Docosahexaenoic acid mechanisms of action on the bovine oocyte-cumulus complex, J. Ovarian Res, vol.10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620045

P. H. Santos, P. K. Fontes, F. F. Franchi, M. F. Nogueira, K. R. Belaz et al., Lipid profiles of follicular fluid from cows submitted to ovarian superstimulation, Theriogenology, vol.94, pp.64-70, 2017.

M. Lafontan and D. Langin, Lipolysis and lipid mobilization in human adipose tissue, Prog. Lipid Res, vol.48, pp.275-297, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410140

P. Nguyen, V. Leray, M. Diez, S. Serisier, J. Le-bloc'h et al., Liver lipid metabolism, J. Anim. Physiol. Anim. Nutr. (Berl, vol.92, pp.272-283, 2008.

C. R. Santos and A. Schulze, Lipid metabolism in cancer, FEBS J, vol.279, pp.2610-2623, 2012.

A. Chmurzynska, The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism, J. Appl. Genet, vol.47, pp.39-48, 2006.

K. R. Dunning, D. L. Russell, and R. L. Robker, Lipids and oocyte developmental competence: The role of fatty acids and B-oxidation. Reproduction, vol.148, pp.15-27, 2014.

S. Auclair, R. Uzbekov, S. Elis, L. Sanchez, I. Kireev et al., Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes, Am. J. Physiol. Endocrinol. Metab, vol.304, pp.599-613, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129721

M. Paczkowski, E. Silva, W. B. Schoolcraft, and R. L. Krisher, Comparative Importance of Fatty Acid Beta-Oxidation to Nuclear Maturation, Gene Expression, and Glucose Metabolism in Mouse, Bovine, and Porcine Cumulus Oocyte Complexes, Biol. Reprod, vol.88, 2013.

V. Van-hoeck, J. L. Leroy, M. Arias-alvarez, D. Rizos, A. Gutierrez-adan et al., Oocyte developmental failure in response to elevated non-esterified fatty acid concentrations: Mechanistic insights, Reproduction, vol.145, pp.33-44, 2013.

S. Elis, A. Desmarchais, V. Maillard, S. Uzbekova, P. Monget et al., Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells, Theriogenology, vol.83, pp.840-853, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01130503

H. Aardema, H. T. Van-tol, R. W. Wubbolts, J. Brouwers, B. M. Gadella et al., Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress, Biol. Reprod, vol.96, pp.982-992, 2017.

P. Lonergan, D. Rizos, A. Gutierrez-adan, T. Fair, and M. P. Boland, Oocyte and embryo quality: Effect of origin, culture conditions and gene expression patterns, Reprod. Domest. Anim, vol.38, pp.259-267, 2003.

A. Tata, M. J. Sudano, V. G. Santos, F. D. Landim-alvarenga, C. R. Ferreira et al., Optimal single-embryo mass spectrometry fingerprinting, J. Mass Spectrom, vol.48, pp.844-849, 2013.

M. Apparicio, C. R. Ferreira, A. Tata, V. G. Santos, A. E. Alves et al., Chemical Composition of Lipids Present in Cat and Dog Oocyte by Matrix-Assisted Desorption Ionization Mass Spectrometry (MALDI-MS), Reprod. Domest. Anim, vol.47, pp.113-117, 2012.

T. Fair, P. Hyttel, and T. Greve, Bovine oocyte diameter in relation to maturational competence and transcriptional activity, Mol. Reprod. Dev, vol.42, pp.437-442, 1995.

R. B. Gilchrist, L. J. Ritter, and D. T. Armstrong, Oocyte-somatic cell interactions during follicle development in mammals, Anim. Reprod. Sci, pp.431-446, 2004.

M. Binelli and B. D. Murphy, Coordinated regulation of follicle development by germ and somatic cells, Reprod. Fertil. Dev, vol.22, pp.1-12, 2010.

F. Lolicato, J. F. Brouwers, C. H. De-lest, R. Wubbolts, H. Aardema et al., The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity, Biol. Reprod, vol.92, 2015.

T. M. Guerreiro, R. F. Gonçalves, C. F. Melo, D. N. De-oliveira, E. D. Lima et al., A Metabolomic Overview of Follicular Fluid in Cows. Front. Vet. Sci, vol.5, pp.1-9, 2018.

A. Drzazga, A. Sowinska, and M. Koziolkiewicz, Lysophosphatidylcholine and lysophosphatidylinosiol-novel promissing signaling molecules and their possible therapeutic activity, Acta Pol. Pharm, vol.71, pp.887-899, 2014.

M. M. Sohel, M. Hoelker, S. S. Noferesti, D. Salilew-wondim, E. Tholen et al., Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence, PLoS ONE, vol.8, 2013.

T. Skotland, K. Sandvig, and A. Llorente, Lipids in exosomes: Current knowledge and the way forward, Prog. Lipid Res, vol.66, pp.30-41, 2017.

Z. Berry, K. A. Murphy, R. C. Kosmider, B. Mason, and R. J. , Lipidomic characterization and localization of phospholipids in the human lung, J. Lipid Res, vol.58, pp.926-933, 2017.

J. M. Young, A. S. Mcneilly, and . Theca, The forgotten cell of the ovarian follicle, Reproduction, vol.140, pp.489-504, 2010.

, Int. J. Mol. Sci, vol.19, p.31, 2018.

S. Tanghe, A. Van-soom, H. Nauwynck, M. Coryn, and A. De-kruif, Minireview: Functions of the Cumulus Oophorus during oocyte maturation, ovulation and fertilization, Mol. Reprod. Dev, vol.61, pp.414-424, 2002.

P. Bertevello, C. Banliat, A. P. Teixeira-gomes, S. Elis, V. Maillard et al., Comparison of lipid profiles and gene expression in granulosa and cumulus cells in bovine, Proceedings of the 33rd Annual Meeting of the European Embryo Transfer Association (AETE), p.970, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605433

T. Borgbo, B. B. Povlsen, C. Y. Andersen, R. Borup, P. Humaidan et al., Comparison of gene expression profiles in granulosa and cumulus cells after ovulation induction with either human chorionic gonadotropin or a gonadotropin-releasing hormone agonist trigger, Fertil. Steril, vol.100, pp.994-1001, 2013.

X. Wen, Y. Kuang, L. Zhou, B. Yu, Q. Chen et al., Lipidomic Components Alterations of Human Follicular Fluid Reveal the Relevance of Improving Clinical Outcomes in Women Using Progestin-Primed Ovarian Stimulation Compared to Short-Term Protocol, Med. Sci. Monit, vol.24, pp.3357-3365, 2018.

D. A. Montani, F. B. Cordeiro, T. Regiani, A. B. Victorino, E. J. Pilau et al., The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells, J. Assist. Reprod. Genet, vol.29, pp.1289-1297, 2012.

B. Bao and H. A. Garverick, Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: A review, J. Anim. Sci, vol.76, 1903.

Y. Q. Su, K. Sugiura, K. Wigglesworth, M. J. O'brien, J. P. Affourtit et al., Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells, Development, vol.135, pp.111-121, 2008.

W. Shao and P. J. Espenshade, Expanding roles for SREBP in metabolism, Cell Metab, vol.16, pp.414-419, 2012.

P. Singh, M. Amin, E. Keller, A. Simerman, P. Aguilera et al., A novel approach to quantifying ovarian cell lipid content and lipid accumulation in vitro by confocal microscopy in lean women undergoing ovarian stimulation for in vitro fertilization (IVF), J. Assist. Reprod. Genet, vol.30, pp.733-740, 2013.

H. Aardema, P. L. Vos, F. Lolicato, B. A. Roelen, H. M. Knijn et al., Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence, Biol. Reprod, vol.85, pp.62-69, 2011.

H. Aardema, F. Lolicato, C. H. Van-de-lest, J. F. Brouwers, A. B. Vaandrager et al., Bovine Cumulus Cells Protect Maturing Oocytes from Increased Fatty Acid Levels by Massive Intracellular Lipid Storage, Biol. Reprod, vol.88, 2013.

J. L. Leroy, T. Vanholder, J. R. Delanghe, G. Opsomer, A. Van-soom et al., Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows, Anim. Reprod. Sci, vol.80, pp.201-211, 2004.

T. Gautier, S. Becker, V. Drouineaud, F. Ménétrier, P. Sagot et al., Human luteinized granulosa cells secrete apoB100-containing lipoproteins, J. Lipid Res, vol.51, pp.2245-2252, 2010.

J. Serna, D. García-seisdedos, A. Alcázar, M. Á. Lasunción, R. Busto et al., Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry, Chem. Phys. Lipids, 2015.

K. Osz, M. Ross, and J. Petrik, The thrombospondin-1 receptor CD36 is an important mediator of ovarian angiogenesis and folliculogenesis, Reprod. Biol. Endocrinol, vol.12, 2014.

B. Trigatti, A. Rigotti, and M. Krieger, The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism, Curr. Opin. Lipidol, vol.11, pp.123-131, 2000.

D. Pietro and C. , Exosome-mediated communication in the ovarian follicle, J. Assist. Reprod. Genet, vol.33, pp.303-311, 2016.

M. Record, S. Silvente-poirot, M. Poirot, and M. J. Wakelam, Extracellular vesicles: Lipids as key components of their biogenesis and functions, J. Lipid Res, vol.59, pp.1316-1324, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02380557

, Int. J. Mol. Sci, vol.19, p.3261, 2018.

M. Hermann, K. A. Lindstedt, R. Foisner, S. Morwald, M. G. Mahon et al., Apolipoprotein A-I production by chicken granulosa cells, FASEB J, vol.12, pp.897-903, 1998.

D. H. Choi, W. S. Lee, M. Won, M. Park, H. O. Park et al., The apolipoprotein A-I level is downregulated in the granulosa cells of patients with polycystic ovary syndrome and affects steroidogenesis, J. Proteome Res, vol.9, pp.4329-4336, 2010.

R. L. Bogan and J. D. Hennebold, The reverse cholesterol transport system as a potential mediator of luteolysis in the primate corpus luteum, Reproduction, vol.139, pp.163-176, 2010.

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, J. Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Data on endogenous bovine ovarian follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry, vol.13, pp.175-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607432

D. Peddinti, E. Memili, and S. C. Burgess, Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction, PLoS ONE, vol.5, 2010.

W. Wahli and L. Michalik, PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol. Metab, vol.23, pp.351-363, 2012.

W. Zheng, J. Kollmeyer, H. Symolon, A. Momin, E. Munter et al., Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim. Biophys. Acta, vol.1758, pp.1864-1884, 2006.

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: Lessons from sphingolipids, Nat. Rev. Mol. Cell Biol, vol.9, pp.139-150, 2008.

D. Collado, M. Da-silveira, J. C. Sangalli, J. R. Andrade, G. M. Sousa et al., Fatty Acid Binding Protein 3 and Transzonal Projections Are Involved in Lipid Accumulation during in vitro Maturation of Bovine Oocytes, vol.7, 2017.

A. Bettegowda and G. W. Smith, Mechanisms of maternal mRNA regulation: Implications for mammalian early embryonic development, Front. Biosci, vol.12, pp.3713-3726, 2007.

P. F. Hyttel and T. Greve, Oocyte growth, capacitation and final maturartion in cattle, Theriogenology, vol.47, pp.23-32, 1997.

E. Warzych, P. Pawlak, M. Pszczola, A. Cieslak, and D. Lechniak, Prepubertal heifers versus cows-The differences in the follicular environment, Theriogenology, vol.87, pp.36-47, 2017.

E. Warzych, P. Pawlak, M. Pszczola, A. Cieslak, Z. E. Madeja et al., Interactions of bovine oocytes with follicular elements with respect to lipid metabolism, Anim. Sci. J, vol.88, pp.1491-1497, 2017.

J. R. Sanders and K. T. Jones, Regulation of the meiotic divisions of mammalian oocytes and eggs, Biochem. Soc. Trans, vol.46, pp.797-806, 2018.

W. Tomek, H. Torner, and W. Kanitz, Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro, Reprod. Domest. Anim, vol.37, pp.86-91, 2002.

T. Fair, F. Carter, S. Park, A. C. Evans, and P. Lonergan, Global gene expression analysis during bovine oocyte in vitro maturation, Theriogenology, vol.68, pp.91-97, 2007.

A. Thelie, P. Papillier, C. Perreau, S. Uzbekova, C. Hennequet-antier et al., Regulation of bovine oocyte-specific transcripts during in vitro oocyte maturation and after maternal-embryonic transition analyzed using a transcriptomic approach, Mol. Reprod. Dev, vol.76, pp.773-782, 2009.

A. Graf, S. Krebs, M. Heininen-brown, V. Zakhartchenko, H. Blum et al., Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments, Anim. Reprod. Sci, vol.149, pp.46-58, 2014.

S. D. Fowler and P. Greenspan, Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: Comparison with oil red O, J. Histochem. Cytochem, vol.33, pp.833-836, 1985.

, Int. J. Mol. Sci, vol.19, p.3261, 2018.

J. Folch, M. Lees, and S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. biol. Chem, vol.226, pp.497-509, 1957.

E. G. Bligh and W. J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

A. D. Southam, R. J. Weber, J. Engel, M. R. Jones, and M. R. Viant, A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics, Nat. Protoc, vol.12, pp.310-328, 2016.

J. P. Koelmel, N. M. Kroeger, C. Z. Ulmer, J. A. Bowden, R. E. Patterson et al., LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data, BMC Bioinform, vol.18, 2017.

E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang et al., Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinform, vol.14, 2013.