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ARTICLE

Soil bacterial networks are less stable under
drought than fungal networks
Franciska T. de Vries 1, Rob I. Griffiths 2, Mark Bailey2, Hayley Craig1, Mariangela Girlanda3,4,

Hyun Soon Gweon 2, Sara Hallin 5, Aurore Kaisermann1, Aidan M. Keith 6, Marina Kretzschmar5,

Philippe Lemanceau7, Erica Lumini 4, Kelly E. Mason 6, Anna Oliver2, Nick Ostle8, James I. Prosser 9,

Cecile Thion 9, Bruce Thomson2 & Richard D. Bardgett 1

Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown

how co-occurrence networks within these communities respond to disturbances such as

climate extremes. This represents an important knowledge gap because changes in microbial

networks could have implications for their functioning and vulnerability to future dis-

turbances. Here, we show in grassland mesocosms that drought promotes destabilising

properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in

bacterial communities link more strongly to soil functioning during recovery than do changes

in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial

communities and their co-occurrence networks via changes in vegetation composition and

resultant reductions in soil moisture. Our results provide new insight in the mechanisms

through which drought alters soil microbial communities with potential long-term con-

sequences, including future plant community composition and the ability of aboveground and

belowground communities to withstand future disturbances.
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Soils harbour highly diverse microbial communities that are
of crucial importance for soil functioning1,2. A major
challenge is to understand how these complex microbial

communities respond to and recover from disturbances, such as
climate extremes, which are predicted to increase in frequency
and intensity with climate change3. Many studies have demon-
strated that climate extremes, such as drought, can have con-
siderable effects on soil microbial communities, often with
consequences for ecosystem processes and plant community
dynamics4–6. It has also been shown that different components of
the microbial community respond differently to drought, with
soil fungi being generally more resistant, but less resilient, than
bacteria4,7–9. Moreover, the recovery of fungi and bacteria from
drought is differentially governed by plant physiological respon-
ses to drought10, for example by reducing the transfer of recently
plant-assimilated C to bacteria, but not to fungi11. Although these
past studies provide important insights into the impacts of cli-
mate extremes and other disturbances on soil microbial com-
munities, they have almost exclusively focussed on single
properties of soil microbial communities and their functioning,
rather than on the multitude of direct and indirect interactions
that occur between the networks of microbial taxa that co-exist in
soil. This represents an important gap in understanding, given
that climate extremes not only have the potential to reorganise
networks of interactions between co-existing soil microbial taxa12,
but also the properties of these networks themselves could
determine their response to disturbances1,9,13.

Evidence is mounting that properties of ecological networks,
which might represent interactions between co-existing organ-
isms, can influence the response of communities to environ-
mental change, including climate extremes1,9,14. Theoretical
studies, for example, predict that ecological networks that consist
of weak interactions are more stable than those with strong
interactions15,16, and that compartmentalisation and presence of
negative interactions increase the stability of networks under
disturbances16–18. Further, modelling studies show that increas-
ing strength of a few key interactions within a food web can
destabilise trophic cascades14. Thus, communities in which a
large proportion of members are connected through positive links
are deemed to be unstable; in such communities, members may
respond in tandem to environmental fluctuations, resulting in
positive feedback and co-oscillation16. Negative links might sta-
bilise co-oscillation in communities and promote stability of
networks16. Despite this knowledge, and an increasing use of
network analysis in ecology1,19–21, our understanding of co-
occurrences or potential interactions within complex soil micro-
bial communities, and how they respond to and recover from
disturbances such as climate extremes, remains scant2,12.

Here, we experimentally investigated how prolonged summer
drought impacts soil fungal and bacterial networks, and whether
this response is consistent with the properties of these networks.
We also aimed to test the role of plant communities in the
response of bacterial and fungal networks and communities to
drought, and what the implications are for soil functioning.
Because soil bacterial communities are less resistant, but more
resilient (i.e., show stronger fluctuations over time), to drought
than fungal communities, we expected bacterial networks to
display more destabilising properties. First, we expected correla-
tions between bacterial OTUs to be stronger overall than those
between fungal OTUs, and that a larger proportion of these
correlations are negative in fungal networks. We tested these
assumptions using all possible correlations in bacterial and fungal
networks separately, thus including weak and non-significant
interactions. Second, we expected a larger proportion of bacterial
than fungal OTUs to be significantly correlated in co-occurrence
networks, and these networks to be more connected for bacteria

than for fungi. Third, we expected networks of positive correla-
tions to have lower modularity for bacteria than for fungi.
We tested these two latter assumptions using co-occurrence
networks that only included significant, positive correlations.
Positive correlations within fungal and bacterial communities can
represent a range of interactions or simply indicate that they are
responding in the same way to a change in environmental
conditions21,22. Thus, although caution is needed in interpreting
them22,23, co-occurrence networks can reveal information on co-
oscillation of microbial taxa21 and the stability of communities.
Fourth, we expected drought-induced changes in plant growth
and community composition to be associated with the trajectory
of recovery of microbial networks and communities, and this link
to be stronger for fungal communities, with these being the first
users of belowground plant C inputs24. Finally, given evidence for
links between soil microbial communities and biogeochemical
cycles2, we expected drought-induced changes in both fungal and
bacterial communities and networks to influence soil functioning.

The above expectations were tested using a field-based meso-
cosm experiment consisting of plant communities varying in
relative abundance of four common grassland species with con-
trasting life history strategies: a fast-growing, resource exploitative
grass (Dactylis glomerata) and herb (Rumex acetosa), and a slow-
growing, resource conservative grass (Anthoxanthum odoratum)
and herb (Leontodon hispidus). Plant communities were domi-
nated by one of these species and varied in evenness, such that
each plant species dominated a low and medium evenness
community in which the three other species had equal abun-
dances. In addition, a high evenness treatment was included in
which all species had equal abundances (see Methods and Sup-
plementary Table 1). These treatments were intended to create a
gradient of drought-induced shifts in plant communities in
response to a summer drought that was imposed in the second
growing season. We then quantified responses of plant commu-
nities, soil bacterial and fungal communities and their overall and
co-occurrence networks, and fluxes of greenhouse gases (CO2 and
N2O; products of plant and microbial respiration and the
microbial processes nitrification and denitrification) over time in
response to drought.

Our results show that bacterial and fungal networks differ
significantly in key properties that might inform on their stability
under disturbance: bacterial networks show more destabilising
properties than fungal networks, and these properties are sti-
mulated by drought. We also show that a drought-induced shift
to dominance of the fast-growing grass has long-lasting direct
and indirect legacy effects on bacterial networks and commu-
nities, with the potential to reinforce changes in plant community
composition and affect aboveground and belowground responses
to future disturbances.

Results
Bacterial and fungal communities. Both fungal and bacterial
communities were strongly, but contrastingly, affected by drought
(Fig. 1). Fungal richness and evenness increased during the
drought period, but rapidly recovered to control levels 1 week
after rewetting. In contrast, drought decreased bacterial richness
and evenness; this effect was strongest 1 week after rewetting and
persisted for 2 months. We used Bray–Curtis similarity as a
measure of resilience of bacterial and fungal communities. When
similarities between drought and control communities were sig-
nificantly lower than those before drought, communities were
assumed to be affected by drought and had not recovered. When
similarities did not differ significantly, the communities were
assumed to be unaffected or had recovered25. We found that
similarities between bacterial drought and control communities
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were significantly lower than they were before drought at all post-
drought samplings, indicating an ongoing effect of drought on
those communities. In contrast, similarities between fungal
drought and control communities were only lower than before
drought at the end of the drought, and weakly so (Fig. 1). In
addition, we also found that a larger proportion of fungal OTUs
increased in relative abundance in response to drought than did
bacterial OTUs (Fig. 2a and Supplementary Fig. 1).

We identified individual bacterial and fungal indicator OTUs
that were both high in abundance and responded strongly in their
abundance to drought (Methods, Supplementary Fig. 1). We also

distinguished between drought-sensitive and drought-tolerant
indicators, which respectively decreased and increased in
response to drought. Both drought-tolerant and drought-
sensitive bacterial indicators were mainly found within the
phylum Verrucomicrobia and the class Alphaproteobacteria, and
additional bacterial drought-sensitive indicators belonged to the
phylum Actinobacteria (Supplementary Data 1). Fungal drought-
tolerant indicators belonged to the phyla Ascomycota and
Glomeromycota (Supplementary Data 2), whereas all fungal
drought-sensitive indicators belonged to the phylum Zygomycota,
specifically of the family Mortierellaceae.
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Bacterial and fungal networks. When considering all correla-
tions, the links between bacterial OTUs were consistently stronger
than those between fungal OTUs (Fig. 3, ANOVA; F1,18,778,692=
5577, P < 0.0001), supporting our expectation that potential
interactions in bacterial networks are stronger than those of
fungal networks. We also found that fungal networks consistently
had fewer negative correlations than bacterial networks (Fig. 3,
two-sided χ2-test of proportions; χ2 > 500 and P < 0.0001 for all
fungal–bacterial control network pairs). When considering only
significant correlations (ρ > 0.6, P < 0.01), again we found that
fungal networks contained fewer negative correlations than bac-
terial networks (two-sided χ2-test of proportions; χ2 > 10 and P <
0.001 for all fungal–bacterial control network pairs). Drought
reduced the proportion of negative correlations in bacterial net-
works at the end of the drought, and in fungal networks after
2 months of recovery (two-sided χ2-test of proportions; χ2= 9.6,
P= 0.002 and χ2= 9.5, P= 0.002, respectively).

We then used these significant correlations to construct co-
occurrence networks, consisting only of positive correlations.
Bacterial co-occurrence networks were larger, more connected
and less modular than fungal networks. A larger proportion of
bacterial OTUs was included in co-occurrence networks than of
fungal OTUs (Fig. 2b). The larger bacterial co-occurrence
networks also had a higher node-normalised degree (the number
of connections a node has standardised by the total number of
connections in the network26) and betweenness (the number of
paths through a node26) than fungal networks (Figs. 4, 5), while a
lower clustering coefficient26 indicated a marginally lower
modularity in bacterial networks than in fungal networks
(ANOVA; F1,8= 3.9, P= 0.08, Supplementary Table 2).

Membership of bacterial networks was more constant over time
than that of fungal networks, indicating consistent correlations
between taxa (Supplementary Fig. 2). In addition, drought
increased the connectedness and centrality of nodes in bacterial
networks, while it decreased these properties in fungal networks
(Fig. 5). When we analysed the combined co-occurrence
networks, including both fungi and bacteria, networks were
dominated by bacterial nodes and showed similar dynamics to
bacteria-only networks (Supplementary Fig. 3 and Supplementary
Table 2).

We found that indicator OTUs, regardless of whether they
were drought-sensitive or drought-tolerant, were more connected
than non-indicator OTUs in bacterial networks (Fig. 5), while in
fungal networks drought-sensitive indicators were more central
and connected than non-indicators. In particular, highly central
in bacterial drought networks were drought-tolerant taxa of the
genera DA101 and Candidatus xiphinematobacter (Verrucomi-
crobia) and Rhodoplanes (Alphaproteobacteria) (Supplementary
Data 1). We also found that the centrality (betweenness) and
connectedness (normalised degree) of bacterial network OTUs
was positively related to their relative abundance, but only in
drought networks (regression; R2= 0.016, P= 0.0002, df= 884
for betweenness in drought late recovery network; R2= 0.037,
P= 0.0002, df= 367; R2= 0.010, P= 0.002, df= 884, for normal-
ised degree in drought early and late recovery networks). In
contrast, these properties were strongly positively related to OTU
relative abundance in fungal control networks. Before the
simulated drought, connectedness was predicted by OTU
abundance in both fungal control and drought networks
(regression; R2= 0.37 and P < 0.0001, df= 86 and R2= 0.22
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and P < 0.0001, df= 111, respectively), and both centrality and
connectedness were predicted by relative abundance in the late
recovery control network (regression; R2= 0.49 and P < 0.0001,
and R2= 0.24 and P < 0.0001, df= 101 for betweenness and
normalised degree, respectively).

For most bacterial networks, there was a negative relationship
between OTU relative abundance and the significance (P value) of
their response to drought. This indicates that the most abundant
bacterial OTUs showed the strongest response to drought
(regression; R2 > 0.01 and P < 0.001 in end of drought and late
recovery control and drought networks; R2= 0.024 and P= 0.003
in early recovery drought network); these relationships were
absent in fungal networks.

Links between plant and microbial community properties.
Drought caused a strong shift in plant community composition
(Fig. 6a–d). Biomass of the fast-growing grass D. glomerata
increased significantly relative to other plant species, and this
increase was responsible for a divergence between control and
drought plant communities (Fig. 6e, f). We assessed the extent to
which this increased D. glomerata biomass was associated with
the relative abundances of bacterial and fungal network OTUs
during recovery from drought. We found more significant cor-
relations of D. glomerata biomass with OTUs in bacterial net-
works, and these correlations were stronger than those with
fungal network OTUs (Fig. 7). Moreover, in bacterial drought
networks, the strength of the correlations with D. glomerata
increased when nodes were more central and connected and
might thus be potential keystone taxa26 (Fig. 7). We also found
that the resilience of the bacterial community to drought (cal-
culated as pairwise Bray–Curtis similarities between control and

drought communities) was linked to the resilience of the plant
community, but this relationship was not significant for fungal
communities (Fig. 6g, h).

We further inferred the potential mechanisms through which
plant community change affected fungal and bacterial community
composition as well as functional guilds involved in denitrifica-
tion and N2O reduction by constructing a structural equation
model (SEM) for the final, late recovery sampling (Supplementary
Fig. 4 and Supplementary Note 1). We found that the increase in
D. glomerata biomass was directly associated with bacterial
community composition. The increase in D. glomerata was also
indirectly associated with fungal and bacterial community
composition through reducing soil moisture content, which was
caused by an increase in aboveground biomass and thus
evapotranspiration (Fig. 8). The abundances of nir and nosZ
genes, used as proxies for denitrifiers and nitrous oxide reducers,
respectively, were not predicted by changes in plant community
composition. Surprisingly, soil inorganic and organic dissolvable
nitrogen, and dissolved organic carbon were not associated with
bacterial or fungal community composition, despite our observa-
tion that the D. glomerata-associated increase in aboveground
biomass reduced soil inorganic N availability (regression; R2=
0.09, P= 0.010).

Links with ecosystem functioning. We constructed a SEM to
assess the direct and indirect effects of drought on soil func-
tioning (Supplementary Fig. 5 and Supplementary Note 2). We
used a multigroup modelling approach to assess how our hypo-
thesised relationships between plant community composition,
microbial communities, and CO2 and N2O fluxes changed during
drought and recovery9. Drought strongly and directly affected

Control Drought

Before
drought

End of
drought

Early
recovery

Late
recovery

Control Drought

Bacterial networks Fungal networks

Fig. 4 Bacterial and fungal co-occurrence networks over time as affected by drought. Nodes represent individual OTUs; edges represent significant positive
Spearman correlations (ρ > 0.6, P < 0.001). Light blue and light red OTUs decrease and increase under drought, respectively; dark blue and dark red OTUs
indicate high abundance OTUs that decrease and increase strongly under drought, respectively (drought-sensitive and drought-tolerant indicator OTUs).
For detailed network properties, see Supplementary Table 1
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both fungal and bacterial community composition at the end of
the drought through changing soil moisture, but plant commu-
nity composition only affected bacterial community composition
directly (Fig. 9). Neither fungal nor bacterial community com-
position were linked to ecosystem respiration, but bacterial
community composition was linked to the abundance of nir
genes. However, 1 week after rewetting, bacterial but not fungal
community composition was directly associated with both eco-
system respiration and N2O production, and indirectly with N2O
production through its link with the abundance of nosZ genes. As
expected, the abundance of nir genes was linked to increased N2O
production, while nosZ gene abundance linked to reduced N2O
production at early recovery. At the final sampling, 2 months
after ending the drought, this association of nir and nosZ gene
abundances ratio with N2O fluxes disappeared (Fig. 9), and all
rates of ecosystem processes had returned to control levels
(Supplementary Fig. 6) irrespective of drought, nir and nosZ gene
abundances increased during the duration of the experiment
(Supplementary Fig 7). The N2O reducers were dominated by
nosZ clade I indicating that complete denitrifiers rather than non-
denitrifying N2O reducers were promoted in the experiment27.
We did not find any relationship between bacterial and archaeal
ammonia oxidiser gene abundances and N2O emissions (see
Supplementary Fig. 8 for drought effects on amoA gene
abundances).

Discussion
Our findings provide insight into the immediate and delayed
response of belowground networks to drought and highlight the
role of plant community composition in governing the dynamics
of this response. We show that soil bacterial and fungal networks
have different properties and respond differently to drought, with

drought having a much stronger impact on bacterial than on
fungal networks. We also found that drought-induced changes in
plant communities had long-lasting associations with bacterial
networks and communities and strongly governed their recovery,
but much less so for fungal networks and communities. Bacterial
co-occurrence networks were characterised by properties that
indicate low stability under disturbance, such as high connectivity
and centrality, and low modularity, while fungal networks had
properties that suggest higher stability. In bacterial networks,
abundant, drought responsive indicator OTUs were highly central
and connected, regardless of whether they were drought-sensitive
or drought-tolerant (Fig. 5), suggesting that they might drive the
observed drought-induced changes in bacterial networks26,28,29.
The central indicators of drought in the bacterial networks,
Rhodoplanes and DA101, are highly abundant in soils in general,
although little is known about their ecology30. However, their
drought tolerance might be a result of their ability to maintain
dominance under a wide range of environmental conditions.

The most dominant bacterial taxa were the strongest respon-
ders to drought (negative correlation between abundance and
P value of drought response), which is in contrast to previous
studies31,32, and we found that these dominant taxa drive net-
work structure (positive correlations between connectedness and
betweenness, and abundance). Thus, the most abundant OTUs
were driving bacterial, but not fungal, network reorganisation in
response to drought26,28,29. While the relationships between
bacterial phylogeny and function are complex33,34, shifts in the
abundance of indicator taxa might inform on the stability of these
networks, and consequently on the response of soil bacterial
communities to drought.

Drought caused a long-lasting shift in plant community com-
position, and this shift was strongly associated with bacterial
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communities and networks. Fungal communities have been
found to be more responsive than bacterial communities to
vegetation change35, and there is accumulating evidence that
fungi are the first consumers of belowground inputs of plant-
derived C24,36. However, our findings point to a novel mechanism

by which vegetation change can affect soil microbial community
reorganisation via changes in soil moisture content. Drought
increased the abundance of the fast-growing grass D. glomerata37,
resulting in increased total aboveground biomass, which in turn
resulted in a prolonged reduction in soil moisture due to higher
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evapotranspiration. This increase in D. glomerata is likely
explained by the tolerance of this species to drought and its ability
to capitalise on the flush of N that occurred on rewetting, thereby
enforcing its dominance relative to other species38. Our SEM
(Fig. 8) showed that while plant community induced changes in
soil moisture affected both bacterial and fungal community
composition 2 months after the drought had ended, only bacterial
community composition was directly affected by the biomass of

D. glomerata. This corresponds with our observation that
D. glomerata biomass was linked to central and connected OTUs
in bacterial networks, but not in fungal networks. In addition,
both the immediate and delayed reductions in moisture affected
bacterial communities more than they did fungal communities.
Thus, drought can have long-lasting legacy effects on soil
microbial communities by promoting the dominance of a fast-
growing grass. Such responses could potentially be common given

Fig. 6 Drought effects on plant community composition and the relationship between changes in plant community composition and microbial community
composition. Biomass of the four species in our established plant communities in the pre-drought season (a), just before drought (b) and 2 months after
ending the drought (c, d), split for control (c) and drought communities (d). Plant community treatments are on the x-axis, with three different evenness
levels and each species dominating within each evenness level. Total community biomass increased marginally in response to drought (ANOVA F1,48=
273, P= 0.08); D. glomerata (Dg) biomass increased strongly under drought, except in Anthoxanthum odoratum (Ao)-dominated communities (ANOVA
dominant species × Drought interaction F14,48= 4.52, P= 0.004). Ao Anthoxanthum odoratum, Dg Dactylis glomerata, Lh Leontodon hispidus, Ra Rumex
acetosa. PCA-biplot of plant community composition (e) shows that PC-axes 1 and 2 scores were significantly affected by drought at the late recovery
sampling (ANOVA F1,48= 273, P < 0.001 and F1,48= 37.2, P= 0.008, respectively). Resilience of plant community composition (similarity between
drought and control, measured as Bray–Curtis distances) explained by the relative change in D. glomerata biomass in response to drought (f). With a larger
drought-induced increase in D. glomerata biomass, droughted plant communities were less similar to control communities (P < 0.001). The resilience of
bacterial community composition (g) was positively explained by the resilience of plant community composition (R2= 0.26, P= 0.008), but this
relationship was not significant for fungal community resilience (h R2= 0.06, P= 0.182). In a–d, bars represent means ± 1 SE (n= 4, SE for total biomass
only); in f–h, dots represent single observations, with shaded areas indicating 95% confidence intervals
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that increases in abundance of fast-growing grasses are often
reported following drought, contributing to the maintenance of
grassland productivity38–40. While these vegetation-mediated
legacy effects on soil microbial communities did not result in
long-term-altered soil functioning, they were shown in a related
study to feedback positively on growth of D. glomerata5, thereby
potentially reinforcing its dominance. As such, changes in soil
microbial communities resulting from drought have the potential
to have legacy effects on plant community composition, in this
case triggering a positive feedback on D. glomerata abundance5,

potentially contributing to long-term-altered plant community
composition.

Not only were bacterial communities affected more by drought,
both directly and indirectly through vegetation change, but bac-
terial communities also showed stronger links to CO2 and N2O
fluxes than did fungal communities during drought recovery. As
expected, bacterial communities predicted nosZ gene abun-
dances27, and both N2O emissions and abundances of genes
indicative of denitrifier genes (nir and nosZ clade I) were sharply
increased 1 week after rewetting. These dynamics, together with
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coefficients. Our multigroup model fit the data well: P= 0.309, CFI= 0.994, P RMSEA <= 0.05= 0.574
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the low variance of N2O explained in our SEM, suggest that the
flush in inorganic N availability after rewetting (which is not
included in the SEM) caused growth of denitrifiers41 that did not
use the final step in the pathway under N replete conditions.
Thereby, N2O emission rates increased, but once available N
content decreased, the denitrifiers likely used the entire pathway
and terminated with nitrogen gas. This would explain why gene
abundances remained high at the final sampling, while N2O
production returned to control levels. Our observations are in
contrast with previous studies that show a reduction or no
response of denitrifier genes in response to drought42,43. More-
over, we show that the indirect effects of drought can increase
both denitrifier and ammonia-oxidiser gene abundances, poten-
tially ‘priming’ N cycling communities to respond to increased N
availability after a second drought.

Our findings have important implications for understanding
how complex soil microbial communities respond to climate
extremes and other disturbances. While the exact nature of
inferred bacterial and fungal interactions remains unknown, our
data show that drought promoted destabilising properties of
bacterial co-occurrence networks. We also reveal an important
association between drought-induced shifts in plant community
composition and changes in bacterial communities, bacterial
networks and the relative abundance of denitrification and
nitrous oxide reduction genes long after the drought has ended.
These findings suggest that bacterial communities might not be as
resilient as previously thought, and that changes in vegetation
resulting from drought could have long-lasting effects on soil
bacterial communities, potentially influencing plant community
composition and the ability of aboveground and belowground
communities to withstand future disturbances5,6,9,44.

Methods
Experimental set-up and soil and greenhouse gas analyses. Topsoil (silt loam
of the Brickfield 2 association (Avis & Harrop, 1983), pH 6.2, C and N content 3.13
and 0.25 g kg−1, respectively) was collected from mesotrophic grassland at
Hazelrigg Field Station, Lancaster University, UK (54°1′N, 2°46′W, 94 m a.s.l),
where the experiment was conducted. Average yearly rainfall at the site is
1092 mm, average yearly temperature is 9.3 °C, based on daily site measurements
since 1966. After homogenisation and removal of stones and roots, 72 pots of 42L
(38 × 38 cm, 40 cm depth) were filled with soil in May 2012 and planted with nine
different plant communities consisting of 36 individuals, arranged in a randomised
block design. Each community consisted of four plant species (Anthoxanthum
odoratum, Dactylis glomerata, Leontodon hispidus and Rumex acetosa, germinated
from seed in glasshouse conditions) and plant communities differed in evenness
(low, medium and high) and dominant plant species (each species alternating in
the low and medium evenness treatment; the high evenness treatment had equal
abundances of all species; see Supplementary Table 2). Plant communities were left
for two growing seasons, and during the second growing season, an extreme
drought designed to simulate a 100-year drought event was imposed in a split-
block design by placing transparent rain covers over the pots from May to July
2013, following Bloor and Bardgett45. All plant community treatment and drought
combinations were replicated four times. Local weather data (1967–2008) were
used to fit a Gumbel I distribution to the annual extremes of drought duration for
the local growing period. During the experimental drought, 75.6 mm of rainfall was
excluded in June, 84.9 in July and 131.1 mm in August (for daily rainfall and
temperature data during the experimental period, see Supplementary Fig. 12). All
pots, and control treatments during the drought, were supplemented with 700 ml
of additional water (equivalent to 0.5 mm of rainfall) every 2 days in dry weeks.
Aboveground biomass was cut to 4 cm two times between plant community
establishment and start of the drought to simulate grazing (end of growing season
2012 and 1 week before starting the drought in 2013), and the biomass of the four
individual species was dried (70 °C) and weighed for each pot. Samples were taken
to quantify microbial properties and gaseous fluxes immediately before starting the
drought, at the end of the drought, and 1 week and 2 months after ending the
drought. At each sampling date, five randomly distributed soil samples per pot
were taken (1 cm diameter, 0–10 cm depth), pooled, sieved (2 mm) and kept at
−80 °C until processing. CO2 fluxes (ecosystem respiration and net ecosystem
exchange) were measured using a portable Infra Red Gas Analyser (EGM4, PP
Systems) using a blacked-out and transparent chamber (to prevent and allow
photosynthesis), respectively. Photosynthesis rates were calculated as net ecosystem
exchange minus respiration rates, with negative values representing an uptake of
CO2. N2O fluxes were measured using a static chamber approach as in Ward

et al.46. Briefly, dark, airtight chambers fitted with a septum for gas collection were
placed over each mesocosm, and headspace was sampled manually every 10 min
for 30 min (four time points) using a syringe (10 ml) fitted with a needle. Samples
were injected into 3 ml vacuum exetainers (Labco, Lampeter, UK) and analysed by
gas chromatography using Autosystem XL GCs (Perkin Elmer, Waltham, MA,
USA). Fluxes were adjusted for field temperature when sampling, headspace
volume and chamber area, and calculated by linear regression using all time points
sampled. At the final sampling (September 2013), a full sampling of plant and soil
properties was done. Aboveground vegetation was cut to 4 cm, split per species,
dried (70 °C) and weighed. Three soil cores (3 cm diam, 10 cm depth) were pooled
per pot, homogenised, sieved (4 mm) and used for analysis of water soluble soil
carbon (dissolved organic C—DOC) and nitrogen (NO3

−, NH4
+, dissolved organic

N—DON) pools. For dissolved organic C and N, 5 g of soil was extracted using 35
ml of Milli-Q water, extracts were filtered (0.45 µm), and analysed using a 5000A
TOC analyser (Shimadzu, Japan) (DOC) and a AA3 HR Auto Analyzer (Seal
Analytical, UK) (DON). For inorganic N, 5 g of soil was extracted using 25 ml of 1
M KCl, filtered through Whatman no 1, and analysed on a AA3 HR Auto Analyzer
(Seal Analytical, UK). One core (3 cm diam, full depth of pot) was used for
determination of total root biomass and root trait analysis. Structural root traits
were analysed using WinRhizo® root analysis software (Regent Instruments Inc.,
Canada) and an Epson flatbed scanner. After analysis, roots were blotted dry,
weighed, dried at 70 °C and re-weighed to calculate root dry matter content
(RDMC). Specific root length (SRL) was calculated by dividing the dry biomass by
the total root length (cm g−1); root tissue density (RTD) was calculated by dividing
the weight of the dry biomass by the root volume (g cm−3).

Quantitative PCR of nir and nosZ genes. DNA was extracted from 0.3 g of soil
using the MoBIO PowerSoil-htp 96-Well DNA Isolation kit (Carlsbad, CA)
according to the manufacturer's protocols. The DNA quality was checked by
agarose gel electrophoresis and prior to performing quantitative PCR, the quantity
was measured using a Qubit fluorimeter (Invitrogen, Carlsbad, CA). To determine
the genetic potential for denitrification and N2O reduction, the genes nirS and
nirK, coding for the cytochrome-like nitrite reductase and the copper-dependent
nitrite reductase in denitrifiers, and nosZI and nosZII, coding for the nitrous oxide
reductase from clade I and II, were quantified by quantitative real-time PCR based
on SYBR green detection using a Biorad CFX Connect Real-Time System (Biorad)
and according to the amplification protocols in Supplementary Table 3. Each
reaction had a volume of 15 µl using iQ™ SYBR® Green Supermix (Bio-Rad
Laboratories, Inc.), 0.05% bovine serum albumin, 0.5 µM of each primer except
0.25 µM for the nirK primers, and 5 ng DNA. Standard curves for each gene were
obtained by serial dilutions of linearised plasmids containing fragments of the
respective genes, which were obtained from pure cultures. Standard curves were
linear (R2= 0.990) in the range used. The amplifications were verified by melting
curve analyses and agarose gel electrophoreses, and non-template controls resulted
in negligible values. Prior to quantification, potential inhibition of the PCR reac-
tions was checked for each sample by amplifying a known amount of the pGEM-T
plasmid (Promega) with the plasmid-specific T7 and SP6 primers when added to
the DNA extracts or non-template controls. No inhibition of the amplification
reactions was detected with the amount of DNA used.

Quantitative PCR of archaeal and bacterial amoA genes. Archaeal and bacterial
amoA gene abundances were determined by real-time PCR in a RealPlex2 Mas-
tercycler (Eppendorf, Stevenage, UK) using QuantiFast® SYBR® Green PCR Master
Mix (Qiagen, Crawley, UK), as described by Thion and Prosser47. Briefly, 20 µl
final volume reaction comprised of 0.2 mg ml−1 bovine serum albumin (BSA),
1.5 µM of both primers, 10 µl of QuantiFastTM qPCR master mix (Qiagen,
Crawley, UK) and 2 µl DNA template, diluted to reach 5–10 ng µl−1. Crena-
moA23f/CrenamoA616r48 and amoA-1F/amoA-2R49 primers were used to amplify
AOA and AOB amoA genes, respectively (Supplementary Table 3). Two complete
standard dilution series, prepared as described by Thion and Prosser47, from 101 to
107 AOA or AOB amoA gene copies, were run for every real-time PCR reaction.
Amplification efficiency ranged from 83% to 94% and from 92% to 101% for AOB
and AOA, respectively, and only reactions with r2 values ≥0.98 were considered.

16S and ITS amplicon sequencing. Amplicon libraries were constructed according
to the dual indexing strategy of Kozich et al.50, with each primer consisting of the
appropriate Illumina adaptor, 8-nt index sequence, a 10-nt pad sequence, a 2-nt
linker and the gene-specific primer. For bacteria, the V3–V4 hypervariable regions
of the 16S rRNA gene were targeted using primers 341F51 and 806R52; for fungi, the
ITS2 region was amplified using fITS7f and ITS4r primer sequences described by
Ihrmark et al.53. Amplicons were generated using a high-fidelity DNA polymerase
(Q5 Taq, New England Biolabs) and pooled. PCR was conducted on 20 ng of
template DNA employing an initial denaturation of 30 s at 95 °C, followed by (25
for 16S and 30 cycles for ITS) 30 s at 95 °C, 30 s at 52 °C and 2min at 72 °C. A final
extension of 10 min at 72 °C was also included to complete the reaction.

Amplicon sizes were determined using an Agilent 2200 TapeStation system
(~550 bp: 16S; ~350–425: ITS) and libraries normalised using SequalPrep
Normalisation Plate Kit (Thermo Fisher Scientific). Library concentration was
calculated using a SYBR green quantitative PCR (qPCR) assay with primers specific
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to the Illumina adaptors (Kappa, Anachem). Libraries were sequenced at a
concentration of 5.4 pM with a 0.6 pM addition of an Illumina-generated PhiX
control library. Sequencing runs, generating 2 × 300 bp reads, were performed on
an Illumina MiSeq using V3 chemistry. The read 1 (R1), read 2 (R2) and index
sequencing primers used were also 16S specific: R1= sequence of the combined
pad, linker and 341F; R2= sequence of the combined pad, linker and 806R; I=
reverse compliment of the R2 primer.

Bioinformatic and statistical analyses of sequencing data. Sequenced paired-
end reads were joined using PEAR54, quality filtered using FASTX tools (han-
nonlab.cshl.edu), length filtered with the minimum length of 300 bpsm, presence of
PhiX and adaptors were checked and removed with BBTools (jgi.doe.gov/data-and-
tools/bbtools/), and chimeras were identified and removed with VSEARCH_-
UCHIME_REF55 using Greengenes Release 13_5 (at 97%)56. Singletons were
removed and the resulting sequences were clustered into operational taxonomic
units (OTUs) with VSEARCH_CLUSTER55 at 97% sequence identity57. Repre-
sentative sequences for each OTU were taxonomically assigned by RDP Classifier
with the bootstrap threshold of 0.8 or greater58 using the Greengenes Release 13_5
(full)56 as the reference. Unless stated otherwise, default parameters were used for
the steps listed. The fungal ITS sequences were analysed using PIPITS59 with
default parameters as outlined in the citation. Briefly, this involved quality filtering
and 97% clustering of the ITS2 region as indicated above for the 16S processing,
using the UNITE database for chimera removal and taxonomic identification of
representative OTUs. Subsequent analyses of taxon abundances were conducted in
R using principally the vegan library (https://github.com/vegandevs/vegan) for
rarefaction and ordination. Both bacterial and fungal OTU abundance tables were
resampled to a minimum of 4000 reads per sample, and samples with a Shannon
diversity higher than 6 and 3.2 for 16S and ITS, respectively, were removed prior to
further analyses.

We generated non-metric multidimensional scaling (NMDS) plots to visualise
and determine the effect of drought on fungal and bacterial community
composition using the functions decostand and adonis in the R library vegan. We
also performed principal components analysis (PCOA) based on Bray–Curtis
dissimilarities on both communities using the function cmdscale; PCOA scores
were used as proxies for community composition in subsequent structural equation
modelling. In addition, we used Bray–Curtis similarities between control and
drought fungal and bacterial communities as a measure of community resistance
and resilience to drought. To identify OTUs significantly associated with the drought
treatments at each time point, we used indicator species analysis as implemented
within the R library labdsv (http://ecology.msu.montana.edu/labdsv/R). The indval
score for each gene is the product of the relative frequency and relative average
abundance within each treatment, and significance was calculated through random
reassignment of groups (1000 permutations). In the circle plots and subsequent
network analyses we focus on only the abundant indicator OTUs which are
significant (P < 0.05) and present at >1% abundance. Full tables of indicator scores
are provided in supplementary material. For calculating indicator taxa and
generating circle plots all taxa with fewer than ten reads across all samples were
also excluded to ease presentation.

We analysed fungal and bacterial networks for each sampling and drought and
control treatment separately. Thus, each network was based on 36 communities,
but only OTUs that occurred in at least 8 communities were included in the
analysis, as in Shi et al.28. All network analyses were done in R, using the package
igraph, as in Williams et al.26; we adapted the code available at https://github.com/
ryanjw/co-occurrence. Interactions consisted of Spearman’s rank correlations and
co-occurrence networks were constructed using only significant correlations (P <
0.01 as in Barberan et al.21) of ρ > 0.6; this cutoff was chosen to include a range of
interactions strengths (not only strong interactions). Random networks were
constructed as in Williams et al.26. Subsequently, we detected network modules
using the edge.betweenness.community function and calculated clustering
coefficients using the transitivity function, analysed the centrality of network nodes
using the betweenness function, and analysed the connectedness of network nodes
using the degree function. All bacterial and fungal networks were significantly
more clustered than random networks. Networks were visualised in the R library
igraph.

General statistical analyses. All data were checked for normality and log-
transformed if necessary. Gas fluxes, N cycling gene data and measures derived
from sequencing data were analysed using repeated measures ANOVA taking into
account the split-plot design (error term with block, drought and mesocosm), soil
nutrient data were analysed using ANOVA (error term with block and drought).
All analyses were performed in R version 3.3.260.

Structural equation modelling. We constructed our a priori models based on
current knowledge on plant-microbe-functioning interactions and tested whether
the data fit these models using the standard and the multigroup modelling
approach in the R library lavaan. We used model modification indices and stepwise
removal of non-significant relationships as in De Vries and Bardgett61. We used a
minimum set of parameters to assess model fit, including root mean square error of
approximation (RMSEA), and comparative fit index (CFI). We used PCOA axis
1 scores as a proxy for fungal and bacterial community composition, PCA axis

1 scores as a proxy for plant community composition, and the ratio between the
sum of nirS and nirK and the sum of nosZI and nosZII gene abundances to indicate
relative changes in genetic potential for the soil functions denitrification and N2O
reduction.

Code availability. Code for network analysis was adapted from, and is available at,
https://github.com/ryanjw/co-occurrence. Code for indicator analysis is available
on request.

Data availability. OTU tables and metadata are available from figshare (https://
doi.org/10.6084/m9.figshare.6548999.v1). Raw sequence data have been deposited
at the EBI European Nucleotide Archive under study accessions ERP109485
(fungal amplicons) and ERP109472 (16S amplicons).
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